1
|
Bettridge K, Harris FE, Yehya N, Xiao J. RNAP Promoter Search and Transcription Kinetics in Live E. coli Cells. J Phys Chem B 2023; 127:3816-3828. [PMID: 37098218 PMCID: PMC11212508 DOI: 10.1021/acs.jpcb.2c09142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Bacterial transcription has been studied extensively in vitro, which has provided detailed molecular mechanisms of transcription. The in vivo cellular environment, however, may impose different rules on transcription than the homogeneous and well-controlled in vitro environment. How an RNA polymerase (RNAP) molecule searches rapidly through vast nonspecific chromosomal DNA in the three-dimensional nucleoid space and identifies a specific promoter sequence remains elusive. Transcription kinetics in vivo could also be impacted by specific cellular environments including nucleoid organization and nutrient availability. In this work, we investigated the promoter search dynamics and transcription kinetics of RNAP in live E. coli cells. Using single-molecule tracking (SMT) and fluorescence recovery after photobleaching (FRAP) across different genetic, drug inhibition, and growth conditions, we observed that RNAP's promoter search is facilitated by nonspecific DNA interactions and is largely independent of nucleoid organization, growth condition, transcription activity, or promoter class. RNAP's transcription kinetics, however, are sensitive to these conditions and mainly modulated at the levels of actively engaged RNAP and the promoter escape rate. Our work establishes a foundation for further mechanistic studies of bacterial transcription in live cells.
Collapse
Affiliation(s)
- Kelsey Bettridge
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21287-0010, United States
| | - Frances E Harris
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21287-0010, United States
| | - Nicolás Yehya
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21287-0010, United States
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21287-0010, United States
| |
Collapse
|
2
|
Li LH, Wu CM, Chang CL, Huang HH, Wu CJ, Yang TC. σ P-NagA-L1/L2 Regulatory Circuit Involved in ΔompA299-356-Mediated Increase in β-Lactam Susceptibility in Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0279722. [PMID: 36350132 PMCID: PMC9769791 DOI: 10.1128/spectrum.02797-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
OmpA, the most abundant porin in Stenotrophomonas maltophilia KJ, exists as a two-domain structure with an N-terminal domain of β-barrel structure embedded in the outer membrane and a C-terminal domain collocated in the periplasm. KJΔOmpA299-356, an ompA mutant of S. maltophilia KJ with a truncated OmpA devoid of 299 to 356 amino acids (aa), was able to stably embed in the outer membrane. KJΔOmpA299-356 was more susceptible to β-lactams than wild-type KJ. We aimed to elucidate the mechanism underlying the ΔompA299-356-mediated increase in β-lactam susceptibility (abbreviated as "ΔOmpA299-356 phenotype"). KJΔOmpA299-356 displayed a lower ceftazidime (CAZ)-induced β-lactamase activity than KJ. Furthermore, KJ2, a L1/L2 β-lactamases-null mutant, and KJ2ΔOmpA299-356, a KJ2 mutant with truncated OmpA devoid of299 to 356 aa, had comparable β-lactam susceptibility. Both lines of evidence indicate that decreased β-lactamase activity contributes to the ΔOmpA299-356 phenotype. We analyzed the transcriptome results of KJ and KJΔOmpA299-356, focusing on PG homeostasis-associated genes. Among the 36 genes analyzed, the nagA gene was upregulated 4.65-fold in KJΔOmpA299-356. Deletion of the nagA gene from the chromosome of KJΔOmpA299-356 restored β-lactam susceptibility and CAZ-induced β-lactamase activity to wild-type levels, verifying that nagA-upregulation in KJΔOmpA299-356 contributes to the ΔOmpA299-356 phenotype. Furthermore, transcriptome analysis revealed that rpoE (Smlt3555) and rpoP (Smlt3514) were significantly upregulated in KJΔOmpA299-356. The deletion mutant construction, β-lactam susceptibility, and β-lactamase activity analysis demonstrated that σP, but not σE, was involved in the ΔOmpA299-356 phenotype. A real-time quantitative (qRT-PCR) assay confirmed that nagA is a member of the σP regulon. The involvement of the σP-NagA-L1/L2 regulatory circuit in the ΔOmpA299-356 phenotype was manifested. IMPORTANCE Porins of Gram-negative bacteria generally act as channels that allow the entry or extrusion of molecules. Moreover, the structural role of porins in stabilizing the outer membrane by interacting with peptidoglycan (PG) and the outer membrane has been proposed. The linkage between porin deficiency and antibiotic resistance increase has been reported widely, with a rationale for blocking antibiotic influx. In this study, a link between porin defects and β-lactam susceptibility increase was demonstrated. The underlying mechanism revealed that a novel σP-NagA-L1/L2 regulatory circuit is triggered due to the loss of the OmpA-PG interaction. This study extends the understanding on the porin defect and antibiotic susceptibility. Porin defects may cause opposite impacts on antibiotic susceptibility, which is dependent on the involvement of the defect. Blocking the porin channel role can increase antibiotic resistance; in contrast, the loss of porin structure role may increase antibiotic susceptibility.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Mu Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Lun Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Hsin-Hui Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Jung Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
3
|
Zhang Y, Wang Y, Li J, Wang C, Du G, Kang Z. Construction of Strong Promoters by Assembling Sigma Factor Binding Motifs. Methods Mol Biol 2022; 2461:137-147. [PMID: 35727448 DOI: 10.1007/978-1-0716-2152-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Development of strong promoters is of growing interest in the field of biotechnology and synthetic biology. Here we present a protocol for the construction of strong prokaryotic promoters that can be recognized by designated multiple sigma factors by interlocking their cognate binding motifs on DNA strands. Strong and stress responsive promoters for Escherichia coli and Bacillus subtilis have been created following the presented protocol. Customized promoters could be easily developed for fine-tuning gene expression or overproducing enzymes with prokaryotic cell factories.
Collapse
Affiliation(s)
- Yonglin Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Wuxi, China
| | - Chao Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Wuxi, China.
- The Science Center for Future Foods, Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Guharajan S, Chhabra S, Parisutham V, Brewster RC. Quantifying the regulatory role of individual transcription factors in Escherichia coli. Cell Rep 2021; 37:109952. [PMID: 34758318 PMCID: PMC8667592 DOI: 10.1016/j.celrep.2021.109952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Gene regulation often results from the action of multiple transcription factors (TFs) acting at a promoter, obscuring the individual regulatory effect of each TF on RNA polymerase (RNAP). Here we measure the fundamental regulatory interactions of TFs in E. coli by designing synthetic target genes that isolate individual TFs' regulatory effects. Using a thermodynamic model, each TF's regulatory interactions are decoupled from TF occupancy and interpreted as acting through (de)stabilization of RNAP and (de)acceleration of transcription initiation. We find that the contribution of each mechanism depends on TF identity and binding location; regulation immediately downstream of the promoter is insensitive to TF identity, but the same TFs regulate by distinct mechanisms upstream of the promoter. These two mechanisms are uncoupled and can act coherently, to reinforce the observed regulatory role (activation/repression), or incoherently, wherein the TF regulates two distinct steps with opposing effects.
Collapse
Affiliation(s)
- Sunil Guharajan
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivani Chhabra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vinuselvi Parisutham
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert C Brewster
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
5
|
G-Quadruplex Structures in Bacteria: Biological Relevance and Potential as an Antimicrobial Target. J Bacteriol 2021; 203:e0057720. [PMID: 33649149 DOI: 10.1128/jb.00577-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA strands consisting of multiple runs of guanines can adopt a noncanonical, four-stranded DNA secondary structure known as G-quadruplex or G4 DNA. G4 DNA is thought to play an important role in transcriptional and translational regulation of genes, DNA replication, genome stability, and oncogene expression in eukaryotic genomes. In other organisms, including several bacterial pathogens and some plant species, the biological roles of G4 DNA and G4 RNA are starting to be explored. Recent investigations showed that G4 DNA and G4 RNA are generally conserved across plant species. In silico analyses of several bacterial genomes identified putative guanine-rich, G4 DNA-forming sequences in promoter regions. The sequences were particularly abundant in certain gene classes, suggesting that these highly diverse structures can be employed to regulate the expression of genes involved in secondary metabolite synthesis and signal transduction. Furthermore, in the pathogen Mycobacterium tuberculosis, the distribution of G4 motifs and their potential role in the regulation of gene transcription advocate for the use of G4 ligands to develop novel antitubercular therapies. In this review, we discuss the various roles of G4 structures in bacterial DNA and the application of G4 DNA as inhibitors or therapeutic agents to address bacterial pathogens.
Collapse
|
6
|
Chattopadhyay A, Abdul Kader Jailani A, Roy A, Mukherjee SK, Mandal B. Prediction of putative regulatory elements in the subgenomic promoters of cucumber green mottle mosaic virus and their interactions with the RNA dependent RNA polymerase domain. Virusdisease 2020; 31:503-516. [PMID: 33381623 DOI: 10.1007/s13337-020-00640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 11/26/2022] Open
Abstract
Characterization of the subgenomic RNA (sgRNA) promoter of many plant viruses is important to understand the expression of downstream genes and also to configure their genome into a suitable virus gene-vector system. Cucumber green mottle mosaic virus (CGMMV, genus Tobamovirus) is one of the RNA viruses, which is extensively being exploited as the suitable gene silencing and protein expression vector. Even though, characters of the sgRNA promoters (SGPs) of CGMMV are yet to be addressed. In the present study, we predicted the SGP for the movement protein (MP) and coat protein (CP) of CGMMV. Further, we identified the key regulatory elements in the SGP regions of MP and CP, and their interactions with the core RNA dependent RNA polymerase (RdRp) domain of CGMMV was deciphered. The modeled structure of core RdRp contains two palm (1-41 aa, and 63-109 aa), one finger (42-62 aa) subdomains with three conserved RdRp motifs that played important role in binding to the SGP nucleic acids. RdRp strongly preferred the double helix form of the stem region in the stem and loop (SL) structures, and the internal bulge elements. In MP-SGP, a total of six elements was identified; of them, the affinity of binding to - 26 nt to - 17 nt site (CGCGGAAAAG) was higher through the formation of strong hydrogen bonds with LYS16, TYR17, LYS19, SER20, etc. of the motif A in the palm subdomain of RdRp. Similar strong interactions were noticed in the internal bulge (CAACUUU) located at + 33 to + 39 nt adjacent to the translation start site (TLSS) (+ 1). These could be proposed as the putative core promoter elements in MP-SGP. Likewise, total five elements were predicted within - 114 nt to + 144 nt region of CP-SGP with respect to CP-TLSS. Of them, RdRp preferred to bind at the small hairpin located at - 60 nt to - 43 nt (UUGGAGGUUUAGCCUCCA) in the upstream region, and at the complex duplex structure spanning between + 99 and + 114 nt in the downstream region, thus indicating the distribution of core promoter within - 60 nt to + 114 nt region of CP-SGP with respect to TLSS (+ 1) of the CP; whereas, the - 114 nt to + 144 nt region of CP-SGP might be necessary for the full activity of the CP-SGP. Our in silico prediction certifies the gravity of these nucleotide stretches as the RNA regulatory elements and identifies their potentiality for binding with of palm and finger sub-domain of RdRp. Identification of such elements will be helpful to anticipate the critical length of the SGPs. Our finding will not only be helpful to delineate the SGPs of CGMMV but also their subsequent application in the efficient construction of virus gene-vector for the expression of foreign protein in plant.
Collapse
Affiliation(s)
- Anirudha Chattopadhyay
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - A Abdul Kader Jailani
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Anirban Roy
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Sunil Kumar Mukherjee
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
7
|
Kędzierska B, Potrykus K, Szalewska-Pałasz A, Wodzikowska B. Insights into Transcriptional Repression of the Homologous Toxin-Antitoxin Cassettes yefM-yoeB and axe-txe. Int J Mol Sci 2020; 21:ijms21239062. [PMID: 33260607 PMCID: PMC7730913 DOI: 10.3390/ijms21239062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Transcriptional repression is a mechanism which enables effective gene expression switch off. The activity of most of type II toxin-antitoxin (TA) cassettes is controlled in this way. These cassettes undergo negative autoregulation by the TA protein complex which binds to the promoter/operator sequence and blocks transcription initiation of the TA operon. Precise and tight control of this process is vital to avoid uncontrolled expression of the toxin component. Here, we employed a series of in vivo and in vitro experiments to establish the molecular basis for previously observed differences in transcriptional activity and repression levels of the pyy and pat promoters which control expression of two homologous TA systems, YefM-YoeB and Axe-Txe, respectively. Transcriptional fusions of promoters with a lux reporter, together with in vitro transcription, EMSA and footprinting assays revealed that: (1) the different sequence composition of the -35 promoter element is responsible for substantial divergence in strengths of the promoters; (2) variations in repression result from the TA repressor complex acting at different steps in the transcription initiation process; (3) transcription from an additional promoter upstream of pat also contributes to the observed inefficient repression of axe-txe module. This study provides evidence that even closely related TA cassettes with high sequence similarity in the promoter/operator region may employ diverse mechanisms for transcriptional regulation of their genes.
Collapse
|
8
|
Multisubunit RNA Polymerases of Jumbo Bacteriophages. Viruses 2020; 12:v12101064. [PMID: 32977622 PMCID: PMC7598289 DOI: 10.3390/v12101064] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
Prokaryotic viruses with DNA genome longer than 200 kb are collectively referred to as “jumbo phages”. Some representatives of this phylogenetically diverse group encode two DNA-dependent RNA polymerases (RNAPs)—a virion RNAP and a non-virion RNAP. In contrast to most other phage-encoded RNAPs, the jumbo phage RNAPs are multisubunit enzymes related to RNAPs of cellular organisms. Unlike all previously characterized multisubunit enzymes, jumbo phage RNAPs lack the universally conserved alpha subunits required for enzyme assembly. The mechanism of promoter recognition is also different from those used by cellular enzymes. For example, the AR9 phage non-virion RNAP requires uracils in its promoter and is able to initiate promoter-specific transcription from single-stranded DNA. Jumbo phages encoding multisubunit RNAPs likely have a common ancestor allowing making them a separate subgroup within the very diverse group of jumbo phages. In this review, we describe transcriptional strategies used by RNAP-encoding jumbo phages and describe the properties of characterized jumbo phage RNAPs.
Collapse
|
9
|
Identification of prokaryotic promoters and their strength by integrating heterogeneous features. Genomics 2020; 112:1396-1403. [DOI: 10.1016/j.ygeno.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/31/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022]
|
10
|
Coelho RV, Dall'Alba G, de Avila E Silva S, Echeverrigaray S, Delamare APL. Toward Algorithms for Automation of Postgenomic Data Analyses: Bacillus subtilis Promoter Prediction with Artificial Neural Network. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 24:300-309. [PMID: 31573385 DOI: 10.1089/omi.2019.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present postgenomic era, the capacity to generate big data has far exceeded the capacity to analyze, contextualize, and make sense of the data in clinical, biological, and ecological applications. There is a great unmet need for automation and algorithms to aid in analyses of big data, in biology in particular. In this context, it is noteworthy that computational methods used to analyze the regulation of bacterial gene expression have in the past focused mainly on Escherichia coli promoters due to the large amount of data available. The challenge and prospects of automation in prediction and recognition of bacteria sequences as promoters have not been properly addressed due to the promoter size and degenerate pattern. We report here an original neural network approach for recognition and prediction of Bacillus subtilis promoters. The artificial neural network used as input 767 B. subtilis promoter sequences, while also aiming at identifying the architecture, provides the most optimal prediction. Two multilayer perceptron neural network architectures offered the highest accuracy: one with five, and another with seven neurons in the hidden layer. Each architecture achieved an accuracy of 98.57% and 97.69%, respectively. The results collectively indicate the promise of the application of neural network approaches to the B. subtilis promoter recognition problem, while also suggesting the broader potential of algorithms for automation of data analyses in the postgenomic era.
Collapse
Affiliation(s)
- Rafael Vieira Coelho
- Farroupilha Campus, Rio Grande do Sul Federal Institute of Education, Science and Technology (IFRS), Farroupilha, Brazil
| | - Gabriel Dall'Alba
- Biotechnology Institute, Caxias do Sul University (UCS), Caxias do Sul, Brazil
| | | | | | | |
Collapse
|
11
|
Orekhova M, Koreshova A, Artamonova T, Khodorkovskii M, Yakunina M. The study of the phiKZ phage non-canonical non-virion RNA polymerase. Biochem Biophys Res Commun 2019; 511:759-764. [PMID: 30833081 DOI: 10.1016/j.bbrc.2019.02.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
Abstract
Non-canonical multisubunit DNA-dependent RNA-polymerases (RNAP) form a new group of the main transcription enzymes, which have only distinct homology to the catalytic subunits of canonical RNAPs of bacteria, archaea and eukaryotes. One of the rare non-canonical RNAP, which was partially biochemically characterized, is non-virion RNAP (nvRNAP) encoded by Pseudomonas phage phiKZ. PhiKZ nvRNAP consists of five subunits, four of which are homologs of β and β' subunit of bacterial RNAP, and the fifth subunits with unknown function. To understand the role of the fifth subunit in phiKZ nvRNAP, we created co-expression system allowing to get recombinant full five-subunit (5s) and four-subunit (4s) complexes and performed their comparison. The 5s recombinant complex is active on phage promoters in vitro as the native nvRNAP. The 4s complex cannot extend RNA, so 4s complex is not a catalytically active core of phiKZ nvRNAP. Thus, the phiKZ fifth subunit is not only a promoter-recognition subunit, but it plays an important role in the formation of active phiKZ nvRNAP.
Collapse
Affiliation(s)
- Mariia Orekhova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Alevtina Koreshova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 143025, Russia
| | - Tatyana Artamonova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
| |
Collapse
|
12
|
Expanding the promoter toolbox of Bacillus megaterium. J Biotechnol 2019; 294:38-48. [DOI: 10.1016/j.jbiotec.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 02/02/2023]
|
13
|
Gill EE, Chan LS, Winsor GL, Dobson N, Lo R, Ho Sui SJ, Dhillon BK, Taylor PK, Shrestha R, Spencer C, Hancock REW, Unrau PJ, Brinkman FSL. High-throughput detection of RNA processing in bacteria. BMC Genomics 2018; 19:223. [PMID: 29587634 PMCID: PMC5870498 DOI: 10.1186/s12864-018-4538-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/12/2018] [Indexed: 01/19/2023] Open
Abstract
Background Understanding the RNA processing of an organism’s transcriptome is an essential but challenging step in understanding its biology. Here we investigate with unprecedented detail the transcriptome of Pseudomonas aeruginosa PAO1, a medically important and innately multi-drug resistant bacterium. We systematically mapped RNA cleavage and dephosphorylation sites that result in 5′-monophosphate terminated RNA (pRNA) using monophosphate RNA-Seq (pRNA-Seq). Transcriptional start sites (TSS) were also mapped using differential RNA-Seq (dRNA-Seq) and both datasets were compared to conventional RNA-Seq performed in a variety of growth conditions. Results The pRNA-Seq library revealed known tRNA, rRNA and transfer-messenger RNA (tmRNA) processing sites, together with previously uncharacterized RNA cleavage events that were found disproportionately near the 5′ ends of transcripts associated with basic bacterial functions such as oxidative phosphorylation and purine metabolism. The majority (97%) of the processed mRNAs were cleaved at precise codon positions within defined sequence motifs indicative of distinct endonucleolytic activities. The most abundant of these motifs corresponded closely to an E. coli RNase E site previously established in vitro. Using the dRNA-Seq library, we performed an operon analysis and predicted 3159 potential TSS. A correlation analysis uncovered 105 antiparallel pairs of TSS that were separated by 18 bp from each other and were centered on single palindromic TAT(A/T)ATA motifs (likely − 10 promoter elements), suggesting that, consistent with previous in vitro experimentation, these sites can initiate transcription bi-directionally and may thus provide a novel form of transcriptional regulation. TSS and RNA-Seq analysis allowed us to confirm expression of small non-coding RNAs (ncRNAs), many of which are differentially expressed in swarming and biofilm formation conditions. Conclusions This study uses pRNA-Seq, a method that provides a genome-wide survey of RNA processing, to study the bacterium Pseudomonas aeruginosa and discover extensive transcript processing not previously appreciated. We have also gained novel insight into RNA maturation and turnover as well as a potential novel form of transcription regulation. NOTE: All sequence data has been submitted to the NCBI sequence read archive. Accession numbers are as follows: [NCBI sequence read archive: SRX156386, SRX157659, SRX157660, SRX157661, SRX157683 and SRX158075]. The sequence data is viewable using Jbrowse on www.pseudomonas.com. Electronic supplementary material The online version of this article (10.1186/s12864-018-4538-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin E Gill
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Luisa S Chan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Geoffrey L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Neil Dobson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Raymond Lo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Shannan J Ho Sui
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Bhavjinder K Dhillon
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Patrick K Taylor
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Raunak Shrestha
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Cory Spencer
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
14
|
Roy NS, Debnath S, Chakraborty A, Chakraborty P, Bera I, Ghosh R, Ghoshal N, Chakrabarti S, Roy S. Enhanced basepair dynamics pre-disposes protein-assisted flips of key bases in DNA strand separation during transcription initiation. Phys Chem Chem Phys 2018; 20:9449-9459. [DOI: 10.1039/c8cp01119b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Localized separation of strands of duplex DNA is a necessary step in many DNA-dependent processes, including transcription and replication.
Collapse
Affiliation(s)
- Neeladri Sekhar Roy
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Subrata Debnath
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Abhijit Chakraborty
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | | | - Indrani Bera
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Raka Ghosh
- Department of Biophysics
- Bose Institute
- Kolkata 700054
- India
| | - Nanda Ghoshal
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Saikat Chakrabarti
- Division of Structural Biology and Bioinformatics
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Siddhartha Roy
- Department of Biophysics
- Bose Institute
- Kolkata 700054
- India
| |
Collapse
|
15
|
Alhadid Y, Chung S, Lerner E, Taatjes DJ, Borukhov S, Weiss S. Studying transcription initiation by RNA polymerase with diffusion-based single-molecule fluorescence. Protein Sci 2017; 26:1278-1290. [PMID: 28370550 PMCID: PMC5477543 DOI: 10.1002/pro.3160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 01/30/2023]
Abstract
Over the past decade, fluorescence-based single-molecule studies significantly contributed to characterizing the mechanism of RNA polymerase at different steps in transcription, especially in transcription initiation. Transcription by bacterial DNA-dependent RNA polymerase is a multistep process that uses genomic DNA to synthesize complementary RNA molecules. Transcription initiation is a highly regulated step in E. coli, but it has been challenging to study its mechanism because of its stochasticity and complexity. In this review, we describe how single-molecule approaches have contributed to our understanding of transcription and have uncovered mechanistic details that were not observed in conventional assays because of ensemble averaging.
Collapse
Affiliation(s)
- Yazan Alhadid
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, California, 90095
| | - SangYoon Chung
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California, 90095
| | - Eitan Lerner
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California, 90095
| | - Dylan J Taatjes
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| | - Sergei Borukhov
- Rowan University School of Osteopathic Medicine, Stratford, New Jersey, 08084
| | - Shimon Weiss
- Interdepartmental Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, California, 90095
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California, 90095
- Molecular Biology Institute (MBI), University of California, Los Angeles, California, 90095
- California NanoSystems Institute, University of California, Los Angeles, California, 90095
- Department of Physiology, University of California, Los Angeles, California, 90095
| |
Collapse
|
16
|
Shahmuradov IA, Mohamad Razali R, Bougouffa S, Radovanovic A, Bajic VB. bTSSfinder: a novel tool for the prediction of promoters in cyanobacteria and Escherichia coli. Bioinformatics 2017; 33:334-340. [PMID: 27694198 PMCID: PMC5408793 DOI: 10.1093/bioinformatics/btw629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/27/2016] [Indexed: 12/01/2022] Open
Abstract
Motivation The computational search for promoters in prokaryotes remains an attractive problem in bioinformatics. Despite the attention it has received for many years, the problem has not been addressed satisfactorily. In any bacterial genome, the transcription start site is chosen mostly by the sigma (σ) factor proteins, which control the gene activation. The majority of published bacterial promoter prediction tools target σ70 promoters in Escherichia coli. Moreover, no σ-specific classification of promoters is available for prokaryotes other than for E. coli. Results Here, we introduce bTSSfinder, a novel tool that predicts putative promoters for five classes of σ factors in Cyanobacteria (σA, σC, σH, σG and σF) and for five classes of sigma factors in E. coli (σ70, σ38, σ32, σ28 and σ24). Comparing to currently available tools, bTSSfinder achieves higher accuracy (MCC = 0.86, F1-score = 0.93) compared to the next best tool with MCC = 0.59, F1-score = 0.79) and covers multiple classes of promoters. Availability and Implementation bTSSfinder is available standalone and online at http://www.cbrc.kaust.edu.sa/btssfinder. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ilham Ayub Shahmuradov
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Rozaimi Mohamad Razali
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Aleksandar Radovanovic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Hubin EA, Fay A, Xu C, Bean JM, Saecker RM, Glickman MS, Darst SA, Campbell EA. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife 2017; 6. [PMID: 28067618 PMCID: PMC5302886 DOI: 10.7554/elife.22520] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/07/2017] [Indexed: 02/07/2023] Open
Abstract
RbpA and CarD are essential transcription regulators in mycobacteria. Mechanistic analyses of promoter open complex (RPo) formation establish that RbpA and CarD cooperatively stimulate formation of an intermediate (RP2) leading to RPo; formation of RP2 is likely a bottleneck step at the majority of mycobacterial promoters. Once RPo forms, CarD also disfavors its isomerization back to RP2. We determined a 2.76 Å-resolution crystal structure of a mycobacterial transcription initiation complex (TIC) with RbpA as well as a CarD/RbpA/TIC model. Both CarD and RbpA bind near the upstream edge of the −10 element where they likely facilitate DNA bending and impede transcription bubble collapse. In vivo studies demonstrate the essential role of RbpA, show the effects of RbpA truncations on transcription and cell physiology, and indicate additional functions for RbpA not evident in vitro. This work provides a framework to understand the control of mycobacterial transcription by RbpA and CarD. DOI:http://dx.doi.org/10.7554/eLife.22520.001
Collapse
Affiliation(s)
| | - Allison Fay
- Immunology Program, Sloan-Kettering Institute, New York, United States
| | - Catherine Xu
- The Rockefeller University, New York, United States
| | - James M Bean
- Immunology Program, Sloan-Kettering Institute, New York, United States
| | | | - Michael S Glickman
- Immunology Program, Sloan-Kettering Institute, New York, United States.,Division of Infectious Diseases, Memorial Sloan-Kettering Cancer Center, New York, United States
| | - Seth A Darst
- The Rockefeller University, New York, United States
| | | |
Collapse
|
18
|
Lee J, Borukhov S. Bacterial RNA Polymerase-DNA Interaction-The Driving Force of Gene Expression and the Target for Drug Action. Front Mol Biosci 2016; 3:73. [PMID: 27882317 PMCID: PMC5101437 DOI: 10.3389/fmolb.2016.00073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022] Open
Abstract
DNA-dependent multisubunit RNA polymerase (RNAP) is the key enzyme of gene expression and a target of regulation in all kingdoms of life. It is a complex multifunctional molecular machine which, unlike other DNA-binding proteins, engages in extensive and dynamic interactions (both specific and nonspecific) with DNA, and maintains them over a distance. These interactions are controlled by DNA sequences, DNA topology, and a host of regulatory factors. Here, we summarize key recent structural and biochemical studies that elucidate the fine details of RNAP-DNA interactions during initiation. The findings of these studies help unravel the molecular mechanisms of promoter recognition and open complex formation, initiation of transcript synthesis and promoter escape. We also discuss most current advances in the studies of drugs that specifically target RNAP-DNA interactions during transcription initiation and elongation.
Collapse
Affiliation(s)
- Jookyung Lee
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| |
Collapse
|
19
|
Tiwari PB, Chapagain PP, Banda S, Darici Y, Üren A, Tse-Dinh YC. Characterization of molecular interactions between Escherichia coli RNA polymerase and topoisomerase I by molecular simulations. FEBS Lett 2016; 590:2844-51. [PMID: 27448274 DOI: 10.1002/1873-3468.12321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/13/2022]
Abstract
Escherichia coli topoisomerase I (EctopoI), a type IA DNA topoisomerase, relaxes the negative DNA supercoiling generated by RNA polymerase (RNAP) during transcription elongation. Due to the lack of structural information on the complex, the exact nature of the RNAP-EctopoI interactions remains unresolved. Herein, we report for the first time, the structure-based modeling of the RNAP-EctopoI interactions using computational methods. Our results predict that the salt bridge as well as hydrogen bond interactions are responsible for the formation and stabilization of the RNAP-EctopoI complex. Our investigations provide molecular insights for understanding how EctopoI interacts with RNAP, a critical step for preventing hypernegative DNA supercoiling during transcription.
Collapse
Affiliation(s)
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Srikanth Banda
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Yesim Darici
- Department of Physics, Florida International University, Miami, FL, USA
| | - Aykut Üren
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Yuk-Ching Tse-Dinh
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| |
Collapse
|
20
|
Druzhinin SY, Tran NT, Skalenko KS, Goldman SR, Knoblauch JG, Dove SL, Nickels BE. A Conserved Pattern of Primer-Dependent Transcription Initiation in Escherichia coli and Vibrio cholerae Revealed by 5' RNA-seq. PLoS Genet 2015; 11:e1005348. [PMID: 26131907 PMCID: PMC4488433 DOI: 10.1371/journal.pgen.1005348] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022] Open
Abstract
Transcription initiation that involves the use of a 2- to ~4-nt oligoribonucleotide primer, “primer-dependent initiation,” (PDI) has been shown to be widely prevalent at promoters of genes expressed during the stationary phase of growth in Escherichia coli. However, the extent to which PDI impacts E. coli physiology, and the extent to which PDI occurs in other bacteria is not known. Here we establish a physiological role for PDI in E. coli as a regulatory mechanism that modulates biofilm formation. We further demonstrate using high-throughput sequencing of RNA 5′ ends (5′ RNA-seq) that PDI occurs in the pathogenic bacterium Vibrio cholerae. A comparative global analysis of PDI in V. cholerae and E. coli reveals that the pattern of PDI is strikingly similar in the two organisms. In particular, PDI is detected in stationary phase, is not detected in exponential phase, and is preferentially apparent at promoters carrying the sequence T−1A+1 or G−1G+1 (where position +1 corresponds to the position of de novo initiation). Our findings demonstrate a physiological role for PDI and suggest PDI may be widespread among Gammaproteobacteria. We propose that PDI in both E. coli and V. cholerae occurs though a growth phase-dependent process that leads to the preferential generation of the linear dinucleotides 5´-UA-3´ and 5´-GG-3´. Primer-dependent transcription initiation, PDI, refers to an alternative mechanism of transcription initiation whereby the first phosphodiester bond within the nascent RNA is formed between a 2- to ~4-nt RNA primer and an incoming nucleoside triphosphate. Although PDI has been shown to occur in E. coli, the impact of PDI on E. coli physiology, and the extent to which PDI occurs in other bacteria is unknown. Here we establish that PDI modulates the ability of E. coli to form biofilms, a surface attached community of bacteria encased in a polymeric matrix. We further describe a significantly improved RNA-seq based method for the detection of PDI in cells. Using this method we document the occurrence of PDI in the pathogenic bacterium Vibrio cholerae. We further show that the pattern of PDI in V. cholerae is identical to that observed in E. coli, suggesting that PDI in these two organisms may occur through a conserved process that produces identical populations of 2- to ~4-nt RNA primers. Our findings suggest PDI may be widespread in Gammaproteobacteria.
Collapse
Affiliation(s)
- Sergey Y. Druzhinin
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ngat T. Tran
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kyle S. Skalenko
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Seth R. Goldman
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jared G. Knoblauch
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SLD); (BEN)
| | - Bryce E. Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (SLD); (BEN)
| |
Collapse
|
21
|
Aseev LV, Koledinskaya LS, Boni IV. Dissecting the extended "-10" Escherichia coli rpsB promoter activity and regulation in vivo. BIOCHEMISTRY (MOSCOW) 2014; 79:776-84. [PMID: 25365487 DOI: 10.1134/s0006297914080057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As we have shown previously, transcription of the rpsB-tsf operon encoding essential components of the translation machinery, a ribosomal protein S2 and an elongation factor Ts, is driven by a single promoter PrpsB, which is highly conserved among γ-proteobacteria. PrpsB belongs to the extended "-10" promoter class; it comprises a TGTG-extension upstream of the "-10" hexamer TATAAA, a suboptimal "-35" region TTGGTG, and a GC-rich discriminator GCGCGC that separates the "-10" element from the transcription start site. In this work, we examined an impact of site-directed mutations in the rpsB promoter region on expression of the reporter gene PrpsB-lacZ within the E. coli chromosome as well as promoter regulation by transcription factors ppGpp and DksA upon amino acid starvation. The results show that the transcription level largely depends on both the TGTG-extension and the TTG-element in the "-35" region, as mutations in these sequences dramatically decrease the activity of the promoter. Upon induction of amino acid starvation, the rpsB promoter is negatively regulated by ppGpp due to the presence of the GC-rich discriminator, whose substitution for the AT-rich element abolished stringent control. These and other data obtained demonstrate the necessity of a natural combination of all the conserved promoter elements for efficient and regulated transcription of the essential rpsB-tsf operon.
Collapse
Affiliation(s)
- L V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | |
Collapse
|
22
|
Feklístov A, Sharon BD, Darst SA, Gross CA. Bacterial sigma factors: a historical, structural, and genomic perspective. Annu Rev Microbiol 2014; 68:357-76. [PMID: 25002089 DOI: 10.1146/annurev-micro-092412-155737] [Citation(s) in RCA: 334] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription initiation is the crucial focal point of gene expression in prokaryotes. The key players in this process, sigma factors (σs), associate with the catalytic core RNA polymerase to guide it through the essential steps of initiation: promoter recognition and opening, and synthesis of the first few nucleotides of the transcript. Here we recount the key advances in σ biology, from their discovery 45 years ago to the most recent progress in understanding their structure and function at the atomic level. Recent data provide important structural insights into the mechanisms whereby σs initiate promoter opening. We discuss both the housekeeping σs, which govern transcription of the majority of cellular genes, and the alternative σs, which direct RNA polymerase to specialized operons in response to environmental and physiological cues. The review concludes with a genome-scale view of the extracytoplasmic function σs, the most abundant group of alternative σs.
Collapse
|
23
|
Campagne S, Marsh ME, Capitani G, Vorholt JA, Allain FHT. Structural basis for -10 promoter element melting by environmentally induced sigma factors. Nat Struct Mol Biol 2014; 21:269-76. [PMID: 24531660 DOI: 10.1038/nsmb.2777] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/22/2014] [Indexed: 12/12/2022]
Abstract
Bacterial transcription is controlled by sigma factors, the RNA polymerase subunits that act as initiation factors. Although a single housekeeping sigma factor enables transcription from thousands of promoters, environmentally induced sigma factors redirect gene expression toward small regulons to carry out focused responses. Using structural and functional analyses, we determined the molecular basis of -10 promoter element recognition by Escherichia coli σ(E), which revealed an unprecedented way to achieve promoter melting. Group IV sigma factors induced strand separation at the -10 element by flipping out a single nucleotide from the nontemplate-strand DNA base stack. Unambiguous selection of this critical base was driven by a dynamic protein loop, which can be substituted to modify specificity of promoter recognition. This mechanism of promoter melting explains the increased promoter-selection stringency of environmentally induced sigma factors.
Collapse
Affiliation(s)
- Sébastien Campagne
- 1] Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland. [2] Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - May E Marsh
- Paul Scherrer Institut, Villigen, Switzerland
| | | | - Julia A Vorholt
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|