1
|
Chen RK, Zhang C, Lin JW, Shi WX, Li YR, Chen WJ, Cai NQ. Altered corticalfunctional networks in Wilson's disease: A resting-state electroencephalogram study. Neurobiol Dis 2024; 202:106692. [PMID: 39370050 DOI: 10.1016/j.nbd.2024.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024] Open
Abstract
The neuropsychiatric symptoms are common in Wilson's disease (WD) patients. However, it remains unclear about the associated functional brain networks. In this study, source localization-based functional connectivity analysis of close-eye resting-state electroencephalography (EEG) were implemented to assess the characteristics of functional networks in 17 WD patients with neurological involvements and 17 healthy controls (HCs). The weighted phase-lag index (wPLI) was subsequently calculated in source space across five different frequency bands and the resulting connectivity matrix was transformed into a weighted graph whose structure was measured by five graphical analysis indicators, which were finally correlated with clinical scores. Compared to HCs, WD patients revealed disconnected sub-networks in delta, theta and alpha bands. Moreover, WD patients exhibited significantly reduced global clustering coefficients and small-worldness in all five frequency bands. In WD group, the severity of neurological symptoms and structural brain abnormalities were significantly correlated with disrupted functional networks. In conclusion, our study demonstrated that functional network deficits in WD can reflect the severity of their neurological symptoms and structural brain abnormalities. Resting-state EEG may be used as a marker of brain injury in WD.
Collapse
Affiliation(s)
- Ru-Kai Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Chan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Jian-Wei Lin
- Department of Infectious Diseases, Xianyou County General Hospital, Putian 351200, China
| | - Wu-Xiang Shi
- Department of Fujian Provincial Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou 350108, Fujian, China; College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yu-Rong Li
- Department of Fujian Provincial Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou 350108, Fujian, China; College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
| | - Nai-Qing Cai
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
2
|
Moura J, Pinto C, Freixo P, Alves H, Ramos C, Santos Silva E, Nery F, Gandara J, Lopes V, Ferreira S, Presa J, Ferreira JM, Miranda HP, Magalhães M. Correlation between neuroimaging, neurological phenotype, and functional outcomes in Wilson's disease. Neurol Sci 2024; 45:3201-3208. [PMID: 38291197 DOI: 10.1007/s10072-024-07371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION Wilson's disease (WD) is associated with a variety of movement disorders and progressive neurological dysfunction. The aim of this study was to correlate baseline brain magnetic resonance imaging (MRI) features with clinical phenotype and long-term outcomes in chronically treated WD patients. METHODS Patients were retrospectively selected from an institutional database. Two experienced neuroradiologists reviewed baseline brain MRI. Functional assessment was performed using the World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) scale, and disease severity was classified using the Global Assessment Scale for Wilson's Disease (GASWD). RESULTS Of 27 patients selected, 14 were female (51.9%), with a mean (standard deviation [SD]) age at onset of 19.5 (7.1) years. Neurological symptoms developed in 22 patients (81.5%), with hyperkinetic symptoms being the most common (70.4%). Baseline brain MRI showed abnormal findings in 18 cases (66.7%), including T2 hyperintensities in 59.3% and atrophy in 29.6%. After a mean (SD) follow-up of 20.9 (11.0) years, WD patients had a mean score of 19.2 (10.2) on WHODAS 2.0 and 6.4 (5.7) on GASWD. The presence of hyperkinetic symptoms correlated with putaminal T2 hyperintensities (p = 0.003), putaminal T2 hypointensities (p = 0.009), and mesencephalic T2 hyperintensities (p = 0.009). Increased functional disability was associated with brain atrophy (p = 0.007), diffusion abnormalities (p = 0.013), and burden of T2 hyperintensities (p = 0.002). A stepwise regression model identified atrophy as a predictor of increased WHODAS 2.0 (p = 0.023) and GASWD (p = 0.007) scores. CONCLUSIONS Atrophy and, to a lesser extent, deep T2 hyperintensity are associated with functional disability and disease severity in long-term follow-up of WD patients.
Collapse
Affiliation(s)
- João Moura
- Department of Neurology, Centro Hospitalar Universitário de Santo António, Largo Do Professor Abel Salazar, 4099-001, Porto, Portugal.
| | - Catarina Pinto
- Department of Neuroradiology, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Pedro Freixo
- Department of Physical and Rehabilitation Medicine, Unidade Local de Saúde de Matosinhos, Porto, Portugal
| | - Helder Alves
- Porto Institute of Social Work (ISSSP), Porto, Portugal
- INESC TEC, Porto, Portugal
| | - Cristina Ramos
- Department of Neuroradiology, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Ermelinda Santos Silva
- Department of Paediatric Gastrenterology, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Filipe Nery
- Department of Hepatic and Pancreatic Transplantation, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Judit Gandara
- Department of Hepatic and Pancreatic Transplantation, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Vitor Lopes
- Department of Hepatic and Pancreatic Transplantation, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Sofia Ferreira
- Department of Hepatic and Pancreatic Transplantation, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - José Presa
- Liver Unit, Department of Medicine, Centro Hospitalar de Trás-Os-Montes E Alto Douro, Porto, Portugal
| | - José Manuel Ferreira
- Department of Gastrenterology, Centro Hospitalar de Trás-Os-Montes E Alto Douro, Porto, Portugal
| | - Helena Pessegueiro Miranda
- Department of Hepatic and Pancreatic Transplantation, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Marina Magalhães
- Department of Neurology, Centro Hospitalar Universitário de Santo António, Largo Do Professor Abel Salazar, 4099-001, Porto, Portugal
| |
Collapse
|
3
|
Joshi D, Nayagam J, Clay L, Yerlett J, Claridge L, Day J, Ferguson J, Mckie P, Vara R, Pargeter H, Lockyer R, Jones R, Heneghan M, Samyn M. UK guideline on the transition and management of childhood liver diseases in adulthood. Aliment Pharmacol Ther 2024; 59:812-842. [PMID: 38385884 DOI: 10.1111/apt.17904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
INTRODUCTION Improved outcomes of liver disease in childhood and young adulthood have resulted in an increasing number of young adults (YA) entering adult liver services. The adult hepatologist therefore requires a working knowledge in diseases that arise almost exclusively in children and their complications in adulthood. AIMS To provide adult hepatologists with succinct guidelines on aspects of transitional care in YA relevant to key disease aetiologies encountered in clinical practice. METHODS A systematic literature search was undertaken using the Pubmed, Medline, Web of Knowledge and Cochrane database from 1980 to 2023. MeSH search terms relating to liver diseases ('cholestatic liver diseases', 'biliary atresia', 'metabolic', 'paediatric liver diseases', 'autoimmune liver diseases'), transition to adult care ('transition services', 'young adult services') and adolescent care were used. The quality of evidence and the grading of recommendations were appraised using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. RESULTS These guidelines deal with the transition of YA and address key aetiologies for the adult hepatologist under the following headings: (1) Models and provision of care; (2) screening and management of mental health disorders; (3) aetiologies; (4) timing and role of liver transplantation; and (5) sexual health and fertility. CONCLUSIONS These are the first nationally developed guidelines on the transition and management of childhood liver diseases in adulthood. They provide a framework upon which to base clinical care, which we envisage will lead to improved outcomes for YA with chronic liver disease.
Collapse
Affiliation(s)
- Deepak Joshi
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Jeremy Nayagam
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Lisa Clay
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
| | - Jenny Yerlett
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
| | - Lee Claridge
- Leeds Liver Unit, St James's University Hospital, Leeds, UK
| | - Jemma Day
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James Ferguson
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Paul Mckie
- Department of Social Work, King's College Hospital NHS Foundation Trust, London, UK
| | - Roshni Vara
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
- Evelina London Children's Hospital, London, UK
| | | | | | - Rebecca Jones
- Leeds Liver Unit, St James's University Hospital, Leeds, UK
| | - Michael Heneghan
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Marianne Samyn
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Matar E, Bhatia K. Dystonia and Parkinson's disease: Do they have a shared biology? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:347-411. [PMID: 37482398 DOI: 10.1016/bs.irn.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Parkinsonism and dystonia co-occur across many movement disorders and are most encountered in the setting of Parkinson's disease. Here we aim to explore the shared neurobiological underpinnings of dystonia and parkinsonism through the clinical lens of the conditions in which these movement disorders can be seen together. Foregrounding the discussion, we briefly review the circuits of the motor system and the neuroanatomical and neurophysiological aspects of motor control and highlight their relevance to the proposed pathophysiology of parkinsonism and dystonia. Insight into shared biology is then sought from dystonia occurring in PD and other forms of parkinsonism including those disorders in which both can be co-expressed simultaneously. We organize these within a biological schema along with important questions to be addressed in this space.
Collapse
Affiliation(s)
- Elie Matar
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London, United Kingdom; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Kailash Bhatia
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London, United Kingdom
| |
Collapse
|
5
|
Motor Evoked Potentials in Newly Diagnosed and Treated Patients With Wilson Disease. J Clin Neurophysiol 2023; 40:258-262. [PMID: 36872503 DOI: 10.1097/wnp.0000000000000882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To investigate whether patients with Wilson disease have abnormal motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation. METHODS In a prospective, observational, single-center study, transcranial magnetic stimulation was used to examine MEPs recorded from the abductor digiti minimi in 24 newly diagnosed treatment-naive patients and 21 treated patients with Wilson disease. RESULTS Motor evoked potentials were recorded in 22 (91.7%) newly diagnosed treatment-naive patients and in 20 (95.2%) treated patients. Abnormal MEP parameters were found in a similar proportion of newly diagnosed and treated patients: MEP latency (38% vs. 29%), MEP amplitude (21% vs. 24%), central motor conduction time (29% vs. 29%), and resting motor threshold (68% vs. 52%). Abnormal MEP amplitude (P = 0.044) and resting motor threshold (P = 0.011) were more frequent in treated patients with brain MRI abnormalities but not in newly diagnosed patients. We did not observe significant improvement in MEPs parameters after 1 year of treatment introduction in eight examined patients. However, in one patient where MEPs were initially nondetectable, they were present 1 year after treatment introduction with zinc sulfate, although MEPs were not in the normal range. CONCLUSIONS Motor evoked potential parameters did not differ between newly diagnosed and treated patients. There was no significant improvement in MEP parameters one year after treatment introduction. Further studies conducted on large cohorts are necessary to determine the usefulness of MEPs in detecting pyramidal tract damage and improvement after anticopper treatment introduction in Wilson disease.
Collapse
|
6
|
Brain microstructural abnormalities in patients with Wilson’s disease: A systematic review of diffusion tenor imaging studies. Brain Imaging Behav 2022; 16:2809-2840. [DOI: 10.1007/s11682-022-00733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
7
|
Nuklearmedizinische Diagnostik beim Morbus Wilson. DER NERVENARZT 2022; 94:327-334. [PMID: 36149458 DOI: 10.1007/s00115-022-01390-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 10/14/2022]
Abstract
Wilson's disease is an autosomal recessive disorder of copper metabolism and is caused by a genetic defect on chromosome 13. Nuclear medicine methods can prove the metabolic defect and contribute to the assessment of central neurological deficits.With high specificity and sensitivity, the intravenous radiocopper test enables the diagnosis to be confirmed as the basis for initiating treatment. The oral radiocopper test is used to monitor zinc treatment.[123I]β-CIT-SPECT and [123I]IBZM-SPECT provide functional information of the nigrostriatal system.[123I]β-CIT-SPECT also allows the determination of SERT availability in the hypothalamus/brain stem as a surrogate parameter of depression.Metabolic parameters of the cortex, basal ganglia and cerebellum can be assessed by [18F]FDG-PET studies.SPECT and [18F]FDG-PET studies show significant differences between neurological and non-neurological Wilson patients. Overall, only noninvasive in vivo nuclear medicine enables a deeper insight into the pathophysiology of neurological processes in Wilson's disease.
Collapse
|
8
|
Wang T, Wu L, Chen Q, Chen K, Tan F, Liu J, Liu X, Han H. Copper deposition in Wilson's disease causes male fertility decline by impairing reproductive hormone release through inducing apoptosis and inhibiting ERK signal in hypothalamic-pituitary of mice. Front Endocrinol (Lausanne) 2022; 13:961748. [PMID: 35992126 PMCID: PMC9389053 DOI: 10.3389/fendo.2022.961748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism characterized by liver and central nervous system dysfunction. Considerable evidence suggests that infertility is also very common in male patients with WD, but the exact molecular mechanisms involved remain unknown. In order to further investigate the pathological changes in the hypothalamic-pituitary-testicular (HPT) axis and its mechanisms, mice were divided into the normal control group (NC), WD model TX mice group (WD), dimercaptosuccinic acid-treated TX mice group (DMSA), and pregnant horse serum gonadotropin-treated TX mice group (PMSG). The copper content and morphology of hypothalamus and pituitary tissues, the ultrastructure and apoptosis of hypothalamus neurons and pituitary gonadotropin cells, the serum levels of reproductive hormones, and the pregnancy rate and litter size of the female mice were studied. The expression of apoptosis-related proteins and the phosphorylation of extracellular regulatory protein kinase (ERK) 1/2 in the hypothalamus and pituitary were detected. The results showed that the copper content was significantly increased in the WD group, and the histopathological morphology and ultrastructure of the hypothalamus and pituitary were damaged. The levels of the gonadotropin-releasing hormone, the follicle-stimulating hormone, the luteinizing hormone, and testosterone were significantly decreased. The apoptosis rate in the hypothalamus and pituitary was significantly increased. The expressions of proapoptotic proteins Bax and Caspase-3 were significantly increased, the expression of the anti-apoptotic protein Bcl-2 was significantly decreased, and the phosphorylation level of ERK1/2 was significantly decreased. Fertility is significantly reduced. After DMSA intervention, the hypothalamus tissue copper content decreased, the hypothalamus and pituitary tissue morphology and ultrastructure were improved, cell apoptosis was alleviated, the expression of Bax and Caspase-3 was significantly decreased, the expression of Bcl-2 was significantly increased, and the reproductive hormone level, phosphorylation level, and fertility were increased. Fertility was preserved after treatment with PMSG in male TX mice. These results suggest that copper deposition in WD causes male fertility decline by impairing reproductive neuroendocrine hormone release through inducing apoptosis and inhibiting the ERK signal in the hypothalamic-pituitary region. This study can also provide reference for the damage of copper pollution to the male reproductive system.
Collapse
Affiliation(s)
- Tingting Wang
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Limin Wu
- Reproductive and Genetic Branch, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Hui Han, ; Limin Wu,
| | - Qiuying Chen
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Kuiyu Chen
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Fang Tan
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jiabo Liu
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Liu
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Hui Han
- Encephalopathy Center, The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, China
- *Correspondence: Hui Han, ; Limin Wu,
| |
Collapse
|
9
|
Tinaz S, Arora J, Nalamada K, Vives-Rodriguez A, Sezgin M, Robakis D, Patel A, Constable RT, Schilsky ML. Structural and functional brain changes in hepatic and neurological Wilson disease. Brain Imaging Behav 2020; 15:2269-2282. [PMID: 33244627 DOI: 10.1007/s11682-020-00420-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Wilson disease (WD) can manifest with hepatic or neuropsychiatric symptoms. Our understanding of the in vivo brain changes in WD, particularly in the hepatic phenotype, is limited. Thirty subjects with WD and 30 age- and gender-matched controls participated. WD group underwent neuropsychiatric assessment. Unified WD Rating Scale neurological exam scores were used to determine neurological (WDN, score > 0) and hepatic-only (WDH, score 0) subgroups. All subjects underwent 3 Tesla anatomical and resting-state functional MRI. Diffusion tensor imaging (DTI) and susceptibility-weighted imaging (SWI) were performed only in the WD group. Volumetric, DTI, and functional connectivity analyses were performed to determine between-group differences. WDN and WDH groups were matched in demographic and psychiatric profiles. The entire WD group compared to controls showed significant thinning in the bilateral superior frontal cortex. The WDN group compared to control and WDH groups showed prominent structural brain changes including significant striatal and thalamic atrophy, more subcortical hypointense lesions on SWI, and diminished white matter integrity in the bilateral anterior corona radiata and corpus callosum. However, the WDH group also showed significant white matter volume loss compared to controls. The functional connectivity between the frontostriatal nodes was significantly reduced in the WDN group, whereas that of the hippocampus was significantly increased in the WDH group compared to controls. In summary, structural and functional brain changes were present even in neurologically non-manifesting WD patients in this cross-sectional study. Longitudinal brain MRI scans may be useful as biomarkers for prognostication and optimization of treatment strategies in WD.
Collapse
Affiliation(s)
- Sule Tinaz
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA. .,Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Jagriti Arora
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Keerthana Nalamada
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA
| | - Ana Vives-Rodriguez
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA
| | - Mine Sezgin
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA.,Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Daphne Robakis
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA.,Department of Neurology, State University of New York Downstate College of Medicine, Brooklyn, NY, USA
| | - Amar Patel
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Michael L Schilsky
- Departments of Medicine and Surgery, Sections of Digestive Diseases and Transplant and Immunology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Complex dystonias: an update on diagnosis and care. J Neural Transm (Vienna) 2020; 128:431-445. [PMID: 33185802 PMCID: PMC8099829 DOI: 10.1007/s00702-020-02275-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Complex dystonias are defined as dystonias that are accompanied by neurologic or systemic manifestations beyond movement disorders. Many syndromes or diseases can present with complex dystonia, either as the cardinal sign or as part of a multi-systemic manifestation. Complex dystonia often gradually develops in the disease course, but can also be present from the outset. If available, the diagnostic workup, disease-specific treatment, and management of patients with complex dystonias require a multi-disciplinary approach. This article summarizes current knowledge on complex dystonias with a particular view of recent developments with respect to advances in diagnosis and management, including causative treatments.
Collapse
|
11
|
Co-occurring Wilson's disease and non-penicillamine-induced systematic lupus erythematosus: a case report and literature review. Clin Rheumatol 2020; 40:2485-2490. [PMID: 33057918 DOI: 10.1007/s10067-020-05463-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
Although lupus induced by penicillamine, the first-line medication for Wilson's disease, is well-documented, primary systematic lupus erythematosus (SLE) co-occurring with Wilson's disease has only rarely been reported. Symptom overlap can add to difficulties in making the correct and complete diagnosis of these two systemic diseases. An 18-year-old female was diagnosed with simultaneous Wilson's disease and SLE and was successfully treated with hydroxychloroquine and oral zinc. We also reviewed the literature for cases of Wilson's disease co-occurring with SLE not induced by penicillamine and found six other cases. Clinical presentations, diagnoses, treatments, and outcomes were analyzed and summarized to expand our understanding of this rare condition. The most frequent diagnostic clues to Wilson's disease in patients with SLE included unexplained liver damage despite well-controlled SLE, extrapyramidal symptoms and signs, hyper-intense signals of the basal ganglia bilaterally on T2-weighted and fluid-attenuated inversion recovery (FLAIR) MRI images, and Kayser-Fleischer (K-F) rings on physical examination. Penicillamine should be avoided or used cautiously in Wilson's disease patients complicated by SLE. The overall prognosis is good if treated in a timely manner. Key Points • SLE complicated by Wilson's disease or the co-occurrence of the two conditions in the absence of penicillamine may exist in rare conditions. • The diagnostic clues for identifying Wilson's disease in SLE patients may include unexplained liver damage despite well-controlled SLE, extrapyramidal symptoms and signs, and K-F rings found by physical examination. • Penicillamine should be avoided or used cautiously in Wilson's patients with SLE.
Collapse
|
12
|
Cleymaet S, Nagayoshi K, Gettings E, Faden J. A review and update on the diagnosis and treatment of neuropsychiatric Wilson disease. Expert Rev Neurother 2019; 19:1117-1126. [DOI: 10.1080/14737175.2019.1645009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sean Cleymaet
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Katsuko Nagayoshi
- Department of Psychiatry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Edward Gettings
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Justin Faden
- Department of Psychiatry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Abstract
Wilson disease is a rare hereditary disorder of copper metabolism. The genetic defect is caused by various mutations in the copper-transporting enzyme ATP7B, located mainly in the liver and brain. Clinical symptoms are highly variable, with any combination of hepatic and/or neurological or psychiatric manifestations. The age of onset varies from early childhood to young adults and can even be manifested in later ages. The clinical diagnosis is based on a combination of clinical, biochemical and molecular markers. Treatment using chelating agents and zinc salts is effective when started early or even better at presymptomatic stages of the disease.
Collapse
Affiliation(s)
- D Huster
- Klinik für Gastroenterologie und Onkologie, Zentrum für Innere Medizin, Ev. Diakonissenkrankenhaus Leipzig, Georg-Schwarz-Str. 49, 04177, Leipzig, Deutschland.
| |
Collapse
|
14
|
Wilson's disease: A master of disguise. Parkinsonism Relat Disord 2019; 59:140-145. [DOI: 10.1016/j.parkreldis.2019.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 01/12/2023]
|
15
|
Abstract
Wilson disease (WD) is an autosomal recessively-inherited disorder of copper metabolism and characterised by a pathological accumulation of copper. The ATP7B gene encodes for a transmembrane copper transporter essential for biliary copper excretion. Depending on time of diagnosis, severity of disease can vary widely. Almost all patients show evidence of progressive liver disease. Neurological impairments or psychiatric symptoms are common in WD patients not diagnosed during adolescence. WD is a treatable disorder, and early treatment can prevent the development of symptoms in patients diagnosed while still asymptomatic. This is why the early diagnosis of WD is crucial. The diagnosis is based on clinical symptoms, abnormal measures of copper metabolism and DNA analysis. Available treatment includes chelators and zinc salts which increase copper excretion and reduce copper uptake. In severe cases, liver transplantation is indicated and accomplishes a phenotypic correction of the hepatic gene defect. Recently, clinical development of the new copper modulating agent tetrathiomolybdate has started and direct genetic therapies are being tested in animal models. The following review focuses especially on biochemical markers and how they can be utilised in diagnosis and drug monitoring.
Collapse
|
16
|
Członkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH, Schilsky ML. Wilson disease. Nat Rev Dis Primers 2018; 4:21. [PMID: 30190489 PMCID: PMC6416051 DOI: 10.1038/s41572-018-0018-3] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wilson disease (WD) is a potentially treatable, inherited disorder of copper metabolism that is characterized by the pathological accumulation of copper. WD is caused by mutations in ATP7B, which encodes a transmembrane copper-transporting ATPase, leading to impaired copper homeostasis and copper overload in the liver, brain and other organs. The clinical course of WD can vary in the type and severity of symptoms, but progressive liver disease is a common feature. Patients can also present with neurological disorders and psychiatric symptoms. WD is diagnosed using diagnostic algorithms that incorporate clinical symptoms and signs, measures of copper metabolism and DNA analysis of ATP7B. Available treatments include chelation therapy and zinc salts, which reverse copper overload by different mechanisms. Additionally, liver transplantation is indicated in selected cases. New agents, such as tetrathiomolybdate salts, are currently being investigated in clinical trials, and genetic therapies are being tested in animal models. With early diagnosis and treatment, the prognosis is good; however, an important issue is diagnosing patients before the onset of serious symptoms. Advances in screening for WD may therefore bring earlier diagnosis and improvements for patients with WD.
Collapse
Affiliation(s)
- Anna Członkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland.
| | - Tomasz Litwin
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Petr Dusek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Peter Ferenci
- Internal Medicine 3, Department of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznań University of Medical Sciences, Poznań, Poland
| | - Karl Heinz Weiss
- Department of Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael L Schilsky
- Section of Digestive Diseases and Transplantation and Immunology, Department of Medicine and Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
Członkowska A, Litwin T, Chabik G. Wilson disease: neurologic features. HANDBOOK OF CLINICAL NEUROLOGY 2018; 142:101-119. [PMID: 28433096 DOI: 10.1016/b978-0-444-63625-6.00010-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wilson disease (WD) is a neurodegenerative disorder, which presents as a spectrum of neurologic manifestations that includes tremor, bradykinesia, rigidity, dystonia, chorea, dysarthria, and dysphagia, together with a combination of neurologic symptoms that can easily lead to misdiagnosis. An early diagnosis of WD, and appropriate anticopper treatment, usually leads to a marked improvement in patient health. Conversely, delayed diagnosis can result in persistent pathology, which, left untreated, can ultimately prove lethal. The aim of this chapter is to present a detailed description of the neurologic features of WD, including their evaluation, together with relevant ophthalmologic examinations, brain neuroimaging, and other laboratory measurements that show the extent of the involvement of the nervous system.
Collapse
Affiliation(s)
- Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Poland.
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Grzegorz Chabik
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
18
|
Wilson's Disease in Children: A Position Paper by the Hepatology Committee of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2018; 66:334-344. [PMID: 29341979 DOI: 10.1097/mpg.0000000000001787] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical presentations of Wilson's disease (WD) in childhood ranges from asymptomatic liver disease to cirrhosis or acute liver failure, whereas neurological and psychiatric symptoms are rare. The basic diagnostic approach includes serum ceruloplasmin and 24-hour urinary copper excretion. Final diagnosis of WD can be established using a diagnostic scoring system based on symptoms, biochemical tests assessing copper metabolism, and molecular analysis of mutations in the ATP7B gene. Pharmacological treatment is life-long and aims at removal of copper excess by chelating agents as D-penicillamine, trientine, or inhibition of intestinal copper absorption with zinc salts. Acute liver failure often requires liver transplantation. This publication aims to provide recommendations for diagnosis, treatment, and follow-up of WD in children. METHODS Questions addressing the diagnosis, treatment, and follow-up of WD in children were formulated by a core group of ESPGHAN members. A systematic literature search on WD using MEDLINE, EMBASE, Cochrane Database from 1990 to 2016 was performed focusing on prospective and retrospective studies in children. Quality of evidence was assessed according to the GRADE system. Expert opinion supported recommendations where the evidence was regarded as weak. The ESPGHAN core group and ESPGHAN Hepatology Committee members voted on each recommendation, using the nominal voting technique.
Collapse
|
19
|
Xie F, Xi Y, Pascual JM, Muzik O, Peng F. Age-dependent changes of cerebral copper metabolism in Atp7b -/- knockout mouse model of Wilson's disease by [ 64Cu]CuCl 2-PET/CT. Metab Brain Dis 2017; 32:717-726. [PMID: 28130615 PMCID: PMC5573586 DOI: 10.1007/s11011-017-9956-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/18/2017] [Indexed: 12/29/2022]
Abstract
Copper is a nutritional metal required for brain development and function. Wilson's disease (WD), or hepatolenticular degeneration, is an inherited human copper metabolism disorder caused by a mutation of the ATP7B gene. Many WD patients present with variable neurological and psychiatric symptoms, which may be related to neurodegeneration secondary to copper metabolism imbalance. The objective of this study was to explore the feasibility and use of copper-64 chloride ([64C]CuCl2) as a tracer for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD using an Atp7b -/- knockout mouse model of WD and positron emission tomography/computed tomography (PET/CT) imaging. Continuing from our recent study of biodistribution and radiation dosimetry of [64C]CuCl2 in Atp7b -/- knockout mice, PET quantitative analysis revealed low 64Cu radioactivity in the brains of Atp7b -/- knockout mice at 7th weeks of age, compared with 64Cu radioactivity in the brains of age- and gender-matched wild type C57BL/6 mice, at 24 h (h) post intravenous injection of [64C]CuCl2 as a tracer. Furthermore, age-dependent increase of 64Cu radioactivity was detected in the brains of Atp7b -/- knockout mice from the 13th to 21th weeks of age, based on the data derived from a longitudinal [64C]CuCl2-PET/CT study of Atp7b -/- knockout mice with orally administered [64Cu]CuCl2 as a tracer. The findings of this study support clinical use of [64Cu]CuCl2-PET/CT imaging as a tool for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD patients presenting with variable neurological and psychiatric symptoms.
Collapse
Affiliation(s)
- Fang Xie
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9140, USA
| | - Yin Xi
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9140, USA
| | - Juan M Pascual
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Otto Muzik
- Carman & Ann Adams Department of Pediatrics, Wayne State University, Detroit, MI, USA
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Fangyu Peng
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9140, USA.
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Abstract
Wilson's disease (WD), albeit relatively rare, is an important genetic metabolic disease because of highly effective therapies that can be lifesaving. It is a great imitator and requires a high index of suspicion for correct and timely diagnosis. Neurologic, psychiatric and hepatologic problems in WD are very nonspecific, and we discuss the most common clinical phenotypes. The diagnosis remains laboratory based, and here we review the most important challenges and pitfalls in laboratory evaluation of WD, including the emerging role of genetic testing in WD diagnosis. WD is a monogenic disorder but has very high allelic heterogeneity with >500 disease-causing mutations identified, and new insights into phenotype-genotype correlations are also reviewed. The gold standard of therapy is chelation of excessive copper, but many unmet needs exist because of possible clinical deterioration in treated patients and potential adverse effects associated with currently available chelating medications. We also review the most promising novel therapeutic approaches, including chelators targeting specific cell types, cell transplantation and gene therapy.
Collapse
Affiliation(s)
- Peter Hedera
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Correspondence: Peter Hedera, Department of Neurology, Vanderbilt University Medical Center, 465 21st Avenue South, 6140 MRB III, Nashville, TN 37232, USA, Tel +1 615 936 3920, Fax +1 615 322 0486, Email
| |
Collapse
|
21
|
Interaction between airborne copper exposure and ATP7B polymorphisms on inattentiveness in scholar children. Int J Hyg Environ Health 2017; 220:51-56. [DOI: 10.1016/j.ijheh.2016.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 01/14/2023]
|
22
|
|
23
|
Mašková J, Školoudík D, Burgetová A, Fiala O, Brůha R, Záhoráková D, Serranová T, Slovák M, Ulmanová O, Růžička E, Dušek P. Comparison of transcranial sonography-magnetic resonance fusion imaging in Wilson's and early-onset Parkinson's diseases. Parkinsonism Relat Disord 2016; 28:87-93. [DOI: 10.1016/j.parkreldis.2016.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 11/16/2022]
|
24
|
Pujol J, Fenoll R, Macià D, Martínez-Vilavella G, Alvarez-Pedrerol M, Rivas I, Forns J, Deus J, Blanco-Hinojo L, Querol X, Sunyer J. Airborne copper exposure in school environments associated with poorer motor performance and altered basal ganglia. Brain Behav 2016; 6:e00467. [PMID: 27134768 PMCID: PMC4842931 DOI: 10.1002/brb3.467] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/02/2016] [Accepted: 03/09/2016] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Children are more vulnerable to the effects of environmental elements. A variety of air pollutants are among the identified factors causing neural damage at toxic concentrations. It is not obvious, however, to what extent the tolerated high levels of air pollutants are able to alter brain development. We have specifically investigated the neurotoxic effects of airborne copper exposure in school environments. METHODS Speed and consistency of motor response were assessed in 2836 children aged from 8 to 12 years. Anatomical MRI, diffusion tensor imaging, and functional MRI were used to directly test the brain repercussions in a subgroup of 263 children. RESULTS Higher copper exposure was associated with poorer motor performance and altered structure of the basal ganglia. Specifically, the architecture of the caudate nucleus region was less complete in terms of both tissue composition and neural track water diffusion. Functional MRI consistently showed a reciprocal connectivity reduction between the caudate nucleus and the frontal cortex. CONCLUSIONS The results establish an association between environmental copper exposure in children and alterations of basal ganglia structure and function.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit Hospital del Mar Barcelona Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21 Barcelona Spain
| | | | - Dídac Macià
- MRI Research Unit Hospital del Mar Barcelona Spain
| | | | - Mar Alvarez-Pedrerol
- Centre for Research in Environmental Epidemiology (CREAL) Barcelona Catalonia Spain; Pompeu Fabra University Barcelona Catalonia Spain; Ciber on Epidemiology and Public Health (CIBERESP) Barcelona Spain
| | - Ioar Rivas
- Centre for Research in Environmental Epidemiology (CREAL) Barcelona Catalonia Spain; Pompeu Fabra University Barcelona Catalonia Spain; Ciber on Epidemiology and Public Health (CIBERESP) Barcelona Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Barcelona Catalonia Spain
| | - Joan Forns
- Centre for Research in Environmental Epidemiology (CREAL) Barcelona Catalonia Spain; Pompeu Fabra University Barcelona Catalonia Spain; Ciber on Epidemiology and Public Health (CIBERESP) Barcelona Spain
| | - Joan Deus
- MRI Research Unit Hospital del Mar Barcelona Spain; Department of Clinical and Health Psychology Autonomous University of Barcelona Barcelona Spain
| | | | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Barcelona Catalonia Spain
| | - Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL) Barcelona Catalonia Spain; Pompeu Fabra University Barcelona Catalonia Spain; Ciber on Epidemiology and Public Health (CIBERESP) Barcelona Spain; IMIM (Hospital del Mar Medical Research Institute) Barcelona Catalonia Spain
| |
Collapse
|
25
|
Pavese N, Tai YF. Genetic and degenerative disorders primarily causing other movement disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:507-523. [PMID: 27432681 DOI: 10.1016/b978-0-444-53485-9.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this chapter, we will discuss the contributions of structural and functional imaging to the diagnosis and management of genetic and degenerative diseases that lead to the occurrence of movement disorders. We will mainly focus on Huntington's disease, Wilson's disease, dystonia, and neurodegeneration with brain iron accumulation, as they are the more commonly encountered clinical conditions within this group.
Collapse
Affiliation(s)
- Nicola Pavese
- Division of Brain Sciences, Imperial College London, UK; Aarhus University, Denmark.
| | - Yen F Tai
- Division of Brain Sciences, Imperial College London, UK
| |
Collapse
|
26
|
Benrhouma H, Nagi S, Kraoua I, Drissi C, Turki I, Ben Hammouda M. Tableau encéphalitique révélant une maladie de Wilson chez un garçon de 12 ans. Arch Pediatr 2015. [DOI: 10.1016/j.arcped.2015.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Sureka B, Bansal K, Patidar Y, Rajesh S, Mukund A, Arora A. Neurologic Manifestations of Chronic Liver Disease and Liver Cirrhosis. Curr Probl Diagn Radiol 2015; 44:449-61. [PMID: 25908229 DOI: 10.1067/j.cpradiol.2015.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/29/2022]
Abstract
The normal functioning of brain is intimately as well as intricately interrelated with normal functioning of the liver. Liver plays a critical role of not only providing vital nutrients to the brain but also of detoxifying the splanchnic blood. Compromised liver function leads to insufficient detoxification thus allowing neurotoxins (such as ammonia, manganese, and other chemicals) to enter the cerebral circulation. In addition, portosystemic shunts, which are common accompaniments of advanced liver disease, facilitate free passage of neurotoxins into the cerebral circulation. The problem is compounded further by additional variables such as gastrointestinal tract bleeding, malnutrition, and concurrent renal failure, which are often associated with liver cirrhosis. Neurologic damage in chronic liver disease and liver cirrhosis seems to be multifactorial primarily attributable to the following: brain accumulation of ammonia, manganese, and lactate; altered permeability of the blood-brain barrier; recruitment of monocytes after microglial activation; and neuroinflammation, that is, direct effects of circulating systemic proinflammatory cytokines such as tumor necrosis factor, IL-1β, and IL-6. Radiologist should be aware of the conundrum of neurologic complications that can be encountered in liver disease, which include hepatic encephalopathy, hepatocerebral degeneration, hepatic myelopathy, cirrhosis-related parkinsonism, cerebral infections, hemorrhage, and osmotic demyelination. In addition, neurologic complications can be exclusive to certain disorders, for example, Wilson disease, alcoholism (Wernicke encephalopathy, alcoholic cerebellar degeneration, Marchiafava-Bignami disease, etc). Radiologist should be aware of their varied clinical presentation and radiological appearances as the diagnosis is not always straightforward.
Collapse
Affiliation(s)
- Binit Sureka
- Department of Radiology/Interventional Radiology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India
| | - Kalpana Bansal
- Department of Radiology/Interventional Radiology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India
| | - Yashwant Patidar
- Department of Radiology/Interventional Radiology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India
| | - S Rajesh
- Department of Radiology/Interventional Radiology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India
| | - Amar Mukund
- Department of Radiology/Interventional Radiology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India
| | - Ankur Arora
- Department of Radiology/Interventional Radiology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi, India.
| |
Collapse
|