1
|
Ni Y, Cao J, Li Y, Qi X. SOX11 silence inhibits atherosclerosis progression in ApoE-deficient mice by alleviating endothelial dysfunction. Exp Cell Res 2025; 445:114422. [PMID: 39805338 DOI: 10.1016/j.yexcr.2025.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/02/2025] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS. The expression of SOX11 was found to be elevated in the aortic tissue of AS mice induced by feeding ApoE-deficient mice a high-fat diet. Knockdown of SOX11 using lentiviral-mediated SOX11-specific shRNA via tail vein injection resulted in a reduction in plaque area and lipid deposition within plaques at the aortic root. Furthermore, silencing SOX11 led to decreased expression of cell adhesion factors Intercellular Cell Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1, as well as reduced levels of inflammatory factors Interleukin (IL)-6, IL-1β, and chemokine Monocyte Chemotactic Protein-1. In the human umbilical vein endothelial cells (HUVECs) induced by Tumor Necrosis Factor (TNF)-α, increased inflammation was observed at the cellular level, along with enhanced monocyte adhesion. Infection of HUVECs with lentivirus carrying specific shRNA targeting SOX11 inhibited inflammatory response. Mechanistically, chromatin immunoprecipitation (ChIP)-PCR results revealed that SOX11 bound to the promoters of downstream target genes Tumor Necrosis Factor Receptor-Associated Factor-1 (TRAF1), Cluster of Differentiation (CD)40, and CD36, positively regulating their transcription. In conclusion, SOX11 plays a pivotal role in promoting endothelial cell inflammation. Suppression of SOX11 reduces endothelial cell inflammation by inhibiting the transcription of TRAF1, CD40, and CD36, thereby impeding the progression of atherosclerosis.
Collapse
Affiliation(s)
- Yanhui Ni
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Jingjing Cao
- Department of Rheumatology and Immunology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Yuxuan Li
- Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Xiaoyong Qi
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
2
|
Hosseini L, Shahabi P, Fakhari A, Zangbar HS, Seyedaghamiri F, Sadeghzadeh J, Abolhasanpour N. Aging and age-related diseases with a focus on therapeutic potentials of young blood/plasma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1-13. [PMID: 37552316 DOI: 10.1007/s00210-023-02657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Aging is accompanied by alterations in the body with time-related to decline of physiological integrity and functionality process, responsible for increasing diseases and vulnerability to death. Several ages associated with biomarkers were observed in red blood cells, and consequently plasma proteins have a critical rejuvenating role in the aging process and age-related disorders. Advanced age is a risk factor for a broad spectrum of diseases and disorders such as cardiovascular diseases, musculoskeletal disorders and liver, chronic kidney disease, neurodegenerative diseases, and cancer because of loss of regenerative capacity, correlated to reduced systemic factors and raise of pro-inflammatory cytokines. Most studies have shown that systemic factors in young blood/plasma can strongly protect against age-related diseases in various tissues by restoring autophagy, increasing neurogenesis, and reducing oxidative stress, inflammation, and apoptosis. Here, we focus on the current advances in using young plasma or blood to combat aging and age-related diseases and summarize the experimental and clinical evidence supporting this approach. Based on reports, young plasma or blood is new a therapeutic approach to aging and age-associated diseases.
Collapse
Affiliation(s)
- Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemehsadat Seyedaghamiri
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Sadeghzadeh
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Khan I, Siraj M. An updated review on cell signaling pathways regulated by candidate miRNAs in coronary artery disease. Noncoding RNA Res 2023; 8:326-334. [PMID: 37077752 PMCID: PMC10106733 DOI: 10.1016/j.ncrna.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNA, size range from 17 to 25 nucleotides that regulate gene expression at the post-transcriptional level. More than 2000 different types of miRNAs have been identified in humans which regulate about 60% of gene expression, since the discovery of the first miRNA in 1993. MicroRNA performs many functions such as being involved in the regulation of various biological pathways for example cell migration, cell proliferation, cell differentiation, disease progression, and initiation. miRNAs also play an important role in the development of atherosclerosis lesions, cardiac fibroblast, cardiac hypertrophy, cancer, and neurological disorders. Abnormal activation of many cell signaling pathways has been observed in the development of coronary artery disease. Abnormal expression of these candidate miRNA genes leads to up or downregulation of specific genes, these specific genes play an important role in the regulation of cell signaling pathways involved in coronary artery disease. Many studies have found that miRNAs play a key role in the regulation of crucial signaling pathways that are involved in the pathophysiology of coronary artery disease. This review is designed to investigate the role of cell signaling pathways regulated by candidate miRNAs in Coronary artery disease.
Collapse
|
4
|
Venkat R, Verma E, Daimary UD, Kumar A, Girisa S, Dutta U, Ahn KS, Kunnumakkara AB. The Journey of Resveratrol from Vineyards to Clinics. Cancer Invest 2023; 41:183-220. [PMID: 35993769 DOI: 10.1080/07357907.2022.2115057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With rising technological advancements, several factors influence the lifestyle of people and stimulate chronic inflammation that severely affects the human body. Chronic inflammation leads to a broad range of physical and pathophysiological distress. For many years, non-steroidal drugs and corticosteroids were most frequently used in treating inflammation and related ailments. However, long-term usage of these drugs aggravates the conditions of chronic diseases and is presented with morbid side effects, especially in old age. Hence, the quest for safe and less toxic anti-inflammatory compounds of high therapeutic potential with least adverse side effects has shifted researchers' attention to ancient medicinal system. Resveratrol (RSV) - 3,4,5' trihydroxystilbene is one such naturally available polyphenolic stilbene derivative obtained from various plant sources. For over 2000 years, these plants have been used in Asian medicinal system for curing inflammation-associated disorders. There is a wealth of in vitro, in vivo and clinical evidence that shows RSV could induce anti-aging health benefits including, anti-cancer, anti-inflammatory, anti-oxidant, phytoesterogenic, and cardio protective properties. However, the issue of rapid elimination of RSV through the metabolic system and its low bio-availability is of paramount importance which is being studied extensively. Therefore, in this article, we scientifically reviewed the molecular targets, biological activities, beneficial and contradicting effects of RSV as evinced by clinical studies for the prevention and treatment of inflammation-mediated chronic disorders.
Collapse
Affiliation(s)
- Ramya Venkat
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Elika Verma
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Aviral Kumar
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uma Dutta
- Department of Zoology, Cell and Molecular Biology Laboratory, Cotton University, Guwahati, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| |
Collapse
|
5
|
Höving AL, Schmidt KE, Kaltschmidt B, Kaltschmidt C, Knabbe C. The Role of Blood-Derived Factors in Protection and Regeneration of Aged Tissues. Int J Mol Sci 2022; 23:ijms23179626. [PMID: 36077021 PMCID: PMC9455681 DOI: 10.3390/ijms23179626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Tissue regeneration substantially relies on the functionality of tissue-resident endogenous adult stem cell populations. However, during aging, a progressive decline in organ function and regenerative capacities impedes endogenous repair processes. Especially the adult human heart is considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects of systemic factors carried by young blood have been described in diverse organs including the heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood components as potential therapeutic agents to target age-associated malignancies led to a wide range of preclinical and clinical research. However, the translation of promising results from the murine to the human system remains difficult. Likewise, the establishment of adequate cellular models could help to study the effects of human blood plasma on the regeneration of human tissues and particularly the heart. Facing this challenge, this review describes the current knowledge of blood plasma-mediated protection and regeneration of aging tissues. The current status of preclinical and clinical research examining blood borne factors that act in stem cell-based tissue maintenance and regeneration is summarized. Further, examples of cellular model systems for a more detailed examination of selected regulatory pathways are presented.
Collapse
Affiliation(s)
- Anna L. Höving
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| | - Kazuko E. Schmidt
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
6
|
Liu X, Zhou H, Hu Z. Resveratrol attenuates chronic pulmonary embolism-related endothelial cell injury by modulating oxidative stress, inflammation, and autophagy. Clinics (Sao Paulo) 2022; 77:100083. [PMID: 35932505 PMCID: PMC9357834 DOI: 10.1016/j.clinsp.2022.100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Due to Pulmonary Artery Endothelial Cell (PAEC) dysfunction, Pulmonary Hypertension (PH) persists even after the Pulmonary Embolism (PE) has been relieved. However, the mechanism behind this remains unclear. METHOD Here, the authors incubated Human PAECs (HPAECs) with thrombin to simulate the process of arterial thrombosis. RESULTS CCK8 results showed a decrease in the viability of HPAECs after thrombin incubation. In addition, the expression of Tissue Factor (TF), Monocyte Chemoattractant Protein 1 (MCP-1), VCAM-1, ICAM-1, cleaved caspase 3, cleaved caspase 9, and Bax protein were all increased after thrombin incubation, while Bcl-2 was decreased. The effects of 3-MA treatment further suggested that autophagy might mediate the partial protective effects of Resveratrol on HPAECs. To observe the effects of Resveratrol in vivo, the authors established a Chronic Thromboembolic Pulmonary Hypertension (CTEPH) model by repeatedly injecting autologous blood clots into a rat's left jugular vein. The results exhibited that Mean Pulmonary Arterial Pressure (mPAP) and vessel Wall Area/Total Area (WA/TA) ratio were both decreased after Resveratrol treatment. Moreover, Resveratrol could reduce the concentration and activity of TF, vWF, P-selectin, and promote these Superoxide Dismutase (SOD) in plasma. Western blot analysis of inflammation, platelet activation, autophagy, and apoptosis-associated proteins in pulmonary artery tissue validated the results in PHAECs. CONCLUSIONS These findings suggested that reduced autophagy, increased oxidative stress, increased platelet activation, and increased inflammation were involved in CTEPH-induced HPAEC dysfunction and the development of PH, while Resveratrol could improve PAEC dysfunction and PH.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Department of Respiratory Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Haiying Zhou
- Department of Respiratory Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhixiong Hu
- Department of Respiratory Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Huo Y, Yang D, Lai K, Tu J, Zhu Y, Ding W, Yang S. Antioxidant Effects of Resveratrol in Intervertebral Disk. J INVEST SURG 2021; 35:1135-1144. [PMID: 34670455 DOI: 10.1080/08941939.2021.1988771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intervertebral disk (IVD) degeneration (IVDD) can cause various spinal degenerative diseases. Cumulative evidence has indicated that IVDD can result from inflammation, apoptosis, autophagy, biomechanical changes and other factors. Currently, lack of conservative treatment for degenerative spinal diseases leads to an urgent demand for clinically applicable medication to ameliorate the progression of IVDD. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol compound extracted from red wine or grapes, has shown protective effects on IVD, alleviating the progression of IVDD. Resveratrol has been demonstrated as a scavenger of free radicals both in vivo and in vitro. The antioxidant effects of resveratrol are likely attributed to its regulation on mitochondrial dysfunction or the elimination of reactive oxygen species. This review will summarize the mechanisms of the reactive oxygen species production and elaborate the mechanisms of resveratrol in retarding IVDD progression, providing a comprehensive understanding of the antioxidant effects of resveratrol in IVD.
Collapse
Affiliation(s)
- Yachong Huo
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, PR China.,Hebei Medical University, Shijiazhuang, PR China
| | - Dalong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Kaitao Lai
- ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Yibo Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Wenyuan Ding
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Sidong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, PR China.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
An N, Gao Y, Si Z, Zhang H, Wang L, Tian C, Yuan M, Yang X, Li X, Shang H, Xiong X, Xing Y. Regulatory Mechanisms of the NLRP3 Inflammasome, a Novel Immune-Inflammatory Marker in Cardiovascular Diseases. Front Immunol 2019; 10:1592. [PMID: 31354731 PMCID: PMC6635885 DOI: 10.3389/fimmu.2019.01592] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The nod-like receptor family pyrin domain containing 3 (NLRP3) is currently the most widely studied inflammasome and has become a hot topic of recent research. As a macromolecular complex, the NLRP3 inflammasome is activated to produce downstream factors, including caspase-1, IL-1β, and IL-18, which then promote local inflammatory responses and induce pyroptosis, leading to unfavorable effects. A growing number of studies have examined the relationship between the NLRP3 inflammasome and cardiovascular diseases (CVDs). However, some studies have shown that the NLRP3 inflammasome is not involved in the occurrence of certain diseases. Therefore, identifying the mechanism of action of the NLRP3 inflammasome and its potential involvement in the pathological process of disease progression is of utmost importance. This review discusses the mechanisms of NLRP3 inflammasome activation and the relationship between the inflammasome and CVDs, including coronary atherosclerosis, myocardial ischemia/reperfusion, cardiomyopathies, and arrhythmia, as well as CVD-related treatments.
Collapse
Affiliation(s)
- Na An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Si
- Department of Acupuncture and Moxibustion, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Hanlai Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Liqin Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Chao Tian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Mengchen Yuan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinye Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Department of Acupuncture and Moxibustion, Beijing University of Chinese Medicine, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xingjiang Xiong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Anti-Inflammatory Effects of Resveratrol: Mechanistic Insights. Int J Mol Sci 2018; 19:ijms19061812. [PMID: 29925765 PMCID: PMC6032205 DOI: 10.3390/ijms19061812] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation is the principal response invoked by the body to address injuries. Despite inflammation constituting a crucial component of tissue repair, it is well known that unchecked or chronic inflammation becomes deleterious, leading to progressive tissue damage. Studies over the past years focused on foods rich in polyphenols with anti-inflammatory and immunomodulatory properties, since inflammation was recognized to play a central role in several diseases. In this review, we discuss the beneficial effects of resveratrol, the most widely investigated polyphenol, on cancer and neurodegenerative, respiratory, metabolic, and cardiovascular diseases. We highlight how resveratrol, despite its unfavorable pharmacokinetics, can modulate the inflammatory pathways underlying those diseases, and we identify future opportunities for the evaluation of its clinical feasibility.
Collapse
|
10
|
Antiobesity and Anti-Inflammatory Effects of Orally Administered Bonito Extracts on Mice Fed a High-Fat Diet. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9187167. [PMID: 29292401 PMCID: PMC5674501 DOI: 10.1155/2017/9187167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/05/2017] [Indexed: 01/03/2023]
Abstract
Background The condensed fermentative extract of bonito (BoE), skipjack tuna (Katsuwonus pelamis), has claimed its health conditioning effects against lifestyle-related diseases such as hypertension and type 2 diabetes. Methods We evaluated the antiobesity and anti-inflammatory effects of BoE on mice fed a high-fat diet (HFD). Mice (9 weeks of age) were maintained for 11 weeks on HFD with or without BoE (50 mg or 500 mg/kg). Results Compared with untreated mice, BoE50 or BoE500 mice achieved maximum weight reductions of 7.4% (males) and 11.4% (females), and visceral fat in male BoE500 mice was more decreased among all mice (P = 0.00459). Furthermore, an antiobesity gene uncoupling protein-1 was significantly induced in the visceral fat tissues of male BoE500 (P = 0.0110) and female BoE50 and BoE500 mice (P = 0.0110 and P = 0.0110, resp.). Finally, we detected reduced amount of granulocyte-colony stimulating factor (P = 0.0250) in the sera of female BoE50 and interleukin- (IL-) 5 (P = 0.0120), IL-6 (P = 0.0118), and IL-13 (P = 0.0243) in female BoE500 mice. Conclusion The antiobesity and anti-inflammatory effects of BoE were demonstrated with our examination system and any toxic adverse effects were not observed in mice during the 3-month investigation.
Collapse
|
11
|
Schueller K, Pignitter M, Somoza V. Sulfated and Glucuronated trans-Resveratrol Metabolites Regulate Chemokines and Sirtuin-1 Expression in U-937 Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6535-6545. [PMID: 26111115 DOI: 10.1021/acs.jafc.5b01830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The natural anti-inflammatory compound resveratrol (RES) is metabolized upon ingestion. After dietary-scale doses, plasma concentrations of sulfated and glucuronated metabolites in humans exceed those of RES. The aim of this in vitro study was to assess the effect of physiological concentrations (1 μM) of the most abundant RES metabolites (RES-3-O-sulfate, R3S; RES-disulfates, RdS; RES-3-O-glucuronide, R3G; RES-4'-O-glucuronide, R4G) on genes and proteins involved in immune cell chemotaxis and inflammation (IL-8, MIP-1b, MCP-1, CCR1, CCR2, CXCR2, SIRT1) in a cell model of lipopolysaccharide (LPS)-activated U-937 macrophages. Levels of MCP-1 mRNA were comparably decreased after 3 h of treatment with R3S and RdS by -24.7 ± 5.51 and -28.7 ± 19.2%, respectively. LPS-induced MCP-1 protein release was reduced after 3 h of treatment by R3S (-20.8 ± 13.9%) and RdS (-25.7 ± 8.29%). After a 9 h treatment, RdS also inhibited IL-8 and MIP-1b protein release by -22.9 ± 3.57 and -20.1 ± 7.00%, respectively. Glucuronides showed differential effects after 6 h of treatment, with R4G up-regulating mRNA of MIP-1b (24.5 ± 14.8%) and R3G and R4G down-regulating CXCR2 surface protein compared to cells treated with LPS alone, by -5.33 ± 4.18 and -15.2 ± 5.99%, respectively. On the contrary, R3G and R4G up-regulated SIRT1 mRNA by 22.7 ± 17.9 and 22.8 ± 16.9%, respectively, in LPS-stimulated U-937 macrophages, showing anti-inflammatory properties. In conclusion, sulfated RES metabolites show an interesting beneficial potential for attenuating inflammatory immune processes.
Collapse
Affiliation(s)
- Katharina Schueller
- †Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, and ‡Christian Doppler Laboratory for Bioactive Aroma Compounds, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Marc Pignitter
- †Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, and ‡Christian Doppler Laboratory for Bioactive Aroma Compounds, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Veronika Somoza
- †Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, and ‡Christian Doppler Laboratory for Bioactive Aroma Compounds, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
12
|
Resveratrol and its oligomers: modulation of sphingolipid metabolism and signaling in disease. Arch Toxicol 2014; 88:2213-32. [PMID: 25344023 DOI: 10.1007/s00204-014-1386-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/08/2014] [Indexed: 01/10/2023]
Abstract
Resveratrol, a natural compound endowed with multiple health-promoting effects, has received much attention given its potential for the treatment of cardiovascular, inflammatory, neurodegenerative, metabolic and age-related diseases. However, the translational potential of resveratrol has been limited by its specificity, poor bioavailability and uncertain toxicity. In recent years, there has been an accumulation of evidence demonstrating that resveratrol modulates sphingolipid metabolism. Moreover, resveratrol forms higher order oligomers that exhibit better selectivity and potency in modulating sphingolipid metabolism. This review evaluates the evidence supporting the modulation of sphingolipid metabolism and signaling as a mechanism of action underlying the therapeutic efficacy of resveratrol and oligomers in diseases, such as cancer.
Collapse
|