1
|
Nowzari ZR, Hale M, Ellis J, Biaesch S, Vangaveti S, Reddy K, Chen AA, Berglund JA. Mutation of two intronic nucleotides alters RNA structure and dynamics inhibiting MBNL1 and RBFOX1 regulated splicing of the Insulin Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574689. [PMID: 38260517 PMCID: PMC10802415 DOI: 10.1101/2024.01.08.574689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alternative splicing (AS) of Exon 11 of the Insulin Receptor ( INSR ) is highly regulated and disrupted in several human disorders. To better understand INSR exon 11 AS regulation, splicing activity of an INSR exon 11 minigene reporter was measured across a gradient of the AS regulator muscleblind-like 1 protein (MBNL1). The RNA-binding protein Fox-1 (RBFOX1) was added to determine its impact on MBNL1-regulated splicing. The role of the RBFOX1 UGCAUG binding site within intron 11 was assessed across the MBNL1 gradient. Mutating the UGCAUG motif inhibited RBFOX1 regulation of exon 11 and had the unexpected effect of reducing MBNL1 regulation of this exon. Molecular dynamics simulations showed that exon 11 and the adjacent RNA adopts a dynamically stable conformation. Mutation of the RBFOX1 binding site altered RNA structure and dynamics, while a mutation that created an optimal MBNL1 binding site at the RBFOX1 site shifted the RNA back to wild type. An antisense oligonucleotide (ASO) was used to confirm the structure in this region of the pre-mRNA. This example of intronic mutations shifting pre-mRNA structure and dynamics to modulate splicing suggests RNA structure and dynamics should be taken into consideration for AS regulation and therapeutic interventions targeting pre-mRNA.
Collapse
|
2
|
Singh NN, O'Leary CA, Eich T, Moss WN, Singh RN. Structural Context of a Critical Exon of Spinal Muscular Atrophy Gene. Front Mol Biosci 2022; 9:928581. [PMID: 35847983 PMCID: PMC9283826 DOI: 10.3389/fmolb.2022.928581] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Humans contain two nearly identical copies of Survival Motor Neuron genes, SMN1 and SMN2. Deletion or mutation of SMN1 causes spinal muscular atrophy (SMA), one of the leading genetic diseases associated with infant mortality. SMN2 is unable to compensate for the loss of SMN1 due to predominant exon 7 skipping, leading to the production of a truncated protein. Antisense oligonucleotide and small molecule-based strategies aimed at the restoration of SMN2 exon 7 inclusion are approved therapies of SMA. Many cis-elements and transacting factors have been implicated in regulation of SMN exon 7 splicing. Also, several structural elements, including those formed by a long-distance interaction, have been implicated in the modulation of SMN exon 7 splicing. Several of these structures have been confirmed by enzymatic and chemical structure-probing methods. Additional structures formed by inter-intronic interactions have been predicted by computational algorithms. SMN genes generate a vast repertoire of circular RNAs through inter-intronic secondary structures formed by inverted Alu repeats present in large number in SMN genes. Here, we review the structural context of the exonic and intronic cis-elements that promote or prevent exon 7 recognition. We discuss how structural rearrangements triggered by single nucleotide substitutions could bring drastic changes in SMN2 exon 7 splicing. We also propose potential mechanisms by which inter-intronic structures might impact the splicing outcomes.
Collapse
Affiliation(s)
- Natalia N. Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, United States
| | - Collin A. O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Taylor Eich
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Walter N. Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
3
|
G R, Mitra A, Pk V. Predicting functional riboSNitches in the context of alternative splicing. Gene X 2022; 837:146694. [PMID: 35738445 DOI: 10.1016/j.gene.2022.146694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
RNAs are the major regulators of gene expression, and their secondary structures play crucial roles at different levels. RiboSNitches are disease-associated SNPs that cause changes in the pre-mRNA secondary structural ensemble. Several riboSNitches have been detected in the 5' and 3' untranslated regions and lncRNA. Although cases of secondary structural elements playing a regulatory role in alternative splicing are known, regions specific to splicing events, such as splice junctions have not received much attention. We tested splice-site mutations for their efficiency in disrupting the secondary structure and hypothesized that these could play a crucial role in alternative splicing. Multiple riboSNitch prediction methods were applied to obtain overlapping results that are potentially more reliable. Putative riboSNitches were identified from aberrant 5' and 3' splice site mutations, cancer-causing somatic mutations, and genes that harbor the regulatory RNA secondary structural elements. Our workflow for predicting riboSNitches associated with alternative splicing is novel and paves the way for subsequent experimental validation.
Collapse
Affiliation(s)
- Ramya G
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| | - Vinod Pk
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| |
Collapse
|
4
|
Saon MS, Znosko BM. Thermodynamic characterization of naturally occurring RNA pentaloops. RNA (NEW YORK, N.Y.) 2022; 28:832-841. [PMID: 35318243 PMCID: PMC9074901 DOI: 10.1261/rna.078915.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/02/2022] [Indexed: 06/03/2023]
Abstract
RNA folding is hierarchical; therefore, predicting RNA secondary structure from sequence is an intermediate step in predicting tertiary structure. Secondary structure prediction is based on a nearest neighbor model using free energy minimization. To improve secondary structure prediction, all types of naturally occurring secondary structure motifs need to be thermodynamically characterized. However, not all secondary structure motifs are well characterized. Pentaloops, the second most abundant hairpin size, is one such uncharacterized motif. In fact, the current thermodynamic model used to predict the stability of pentaloops was derived from a small data set of pentaloops and from data for other hairpins of different sizes. Here, the most commonly occurring pentaloops were identified and optically melted. New experimental data for 22 pentaloop sequences were combined with previously published data for nine pentaloop sequences. Using linear regression, a pentaloop-specific model was derived. This new model is simpler and more accurate than the current model. The new experimental data and improved model can be incorporated into software that is used to predict RNA secondary structure from sequence.
Collapse
Affiliation(s)
- Md Sharear Saon
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, USA
| | - Brent M Znosko
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, USA
| |
Collapse
|
5
|
Zhang L, Abendroth F, Vázquez O. A Chemical Biology Perspective to Therapeutic Regulation of RNA Splicing in Spinal Muscular Atrophy (SMA). ACS Chem Biol 2022; 17:1293-1307. [PMID: 35639849 DOI: 10.1021/acschembio.2c00161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Manipulation of RNA splicing machinery has emerged as a drug modality. Here, we illustrate the potential of this novel paradigm to correct aberrant splicing events focused on the recent therapeutic advances in spinal muscular atrophy (SMA). SMA is an incurable neuromuscular disorder and at present the primary genetic cause of early infant death. This Review summarizes the exciting journey from the first reported SMA cases to the currently approved splicing-switching treatments, i.e., antisense oligonucleotides and small-molecule modifiers. We emphasize both chemical structures and molecular bases for recognition. We briefly discuss the advantages and disadvantages of these treatments and include the remaining challenges and future directions. Finally, we also predict that these success stories will contribute to further therapies for human diseases by RNA-splicing control.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| |
Collapse
|
6
|
Lejman J, Zieliński G, Gawda P, Lejman M. Alternative Splicing Role in New Therapies of Spinal Muscular Atrophy. Genes (Basel) 2021; 12:1346. [PMID: 34573328 PMCID: PMC8468182 DOI: 10.3390/genes12091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
It has been estimated that 80% of the pre-mRNA undergoes alternative splicing, which exponentially increases the flow of biological information in cellular processes and can be an attractive therapeutic target. It is a crucial mechanism to increase genetic diversity. Disturbed alternative splicing is observed in many disorders, including neuromuscular diseases and carcinomas. Spinal Muscular Atrophy (SMA) is an autosomal recessive neurodegenerative disease. Homozygous deletion in 5q13 (the region coding for the motor neuron survival gene (SMN1)) is responsible for 95% of SMA cases. The nearly identical SMN2 gene does not compensate for SMN loss caused by SMN1 gene mutation due to different splicing of exon 7. A pathologically low level of survival motor neuron protein (SMN) causes degeneration of the anterior horn cells in the spinal cord with associated destruction of α-motor cells and manifested by muscle weakness and loss. Understanding the regulation of the SMN2 pre-mRNA splicing process has allowed for innovative treatment and the introduction of new medicines for SMA. After describing the concept of splicing modulation, this review will cover the progress achieved in this field, by highlighting the breakthrough accomplished recently for the treatment of SMA using the mechanism of alternative splicing.
Collapse
Affiliation(s)
- Jan Lejman
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Grzegorz Zieliński
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (G.Z.); (P.G.)
| | - Piotr Gawda
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (G.Z.); (P.G.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Ottesen EW, Luo D, Singh NN, Singh RN. High Concentration of an ISS-N1-Targeting Antisense Oligonucleotide Causes Massive Perturbation of the Transcriptome. Int J Mol Sci 2021; 22:ijms22168378. [PMID: 34445083 PMCID: PMC8395096 DOI: 10.3390/ijms22168378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022] Open
Abstract
Intronic splicing silencer N1 (ISS-N1) located within Survival Motor Neuron 2 (SMN2) intron 7 is the target of a therapeutic antisense oligonucleotide (ASO), nusinersen (Spinraza), which is currently being used for the treatment of spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. The discovery of ISS-N1 as a promising therapeutic target was enabled in part by Anti-N1, a 20-mer ASO that restored SMN2 exon 7 inclusion by annealing to ISS-N1. Here, we analyzed the transcriptome of SMA patient cells treated with 100 nM of Anti-N1 for 30 h. Such concentrations are routinely used to demonstrate the efficacy of an ASO. While 100 nM of Anti-N1 substantially stimulated SMN2 exon 7 inclusion, it also caused massive perturbations in the transcriptome and triggered widespread aberrant splicing, affecting expression of essential genes associated with multiple cellular processes such as transcription, splicing, translation, cell signaling, cell cycle, macromolecular trafficking, cytoskeletal dynamics, and innate immunity. We validated our findings with quantitative and semiquantitative PCR of 39 candidate genes associated with diverse pathways. We also showed a substantial reduction in off-target effects with shorter ISS-N1-targeting ASOs. Our findings are significant for implementing better ASO design and dosing regimens of ASO-based drugs.
Collapse
|
8
|
Bush JA, Williams CC, Meyer SM, Tong Y, Haniff HS, Childs-Disney JL, Disney MD. Systematically Studying the Effect of Small Molecules Interacting with RNA in Cellular and Preclinical Models. ACS Chem Biol 2021; 16:1111-1127. [PMID: 34166593 PMCID: PMC8867596 DOI: 10.1021/acschembio.1c00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interrogation and manipulation of biological systems by small molecules is a powerful approach in chemical biology. Ideal compounds selectively engage a target and mediate a downstream phenotypic response. Although historically small molecule drug discovery has focused on proteins and enzymes, targeting RNA is an attractive therapeutic alternative, as many disease-causing or -associated RNAs have been identified through genome-wide association studies. As the field of RNA chemical biology emerges, the systematic evaluation of target validation and modulation of target-associated pathways is of paramount importance. In this Review, through an examination of case studies, we outline the experimental characterization, including methods and tools, to evaluate comprehensively the impact of small molecules that target RNA on cellular phenotype.
Collapse
Affiliation(s)
- Jessica A Bush
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Christopher C Williams
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Samantha M Meyer
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Yuquan Tong
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hafeez S Haniff
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
9
|
Vu-Han TL, Reisener MJ, Putzier M, Pumberger M. [Scoliosis in spinal muscular atrophy]. DER ORTHOPADE 2021; 50:657-663. [PMID: 34232342 DOI: 10.1007/s00132-021-04131-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 11/26/2022]
Abstract
5q-spinal muscular atrophy (5q-SMA) is an autosomal recessive neuromuscular disorder caused by a biallelic mutation of the survival of motor neuron 1 SMN1 gene. The resulting lack of SMN protein causes a progressive degeneration of anterior motor neurons and muscular atrophy, which leads to a progressive scoliosis in two-thirds of affected cases. Depending on the disease subtype and severity, affected patients can subsequently develop respiratory insufficiency, leading to a fatal outcome. Ground-breaking research on this devastating disorder has led to the approval of novel therapies that may alter the clinical course of this disease in the future. Here we present a summary of these new therapies, current operative strategies for 5q-SMA associated scoliosis and provide an outlook for possible implications for the future.
Collapse
Affiliation(s)
- T-L Vu-Han
- Centrum für Muskuloskeletale Chirurgie, Klinik für Orthopädie und Unfallchirurgie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland.
| | - M J Reisener
- Centrum für Muskuloskeletale Chirurgie, Klinik für Orthopädie und Unfallchirurgie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - M Putzier
- Centrum für Muskuloskeletale Chirurgie, Klinik für Orthopädie und Unfallchirurgie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - M Pumberger
- Centrum für Muskuloskeletale Chirurgie, Klinik für Orthopädie und Unfallchirurgie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| |
Collapse
|
10
|
Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing. Nat Commun 2021; 12:428. [PMID: 33462199 PMCID: PMC7813835 DOI: 10.1038/s41467-020-20481-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
The human prototypical SR protein SRSF1 is an oncoprotein that contains two RRMs and plays a pivotal role in RNA metabolism. We determined the structure of the RRM1 bound to RNA and found that the domain binds preferentially to a CN motif (N is for any nucleotide). Based on this solution structure, we engineered a protein containing a single glutamate to asparagine mutation (E87N), which gains the ability to bind to uridines and thereby activates SMN exon7 inclusion, a strategy that is used to cure spinal muscular atrophy. Finally, we revealed that the flexible inter-RRM linker of SRSF1 allows RRM1 to bind RNA on both sides of RRM2 binding site. Besides revealing an unexpected bimodal mode of interaction of SRSF1 with RNA, which will be of interest to design new therapeutic strategies, this study brings a new perspective on the mode of action of SRSF1 in cells. SRSF1 is an oncoprotein that plays important roles in RNA metabolism. We reveal the structure of the human SRSF1 RRM1 bound to RNA, and propose a bimodal mode of interaction of the protein with RNA. A single mutation in RRM1 changed SRSF1 specificity for RNA and made it active on SMN2 exon7 splicing.
Collapse
|
11
|
Spinal muscular atrophy: Broad disease spectrum and sex-specific phenotypes. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166063. [PMID: 33412266 DOI: 10.1016/j.bbadis.2020.166063] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.
Collapse
|
12
|
Vu-Han TL, Weiß C, Pumberger M. Novel therapies for spinal muscular atrophy are likely changing the patient phenotype. Spine J 2020; 20:1893-1898. [PMID: 32858169 DOI: 10.1016/j.spinee.2020.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Tu-Lan Vu-Han
- Center for Musculoskeletal Surgery Berlin Mitte; Charité University Medicine Berlin, Charitéplatz 1, Berlin 10117, Germany.
| | - Claudia Weiß
- Center for chronically sick children, Department of Neuropediatrics; Charité University, Medicine Berlin, Augustenburger Platz 1, Berlin 13353, Germany
| | - Matthias Pumberger
- Center for Musculoskeletal Surgery Berlin Mitte; Charité University Medicine Berlin, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
13
|
Singh RN, Ottesen EW, Singh NN. The First Orally Deliverable Small Molecule for the Treatment of Spinal Muscular Atrophy. Neurosci Insights 2020; 15:2633105520973985. [PMID: 33283185 PMCID: PMC7691903 DOI: 10.1177/2633105520973985] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is 1 of the leading causes of infant mortality. SMA
is mostly caused by low levels of Survival Motor Neuron (SMN) protein due to
deletion of or mutation in the SMN1 gene. Its nearly identical
copy, SMN2, fails to compensate for the loss of
SMN1 due to predominant skipping of exon 7. Correction of
SMN2 exon 7 splicing by an antisense oligonucleotide (ASO),
nusinersen (Spinraza™), that targets the intronic splicing silencer N1 (ISS-N1)
became the first approved therapy for SMA. Restoration of SMN levels using gene
therapy was the next. Very recently, an orally deliverable small molecule,
risdiplam (Evrysdi™), became the third approved therapy for SMA. Here we discuss
how these therapies are positioned to meet the needs of the broad phenotypic
spectrum of SMA patients.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
14
|
Xu B, Meng Y, Jin Y. RNA structures in alternative splicing and back-splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1626. [PMID: 32929887 DOI: 10.1002/wrna.1626] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
Alternative splicing greatly expands the transcriptomic and proteomic diversities related to physiological and developmental processes in higher eukaryotes. Splicing of long noncoding RNAs, and back- and trans- splicing further expanded the regulatory repertoire of alternative splicing. RNA structures were shown to play an important role in regulating alternative splicing and back-splicing. Application of novel sequencing technologies made it possible to identify genome-wide RNA structures and interaction networks, which might provide new insights into RNA splicing regulation in vitro to in vivo. The emerging transcription-folding-splicing paradigm is changing our understanding of RNA alternative splicing regulation. Here, we review the insights into the roles and mechanisms of RNA structures in alternative splicing and back-splicing, as well as how disruption of these structures affects alternative splicing and then leads to human diseases. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
15
|
Singh NN, Ottesen EW, Singh RN. A survey of transcripts generated by spinal muscular atrophy genes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194562. [PMID: 32387331 PMCID: PMC7302838 DOI: 10.1016/j.bbagrm.2020.194562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Human Survival Motor Neuron (SMN) genes code for SMN, an essential multifunctional protein. Complete loss of SMN is embryonic lethal, while low levels of SMN lead to spinal muscular atrophy (SMA), a major genetic disease of children and infants. Reduced levels of SMN are associated with the abnormal development of heart, lung, muscle, gastro-intestinal system and testis. The SMN loci have been shown to generate a vast repertoire of transcripts, including linear, back- and trans-spliced RNAs as well as antisense long noncoding RNAs. However, functions of the majority of these transcripts remain unknown. Here we review the nature of RNAs generated from the SMN loci and discuss their potential functions in cellular metabolism.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Eric W Ottesen
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America.
| |
Collapse
|
16
|
Angelbello AJ, Chen JL, Disney MD. Small molecule targeting of RNA structures in neurological disorders. Ann N Y Acad Sci 2020; 1471:57-71. [PMID: 30964958 PMCID: PMC6785366 DOI: 10.1111/nyas.14051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/11/2022]
Abstract
Aberrant RNA structure and function operate in neurological disease progression and severity. As RNA contributes to disease pathology in a complex fashion, that is, via various mechanisms, it has become an attractive therapeutic target for small molecules and oligonucleotides. In this review, we discuss the identification of RNA structures that cause or contribute to neurological diseases as well as recent progress toward the development of small molecules that target them, including small molecule modulators of pre-mRNA splicing and RNA repeat expansions that cause microsatellite disorders such as Huntington's disease and amyotrophic lateral sclerosis. The use of oligonucleotide-based modalities is also discussed. There are key differences between small molecule and oligonucleotide targeting of RNA. The former targets RNA structure, while the latter prefers unstructured regions. Thus, some targets will be preferentially targeted by oligonucleotides and others by small molecules.
Collapse
Affiliation(s)
| | - Jonathan L Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| |
Collapse
|
17
|
Singh RN, Seo J, Singh NN. RNA in spinal muscular atrophy: therapeutic implications of targeting. Expert Opin Ther Targets 2020; 24:731-743. [PMID: 32538213 DOI: 10.1080/14728222.2020.1783241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is caused by low levels of the Survival Motor Neuron (SMN) protein due to deletions of or mutations in the SMN1 gene. Humans carry another nearly identical gene, SMN2, which mostly produces a truncated and less stable protein SMNΔ7 due to predominant skipping of exon 7. Elevation of SMN upon correction of SMN2 exon 7 splicing and gene therapy have been proven to be the effective treatment strategies for SMA. AREAS COVERED This review summarizes existing and potential SMA therapies that are based on RNA targeting.We also discuss the mechanistic basis of RNA-targeting molecules. EXPERT OPINION The discovery of intronic splicing silencer N1 (ISS-N1) was the first major step towards developing the currently approved antisense-oligonucleotide (ASO)-directed therapy (SpinrazaTM) based on the correction of exon 7 splicing of the endogenous SMN2pre-mRNA. Recently, gene therapy (Zolgensma) has become the second approved treatment for SMA. Small compounds (currently in clinical trials) capable of restoring SMN2 exon 7 inclusion further expand the class of the RNA targeting molecules for SMA therapy. Endogenous RNA targets, such as long non-coding RNAs, circular RNAs, microRNAs and ribonucleoproteins, could be potentially exploited for developing additional SMA therapies.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University , Ames, IA, USA
| |
Collapse
|
18
|
Tomezsko PJ, Corbin VDA, Gupta P, Swaminathan H, Glasgow M, Persad S, Edwards MD, Mcintosh L, Papenfuss AT, Emery A, Swanstrom R, Zang T, Lan TCT, Bieniasz P, Kuritzkes DR, Tsibris A, Rouskin S. Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature 2020; 582:438-442. [PMID: 32555469 PMCID: PMC7310298 DOI: 10.1038/s41586-020-2253-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 03/04/2020] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) is a retrovirus with a 10-kb single-stranded RNA genome. HIV-1 must express all of its gene products from the same primary transcript, which undergoes alternative splicing to produce diverse protein products, including structural proteins and regulatory factors1,2. Despite the critical role of alternative splicing, the mechanisms driving splice-site choice are poorly understood. Synonymous RNA mutations that lead to severe defects in splicing and viral replication indicate the presence of unknown cis-regulatory elements3. We use DMS-MaPseq to probe the structure of HIV-1 RNA in cells and develop an algorithm called Detection of RNA folding Ensembles using Expectation-Maximization (DREEM), which reveals alternative conformations assumed by the same RNA sequence. Contrary to previous models, which analyzed population averages4, our results reveal the widespread heterogeneous nature of HIV-1 RNA structure. In addition to confirming that in vitro characterized alternative structures for the HIV-1 Rev Responsive Element (RRE) exist in cells, we discover alternative conformations at critical splice sites that influence the ratio of transcript isoforms. Our simultaneous measurement of splicing and intracellular RNA structure provides evidence for the long-standing hypothesis5–7 that RNA conformation heterogeneity regulates splice site usage and viral gene expression.
Collapse
Affiliation(s)
- Phillip J Tomezsko
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Program in Virology, Harvard Medical School, Boston, MA, USA.,Brigham and Women's Hospital, Boston, MA, USA
| | - Vincent D A Corbin
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paromita Gupta
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Margalit Glasgow
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sitara Persad
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew D Edwards
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lachlan Mcintosh
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ann Emery
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trinity Zang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Tammy C T Lan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Paul Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Daniel R Kuritzkes
- Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Athe Tsibris
- Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Silvi Rouskin
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
19
|
RNA-Targeted Therapies and High-Throughput Screening Methods. Int J Mol Sci 2020; 21:ijms21082996. [PMID: 32340368 PMCID: PMC7216119 DOI: 10.3390/ijms21082996] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) are involved in regulating all aspects of RNA metabolism, including processing, transport, translation, and degradation. Dysregulation of RNA metabolism is linked to a plethora of diseases, such as cancer, neurodegenerative diseases, and neuromuscular disorders. Recent years have seen a dramatic shift in the knowledge base, with RNA increasingly being recognised as an attractive target for precision medicine therapies. In this article, we are going to review current RNA-targeted therapies. Furthermore, we will scrutinise a range of drug discoveries targeting protein-RNA interactions. In particular, we will focus on the interplay between Lin28 and let-7, splicing regulatory proteins and survival motor neuron (SMN) pre-mRNA, as well as HuR, Musashi, proteins and their RNA targets. We will highlight the mechanisms RBPs utilise to modulate RNA metabolism and discuss current high-throughput screening strategies. This review provides evidence that we are entering a new era of RNA-targeted medicine.
Collapse
|
20
|
Konieczny P, Artero R. Drosophila SMN2 minigene reporter model identifies moxifloxacin as a candidate therapy for SMA. FASEB J 2019; 34:3021-3036. [PMID: 31909520 DOI: 10.1096/fj.201802554rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022]
Abstract
Spinal muscular atrophy is a rare and fatal neuromuscular disorder caused by the loss of alpha motor neurons. The affected individuals have mutated the ubiquitously expressed SMN1 gene resulting in the loss or reduction in the survival motor neuron (SMN) protein levels. However, an almost identical paralog exists in humans: SMN2. Pharmacological activation of SMN2 exon 7 inclusion by small molecules or modified antisense oligonucleotides is a valid approach to treat SMA. Here we describe an in vivo SMN2 minigene reporter system in Drosophila motor neurons that serves as a cost-effective, feasible, and stringent primary screening model for identifying chemicals capable of crossing the conserved Drosophila blood-brain barrier and modulating exon 7 inclusion. The model was used for the screening of 1100 drugs from the Prestwick Chemical Library, resulting in 2.45% hit rate. The most promising candidate drugs were validated in patient-derived fibroblasts where they proved to increase SMN protein levels. Among them, moxifloxacin modulated SMN2 splicing by promoting exon 7 inclusion. The recovery of SMN protein levels was confirmed by increased colocalization of nuclear gems with Cajal Bodies. Thus, a Drosophila-based drug screen allowed the discovery of an FDA-approved small molecule with the potential to become a novel therapy for SMA.
Collapse
Affiliation(s)
- Piotr Konieczny
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain.,Incliva-CIPF Joint Unit, Valencia, Spain
| | - Rubén Artero
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain.,Incliva-CIPF Joint Unit, Valencia, Spain
| |
Collapse
|
21
|
Campagne S, Boigner S, Rüdisser S, Moursy A, Gillioz L, Knörlein A, Hall J, Ratni H, Cléry A, Allain FHT. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol 2019; 15:1191-1198. [PMID: 31636429 PMCID: PMC7617061 DOI: 10.1038/s41589-019-0384-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5' splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5' splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon-intron junction and converts the weak 5' splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5' splice site bulge repair.
Collapse
Affiliation(s)
- Sébastien Campagne
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Sarah Boigner
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Simon Rüdisser
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Zurich, Switzerland
| | - Ahmed Moursy
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Laurent Gillioz
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Anna Knörlein
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Hasane Ratni
- F. Hoffmann-La Roche Ltd, Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Antoine Cléry
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Ottesen EW, Luo D, Seo J, Singh NN, Singh RN. Human Survival Motor Neuron genes generate a vast repertoire of circular RNAs. Nucleic Acids Res 2019; 47:2884-2905. [PMID: 30698797 PMCID: PMC6451121 DOI: 10.1093/nar/gkz034] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) perform diverse functions, including the regulation of transcription, translation, peptide synthesis, macromolecular sequestration and trafficking. Inverted Alu repeats capable of forming RNA:RNA duplexes that bring splice sites together for backsplicing are known to facilitate circRNA generation. However, higher limits of circRNAs produced by a single Alu-rich gene are currently not predictable due to limitations of amplification and analyses. Here, using a tailored approach, we report a surprising diversity of exon-containing circRNAs generated by the Alu-rich Survival Motor Neuron (SMN) genes that code for SMN, an essential multifunctional protein in humans. We show that expression of the vast repertoire of SMN circRNAs is universal. Several of the identified circRNAs harbor novel exons derived from both intronic and intergenic sequences. A comparison with mouse Smn circRNAs underscored a clear impact of primate-specific Alu elements on shaping the overall repertoire of human SMN circRNAs. We show the role of DHX9, an RNA helicase, in splicing regulation of several SMN exons that are preferentially incorporated into circRNAs. Our results suggest self- and cross-regulation of biogenesis of various SMN circRNAs. These findings bring a novel perspective towards a better understanding of SMN gene function.
Collapse
Affiliation(s)
- Eric W Ottesen
- Iowa State University, Biomedical Sciences, Ames, IA 50011, USA
| | - Diou Luo
- Iowa State University, Biomedical Sciences, Ames, IA 50011, USA
| | - Joonbae Seo
- Iowa State University, Biomedical Sciences, Ames, IA 50011, USA
| | - Natalia N Singh
- Iowa State University, Biomedical Sciences, Ames, IA 50011, USA
| | | |
Collapse
|
23
|
Singh NN, Singh RN. How RNA structure dictates the usage of a critical exon of spinal muscular atrophy gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194403. [PMID: 31323435 DOI: 10.1016/j.bbagrm.2019.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Role of RNA structure in pre-mRNA splicing has been implicated for several critical exons associated with genetic disorders. However, much of the structural studies linked to pre-mRNA splicing regulation are limited to terminal stem-loop structures (hairpins) sequestering splice sites. In few instances, role of long-distance interactions is implicated as the major determinant of splicing regulation. With the recent surge of reports of circular RNA (circRNAs) generated by backsplicing, role of Alu-associated RNA structures formed by long-range interactions are taking central stage. Humans contain two nearly identical copies of Survival Motor Neuron (SMN) genes, SMN1 and SMN2. Deletion or mutation of SMN1 coupled with the inability of SMN2 to compensate for the loss of SMN1 due to exon 7 skipping causes spinal muscular atrophy (SMA), one of the leading genetic diseases of children. In this review, we describe how structural elements formed by both local and long-distance interactions are being exploited to modulate SMN2 exon 7 splicing as a potential therapy for SMA. We also discuss how Alu-associated secondary structure modulates generation of a vast repertoire of SMN circRNAs. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
24
|
Pervouchine DD. Circular exonic RNAs: When RNA structure meets topology. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194384. [PMID: 31102674 DOI: 10.1016/j.bbagrm.2019.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Although RNA circularization was first documented in the 1990s, the extent to which it occurs was not known until recent advances in high-throughput sequencing enabled the widespread identification of circular RNAs (circRNAs). Despite this, many aspects of circRNA biogenesis, structure, and function yet remain obscure. This review focuses on circular exonic RNAs, a subclass of circRNAs that are generated through backsplicing. Here, I hypothesize that RNA secondary structure can be the common factor that promotes both exon skipping and spliceosomal RNA circularization, and that backsplicing of double-stranded regions could generate topologically linked circRNA molecules. CircRNAs manifest themselves by the presence of tail-to-head exon junctions, which were previously attributed to post-transcriptional exon permutation and repetition. I revisit these observations and argue that backsplicing does not automatically imply RNA circularization because tail-to-head exon junctions give only local information about transcript architecture and, therefore, they are in principle insufficient to determine globally circular topology. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Dmitri D Pervouchine
- Skolkovo Institute of Science and Technology, 3 Nobel St, Moscow 143026, Russia; Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow 119234, Russia.
| |
Collapse
|
25
|
Andrews RJ, Moss WN. Computational approaches for the discovery of splicing regulatory RNA structures. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194380. [PMID: 31048028 DOI: 10.1016/j.bbagrm.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
Abstract
Global RNA structure and local functional motifs mediate interactions important in determining the rates and patterns of mRNA splicing. In this review, we overview approaches for the computational prediction of RNA secondary structure with a special emphasis on the discovery of motifs important to RNA splicing. The process of identifying and modeling potential splicing regulatory structures is illustrated using a recently-developed approach for RNA structural motif discovery, the ScanFold pipeline, which is applied to the identification of a known splicing regulatory structure in influenza virus.
Collapse
Affiliation(s)
- Ryan J Andrews
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
26
|
Singh RN, Singh NN. A novel role of U1 snRNP: Splice site selection from a distance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:634-642. [PMID: 31042550 DOI: 10.1016/j.bbagrm.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
Removal of introns by pre-mRNA splicing is fundamental to gene function in eukaryotes. However, understanding the mechanism by which exon-intron boundaries are defined remains a challenging endeavor. Published reports support that the recruitment of U1 snRNP at the 5'ss marked by GU dinucleotides defines the 5'ss as well as facilitates 3'ss recognition through cross-exon interactions. However, exceptions to this rule exist as U1 snRNP recruited away from the 5'ss retains the capability to define the splice site, where the cleavage takes place. Independent reports employing exon 7 of Survival Motor Neuron (SMN) genes suggest a long-distance effect of U1 snRNP on splice site selection upon U1 snRNP recruitment at target sequences with or without GU dinucleotides. These findings underscore that sequences distinct from the 5'ss may also impact exon definition if U1 snRNP is recruited to them through partial complementarity with the U1 snRNA. In this review we discuss the expanded role of U1 snRNP in splice-site selection due to U1 ability to be recruited at more sites than predicted solely based on GU dinucleotides.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
27
|
Singh NN, Luo D, Singh RN. Pre-mRNA Splicing Modulation by Antisense Oligonucleotides. Methods Mol Biol 2019; 1828:415-437. [PMID: 30171557 DOI: 10.1007/978-1-4939-8651-4_26] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pre-mRNA splicing, a dynamic process of intron removal and exon joining, is governed by a combinatorial control exerted by overlapping cis-elements that are unique to each exon and its flanking intronic sequences. Splicing cis-elements are usually 4-to-8-nucleotide-long linear motifs that provide binding sites for specific proteins. Pre-mRNA splicing is also influenced by secondary and higher order RNA structures that affect accessibility of splicing cis-elements. Antisense oligonucleotides (ASOs) that block splicing cis-elements and/or affect RNA structure have been shown to modulate splicing in vivo. Therefore, ASO-based strategies have emerged as a powerful tool for therapeutic manipulation of splicing in pathological conditions. Here we describe an ASO-based approach to increase the production of the full-length SMN2 mRNA in spinal muscular atrophy patient cells.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Diou Luo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
28
|
Pervouchine DD. Towards Long-Range RNA Structure Prediction in Eukaryotic Genes. Genes (Basel) 2018; 9:genes9060302. [PMID: 29914113 PMCID: PMC6027157 DOI: 10.3390/genes9060302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 01/03/2023] Open
Abstract
The ability to form an intramolecular structure plays a fundamental role in eukaryotic RNA biogenesis. Proximate regions in the primary transcripts fold into a local secondary structure, which is then hierarchically assembled into a tertiary structure that is stabilized by RNA-binding proteins and long-range intramolecular base pairings. While the local RNA structure can be predicted reasonably well for short sequences, long-range structure at the scale of eukaryotic genes remains problematic from the computational standpoint. The aim of this review is to list functional examples of long-range RNA structures, to summarize current comparative methods of structure prediction, and to highlight their advances and limitations in the context of long-range RNA structures. Most comparative methods implement the “first-align-then-fold” principle, i.e., they operate on multiple sequence alignments, while functional RNA structures often reside in non-conserved parts of the primary transcripts. The opposite “first-fold-then-align” approach is currently explored to a much lesser extent. Developing novel methods in both directions will improve the performance of comparative RNA structure analysis and help discover novel long-range structures, their higher-order organization, and RNA⁻RNA interactions across the transcriptome.
Collapse
Affiliation(s)
- Dmitri D Pervouchine
- Skolkovo Institute for Science and Technology, Ulitsa Nobelya 3, Moscow 121205, Russia.
- The Faculty of Bioengineering and Bioinformatics, Moscow State University 1-73, Moscow 119899, Russia.
- Faculty of Computer Science, Higher School of Economics, Kochnovskiy Proyezd 3, Moscow 125319, Russia.
| |
Collapse
|
29
|
Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes. Nat Commun 2018; 9:2032. [PMID: 29795225 PMCID: PMC5966403 DOI: 10.1038/s41467-018-04110-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/04/2018] [Indexed: 01/04/2023] Open
Abstract
Modification of SMN2 exon 7 (E7) splicing is a validated therapeutic strategy against spinal muscular atrophy (SMA). However, a target-based approach to identify small-molecule E7 splicing modifiers has not been attempted, which could reveal novel therapies with improved mechanistic insight. Here, we chose as a target the stem-loop RNA structure TSL2, which overlaps with the 5' splicing site of E7. A small-molecule TSL2-binding compound, homocarbonyltopsentin (PK4C9), was identified that increases E7 splicing to therapeutic levels and rescues downstream molecular alterations in SMA cells. High-resolution NMR combined with molecular modelling revealed that PK4C9 binds to pentaloop conformations of TSL2 and promotes a shift to triloop conformations that display enhanced E7 splicing. Collectively, our study validates TSL2 as a target for small-molecule drug discovery in SMA, identifies a novel mechanism of action for an E7 splicing modifier, and sets a precedent for other splicing-mediated diseases where RNA structure could be similarly targeted.
Collapse
|
30
|
Singh RN, Singh NN. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes. ADVANCES IN NEUROBIOLOGY 2018; 20:31-61. [PMID: 29916015 DOI: 10.1007/978-3-319-89689-2_2] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% cases of SMA result from deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. However, correction of SMN2 exon 7 splicing has proven to confer therapeutic benefits in SMA patients. The only approved drug for SMA is an antisense oligonucleotide (Spinraza™/Nusinersen), which corrects SMN2 exon 7 splicing by blocking intronic splicing silencer N1 (ISS-N1) located immediately downstream of exon 7. ISS-N1 is a complex regulatory element encompassing overlapping negative motifs and sequestering a cryptic splice site. More than 40 protein factors have been implicated in the regulation of SMN exon 7 splicing. There is evidence to support that multiple exons of SMN are alternatively spliced during oxidative stress, which is associated with a growing number of pathological conditions. Here, we provide the most up to date account of the mechanism of splicing regulation of the SMN genes.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
31
|
Singh NN, Del Rio-Malewski JB, Luo D, Ottesen EW, Howell MD, Singh RN. Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene. Nucleic Acids Res 2017; 45:12214-12240. [PMID: 28981879 PMCID: PMC5716214 DOI: 10.1093/nar/gkx824] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023] Open
Abstract
Spinal muscular atrophy (SMA) is caused by deletions or mutations of the Survival Motor Neuron 1 (SMN1) gene coupled with predominant skipping of SMN2 exon 7. The only approved SMA treatment is an antisense oligonucleotide that targets the intronic splicing silencer N1 (ISS-N1), located downstream of the 5' splice site (5'ss) of exon 7. Here, we describe a novel approach to exon 7 splicing modulation through activation of a cryptic 5'ss (Cr1). We discovered the activation of Cr1 in transcripts derived from SMN1 that carries a pathogenic G-to-C mutation at the first position (G1C) of intron 7. We show that Cr1-activating engineered U1 snRNAs (eU1s) have the unique ability to reprogram pre-mRNA splicing and restore exon 7 inclusion in SMN1 carrying a broad spectrum of pathogenic mutations at both the 3'ss and 5'ss of the exon 7. Employing a splicing-coupled translation reporter, we demonstrate that mRNAs generated by an eU1-induced activation of Cr1 produce full-length SMN. Our findings underscore a wider role for U1 snRNP in splicing regulation and reveal a novel approach for the restoration of SMN exon 7 inclusion for a potential therapy of SMA.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - José Bruno Del Rio-Malewski
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| | - Diou Luo
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
32
|
Ottesen EW, Seo J, Singh NN, Singh RN. A Multilayered Control of the Human Survival Motor Neuron Gene Expression by Alu Elements. Front Microbiol 2017; 8:2252. [PMID: 29187847 PMCID: PMC5694776 DOI: 10.3389/fmicb.2017.02252] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Mutations or deletions of SMN1, which codes for SMN, cause spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. Aberrant expression or localization of SMN has been also implicated in other pathological conditions, including male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. SMN2 fails to compensate for the loss of SMN1 due to skipping of exon 7, leading to the production of SMNΔ7, an unstable protein. In addition, SMNΔ7 is less functional due to the lack of a critical C-terminus of the full-length SMN, a multifunctional protein. Alu elements are specific to primates and are generally found within protein coding genes. About 41% of the human SMN gene including promoter region is occupied by more than 60 Alu-like sequences. Here we discuss how such an abundance of Alu-like sequences may contribute toward SMA pathogenesis. We describe the likely impact of Alu elements on expression of SMN. We have recently identified a novel exon 6B, created by exonization of an Alu-element located within SMN intron 6. Irrespective of the exon 7 inclusion or skipping, transcripts harboring exon 6B code for the same SMN6B protein that has altered C-terminus compared to the full-length SMN. We have demonstrated that SMN6B is more stable than SMNΔ7 and likely functions similarly to the full-length SMN. We discuss the possible mechanism(s) of regulation of SMN exon 6B splicing and potential consequences of the generation of exon 6B-containing transcripts.
Collapse
Affiliation(s)
- Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
33
|
Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun 2017; 8:1476. [PMID: 29133793 PMCID: PMC5684323 DOI: 10.1038/s41467-017-01559-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 09/27/2017] [Indexed: 01/28/2023] Open
Abstract
Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes. In addition to the therapeutic potential of these molecules for treatment of SMA, our work has wide-ranging implications in understanding how small molecules can interact with specific quaternary RNA structures. Small molecules correcting the splicing deficit of the survival of motor neuron 2 (SMN2) gene have been identified as having therapeutic potential. Here, the authors provide evidence that SMN2 mRNA forms a ribonucleoprotein complex that can be specifically targeted by these small molecules.
Collapse
|
34
|
Dominguez CE, Cunningham D, Chandler DS. SMN regulation in SMA and in response to stress: new paradigms and therapeutic possibilities. Hum Genet 2017; 136:1173-1191. [PMID: 28852871 PMCID: PMC6201753 DOI: 10.1007/s00439-017-1835-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Low levels of the survival of motor neuron (SMN) protein cause the neurodegenerative disease spinal muscular atrophy (SMA). SMA is a pediatric disease characterized by spinal motor neuron degeneration. SMA exhibits several levels of severity ranging from early antenatal fatality to only mild muscular weakness, and disease prognosis is related directly to the amount of functional SMN protein that a patient is able to express. Current therapies are being developed to increase the production of functional SMN protein; however, understanding the effect that natural stresses have on the production and function of SMN is of critical importance to ensuring that these therapies will have the greatest possible effect for patients. Research has shown that SMN, both on the mRNA and protein level, is highly affected by cellular stress. In this review we will summarize the research that highlights the roles of SMN in the disease process and the response of SMN to various environmental stresses.
Collapse
Affiliation(s)
- Catherine E Dominguez
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - David Cunningham
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Dawn S Chandler
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
35
|
Ramanouskaya TV, Grinev VV. The determinants of alternative RNA splicing in human cells. Mol Genet Genomics 2017; 292:1175-1195. [PMID: 28707092 DOI: 10.1007/s00438-017-1350-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022]
Abstract
Alternative splicing represents an important level of the regulation of gene function in eukaryotic organisms. It plays a critical role in virtually every biological process within an organism, including regulation of cell division and cell death, differentiation of tissues in the embryo and the adult organism, as well as in cellular response to diverse environmental factors. In turn, studies of the last decade have shown that alternative splicing itself is controlled by different mechanisms. Unfortunately, there is no clear understanding of how these diverse mechanisms, or determinants, regulate and constrain the set of alternative RNA species produced from any particular gene in every cell of the human body. Here, we provide a consolidated overview of alternative splicing determinants including RNA-protein interactions, epigenetic regulation via chromatin remodeling, coupling of transcription-to-alternative splicing, effect of secondary structures in pre-RNA, and function of the RNA quality control systems. We also extensively and critically discuss some mechanistic insights on coordinated inclusion/exclusion of exons during the formation of mature RNA molecules. We conclude that the final structure of RNA is pre-determined by a complex interplay between cis- and trans-acting factors. Altogether, currently available empirical data significantly expand our understanding of the functioning of the alternative splicing machinery of cells in normal and pathological conditions. On the other hand, there are still many blind spots that require further deep investigations.
Collapse
|
36
|
Beusch I, Barraud P, Moursy A, Cléry A, Allain FHT. Tandem hnRNP A1 RNA recognition motifs act in concert to repress the splicing of survival motor neuron exon 7. eLife 2017. [PMID: 28650318 PMCID: PMC5503513 DOI: 10.7554/elife.25736] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
HnRNP A1 regulates many alternative splicing events by the recognition of splicing silencer elements. Here, we provide the solution structures of its two RNA recognition motifs (RRMs) in complex with short RNA. In addition, we show by NMR that both RRMs of hnRNP A1 can bind simultaneously to a single bipartite motif of the human intronic splicing silencer ISS-N1, which controls survival of motor neuron exon 7 splicing. RRM2 binds to the upstream motif and RRM1 to the downstream motif. Combining the insights from the structure with in cell splicing assays we show that the architecture and organization of the two RRMs is essential to hnRNP A1 function. The disruption of the inter-RRM interaction or the loss of RNA binding capacity of either RRM impairs splicing repression by hnRNP A1. Furthermore, both binding sites within the ISS-N1 are important for splicing repression and their contributions are cumulative rather than synergistic. DOI:http://dx.doi.org/10.7554/eLife.25736.001
Collapse
Affiliation(s)
- Irene Beusch
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Pierre Barraud
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland.,Laboratoire de cristallographie et RMN biologiques, UMR 8015, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Laboratoire d'expression génétique microbienne, UMR 8261, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Institut de biologie physico-chimique, Paris, France
| | - Ahmed Moursy
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Antoine Cléry
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Frédéric Hai-Trieu Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| |
Collapse
|
37
|
Bates DO, Morris JC, Oltean S, Donaldson LF. Pharmacology of Modulators of Alternative Splicing. Pharmacol Rev 2017; 69:63-79. [PMID: 28034912 PMCID: PMC5226212 DOI: 10.1124/pr.115.011239] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
More than 95% of genes in the human genome are alternatively spliced to form multiple transcripts, often encoding proteins with differing or opposing function. The control of alternative splicing is now being elucidated, and with this comes the opportunity to develop modulators of alternative splicing that can control cellular function. A number of approaches have been taken to develop compounds that can experimentally, and sometimes clinically, affect splicing control, resulting in potential novel therapeutics. Here we develop the concepts that targeting alternative splicing can result in relatively specific pathway inhibitors/activators that result in dampening down of physiologic or pathologic processes, from changes in muscle physiology to altering angiogenesis or pain. The targets and pharmacology of some of the current inhibitors/activators of alternative splicing are demonstrated and future directions discussed.
Collapse
Affiliation(s)
- David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Jonathan C Morris
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Sebastian Oltean
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Lucy F Donaldson
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| |
Collapse
|
38
|
Jablonka S, Sendtner M. Developmental regulation of SMN expression: pathophysiological implications and perspectives for therapy development in spinal muscular atrophy. Gene Ther 2017; 24:506-513. [DOI: 10.1038/gt.2017.46] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/18/2022]
|
39
|
Singh NN, Howell MD, Androphy EJ, Singh RN. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther 2017; 24:520-526. [PMID: 28485722 DOI: 10.1038/gt.2017.34] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Spinal muscular atrophy (SMA), a prominent genetic disease of infant mortality, is caused by low levels of survival motor neuron (SMN) protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1 present in humans, cannot compensate for the loss of SMN1 because of predominant skipping of exon 7 during pre-mRNA splicing. With the recent US Food and Drug Administration approval of nusinersen (Spinraza), the potential for correction of SMN2 exon 7 splicing as an SMA therapy has been affirmed. Nusinersen is an antisense oligonucleotide that targets intronic splicing silencer N1 (ISS-N1) discovered in 2004 at the University of Massachusetts Medical School. ISS-N1 has emerged as the model target for testing the therapeutic efficacy of antisense oligonucleotides using different chemistries as well as different mouse models of SMA. Here, we provide a historical account of events that led to the discovery of ISS-N1 and describe the impact of independent validations that raised the profile of ISS-N1 as one of the most potent antisense targets for the treatment of a genetic disease. Recent approval of nusinersen provides a much-needed boost for antisense technology that is just beginning to realize its potential. Beyond treating SMA, the ISS-N1 target offers myriad potentials for perfecting various aspects of the nucleic-acid-based technology for the amelioration of the countless number of pathological conditions.
Collapse
Affiliation(s)
- N N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - M D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - E J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
40
|
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:299-315. [PMID: 28095296 PMCID: PMC5325804 DOI: 10.1016/j.bbagrm.2016.12.008] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023]
Abstract
The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
41
|
Ottesen EW. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy. Transl Neurosci 2017; 8:1-6. [PMID: 28400976 PMCID: PMC5382937 DOI: 10.1515/tnsci-2017-0001] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is one of the leading genetic diseases of children and infants. SMA is caused by deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, cannot compensate for the loss of SMN1 due to predominant skipping of exon 7. While various regulatory elements that modulate SMN2 exon 7 splicing have been proposed, intronic splicing silencer N1 (ISS-N1) has emerged as the most promising target thus far for antisense oligonucleotide-mediated splicing correction in SMA. Upon procuring exclusive license from the University of Massachussets Medical School in 2010, Ionis Pharmaceuticals (formerly ISIS Pharamaceuticals) began clinical development of Spinraza™ (synonyms: Nusinersen, IONIS-SMNRX, ISIS-SMNRX), an antisense drug based on ISS-N1 target. Spinraza™ showed very promising results at all steps of the clinical development and was approved by US Food and Drug Administration (FDA) on December 23, 2016. Spinraza™ is the first FDA-approved treatment for SMA and the first antisense drug to restore expression of a fully functional protein via splicing correction. The success of Spinraza™ underscores the potential of intronic sequences as promising therapeutic targets and sets the stage for further improvement of antisense drugs based on advanced oligonucleotide chemistries and delivery protocols.
Collapse
Affiliation(s)
- Eric W. Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| |
Collapse
|
42
|
Bonifert T, Gonzalez Menendez I, Battke F, Theurer Y, Synofzik M, Schöls L, Wissinger B. Antisense Oligonucleotide Mediated Splice Correction of a Deep Intronic Mutation in OPA1. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e390. [PMID: 27874857 PMCID: PMC5155325 DOI: 10.1038/mtna.2016.93] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Abstract
Inherited optic neuropathies (ION) present an important cause of blindness in the European working-age population. Recently we reported the discovery of four independent families with deep intronic mutations in the main inherited optic neuropathies gene OPA1. These deep intronic mutations cause mis-splicing of the OPA1 pre-messenger-RNA transcripts by creating cryptic acceptor splice sites. As a rescue strategy we sought to prevent mis-splicing of the mutant pre-messenger-RNA by applying 2'O-methyl-antisense oligonucleotides (AONs) with a full-length phosphorothioate backbone that target the cryptic acceptor splice sites and the predicted novel branch point created by the deep intronic mutations, respectively. Transfection of patient-derived primary fibroblasts with these AONs induced correct splicing of the mutant pre-messenger-RNA in a time and concentration dependent mode of action, as detected by pyrosequencing of informative heterozygous variants. The treatment showed strong rescue effects (~55%) using the cryptic acceptor splice sites targeting AON and moderate rescue (~16%) using the branch point targeting AON. The highest efficacy of Splice correction could be observed 4 days after treatment however, significant effects were still seen 14 days post-transfection. Western blot analysis revealed increased amounts of OPA1 protein with maximum amounts at ~3 days post-treatment. In summary, we provide the first mutation-specific in vitro rescue strategy for OPA1 deficiency using synthetic AONs.
Collapse
Affiliation(s)
- Tobias Bonifert
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Irene Gonzalez Menendez
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | | | - Yvonne Theurer
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Seo J, Singh NN, Ottesen EW, Sivanesan S, Shishimorova M, Singh RN. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene. PLoS One 2016; 11:e0154390. [PMID: 27111068 PMCID: PMC4844106 DOI: 10.1371/journal.pone.0154390] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/12/2016] [Indexed: 12/18/2022] Open
Abstract
Humans carry two nearly identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Loss of SMN1 leads to spinal muscular atrophy (SMA), the most frequent genetic cause of infant mortality. While SMN2 cannot compensate for the loss of SMN1 due to predominant skipping of exon 7, correction of SMN2 exon 7 splicing holds the promise of a cure for SMA. Previously, we used cell-based models coupled with a multi-exon-skipping detection assay (MESDA) to demonstrate the vulnerability of SMN2 exons to aberrant splicing under the conditions of oxidative stress (OS). Here we employ a transgenic mouse model and MESDA to examine the OS-induced splicing regulation of SMN2 exons. We induced OS using paraquat that is known to trigger production of reactive oxygen species and cause mitochondrial dysfunction. We show an overwhelming co-skipping of SMN2 exon 5 and exon 7 under OS in all tissues except testis. We also show that OS increases skipping of SMN2 exon 3 in all tissues except testis. We uncover several new SMN2 splice isoforms expressed at elevated levels under the conditions of OS. We analyze cis-elements and transacting factors to demonstrate the diversity of mechanisms for splicing misregulation under OS. Our results of proteome analysis reveal downregulation of hnRNP H as one of the potential consequences of OS in brain. Our findings suggest SMN2 as a sensor of OS with implications to SMA and other diseases impacted by low levels of SMN protein.
Collapse
Affiliation(s)
- Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| | - Natalia N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| | - Eric W. Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| | - Senthilkumar Sivanesan
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| | - Maria Shishimorova
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
| | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States of America
- * E-mail:
| |
Collapse
|
44
|
Garg S. Management of scoliosis in patients with Duchenne muscular dystrophy and spinal muscular atrophy: A literature review. J Pediatr Rehabil Med 2016; 9:23-9. [PMID: 26966797 DOI: 10.3233/prm-160358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Scoliosis occurs in nearly all non-ambulatory children with spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). Non-operative treatments have not been shown to be effective at preventing progression of scoliosis. Progressive scoliosis can impact the ability of patients to sit comfortably, be cosmetically unappealing, and in severe cases exacerbate pulmonary disease. The main goal of operative treatment is to improve sitting balance and prevent progression of scoliosis. Complication rates are high and there is little data on effect of operative treatment on quality of life in children with SMA and DMD. Comprehensive multi-disciplinary pre-operative evaluations are vital to reduce the risks of operative treatment.
Collapse
|
45
|
Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Future Med Chem 2015; 7:1793-808. [PMID: 26381381 DOI: 10.4155/fmc.15.101] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7. Several compounds, including antisense oligonucleotides (ASOs) that elevate SMN protein from SMN2 hold the promise for treatment. An ASO-based drug currently under Phase III clinical trial employs intronic splicing silencer N1 (ISS-N1) as its target. Cumulative studies on ISS-N1 reveal a wealth of information with significance to the overall therapeutic development for SMA. Here, the authors summarize the mechanistic principles behind various antisense targets currently available for SMA therapy.
Collapse
|