1
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
2
|
Huang JL, Pourhosseinzadeh MS, Lee S, Krämer N, Guillen JV, Cinque NH, Aniceto P, Momen AT, Koike S, Huising MO. Paracrine signalling by pancreatic δ cells determines the glycaemic set point in mice. Nat Metab 2024; 6:61-77. [PMID: 38195859 PMCID: PMC10919447 DOI: 10.1038/s42255-023-00944-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/09/2023] [Indexed: 01/11/2024]
Abstract
While pancreatic β and α cells are considered the main drivers of blood glucose homeostasis through insulin and glucagon secretion, the contribution of δ cells and somatostatin (SST) secretion to glucose homeostasis remains unresolved. Here we provide a quantitative assessment of the physiological contribution of δ cells to the glycaemic set point in mice. Employing three orthogonal mouse models to remove SST signalling within the pancreas or transplanted islets, we demonstrate that ablating δ cells or SST leads to a sustained decrease in the glycaemic set point. This reduction coincides with a decreased glucose threshold for insulin response from β cells, leading to increased insulin secretion to the same glucose challenge. Our data demonstrate that β cells are sufficient to maintain stable glycaemia and reveal that the physiological role of δ cells is to provide tonic feedback inhibition that reduces the β cell glucose threshold and consequently lowers the glycaemic set point in vivo.
Collapse
Affiliation(s)
- Jessica L Huang
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Mohammad S Pourhosseinzadeh
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Sharon Lee
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Niels Krämer
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Jaresley V Guillen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Naomi H Cinque
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Paola Aniceto
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Ariana T Momen
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA
| | - Shinichiro Koike
- Department of Nutrition, University of California, Davis, CA, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, CA, USA.
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
3
|
Dos Santos WO, Juliano VAL, Chaves FM, Vieira HR, Frazao R, List EO, Kopchick JJ, Munhoz CD, Donato J. Growth Hormone Action in Somatostatin Neurons Regulates Anxiety and Fear Memory. J Neurosci 2023; 43:6816-6829. [PMID: 37625855 PMCID: PMC10552943 DOI: 10.1523/jneurosci.0254-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/28/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
Dysfunctions in growth hormone (GH) secretion increase the prevalence of anxiety and other neuropsychiatric diseases. GH receptor (GHR) signaling in the amygdala has been associated with fear memory, a key feature of posttraumatic stress disorder. However, it is currently unknown which neuronal population is targeted by GH action to influence the development of neuropsychiatric diseases. Here, we showed that approximately 60% of somatostatin (SST)-expressing neurons in the extended amygdala are directly responsive to GH. GHR ablation in SST-expressing cells (SSTΔGHR mice) caused no alterations in energy or glucose metabolism. Notably, SSTΔGHR male mice exhibited increased anxiety-like behavior in the light-dark box and elevated plus maze tests, whereas SSTΔGHR females showed no changes in anxiety. Using auditory Pavlovian fear conditioning, both male and female SSTΔGHR mice exhibited a significant reduction in fear memory. Conversely, GHR ablation in SST neurons did not affect memory in the novel object recognition test. Gene expression was analyzed in a micro punch comprising the central nucleus of the amygdala (CEA) and basolateral (BLA) complex. GHR ablation in SST neurons caused sex-dependent changes in the expression of factors involved in synaptic plasticity and function. In conclusion, GHR expression in SST neurons is necessary to regulate anxiety in males, but not female mice. GHR ablation in SST neurons also decreases fear memory and affects gene expression in the amygdala, although marked sex differences were observed. Our findings identified for the first time a neurochemically-defined neuronal population responsible for mediating the effects of GH on behavioral aspects associated with neuropsychiatric diseases.SIGNIFICANCE STATEMENT Hormone action in the brain regulates different neurological aspects, affecting the predisposition to neuropsychiatric disorders, like depression, anxiety, and posttraumatic stress disorder. Growth hormone (GH) receptor is widely expressed in the brain, but the exact function of neuronal GH action is not fully understood. Here, we showed that mice lacking the GH receptor in a group of neurons that express the neuropeptide somatostatin exhibit increased anxiety. However, this effect is only observed in male mice. In contrast, the absence of the GH receptor in somatostatin-expressing neurons decreases fear memory, a key feature of posttraumatic stress disorder, in males and females. Thus, our study identified a specific group of neurons in which GH acts to affect the predisposition to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Willian O Dos Santos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Vitor A L Juliano
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Fernanda M Chaves
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Henrique R Vieira
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Renata Frazao
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens 45701, Ohio
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens 45701, Ohio
| | - Carolina D Munhoz
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
4
|
Żakowski W, Zawistowski P. Neurochemistry of the mammillary body. Brain Struct Funct 2023; 228:1379-1398. [PMID: 37378855 PMCID: PMC10335970 DOI: 10.1007/s00429-023-02673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
The mammillary body (MB) is a component of the extended hippocampal system and many studies have shown that its functions are vital for mnemonic processes. Together with other subcortical structures, such as the anterior thalamic nuclei and tegmental nuclei of Gudden, the MB plays a crucial role in the processing of spatial and working memory, as well as navigation in rats. The aim of this paper is to review the distribution of various substances in the MB of the rat, with a description of their possible physiological roles. The following groups of substances are reviewed: (1) classical neurotransmitters (glutamate and other excitatory transmitters, gamma-aminobutyric acid, acetylcholine, serotonin, and dopamine), (2) neuropeptides (enkephalins, substance P, cocaine- and amphetamine-regulated transcript, neurotensin, neuropeptide Y, somatostatin, orexins, and galanin), and (3) other substances (calcium-binding proteins and calcium sensor proteins). This detailed description of the chemical parcellation may facilitate a better understanding of the MB functions and its complex relations with other structures of the extended hippocampal system.
Collapse
Affiliation(s)
- Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Piotr Zawistowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
5
|
Role of Somatostatin Signalling in Neuroendocrine Tumours. Int J Mol Sci 2022; 23:ijms23031447. [PMID: 35163374 PMCID: PMC8836266 DOI: 10.3390/ijms23031447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Somatostatin (SST) is a small peptide that exerts inhibitory effects on a wide range of neuroendocrine cells. Due to the fact that somatostatin regulates cell growth and hormone secretion, somatostatin receptors (SSTRs) have become valuable targets for the treatment of different types of neuroendocrine tumours (NETs). NETs are a heterogeneous group of tumours that can develop in various parts of the body, including the digestive system, lungs, and pituitary. NETs are usually slow growing, but they are often diagnosed in advanced stages and can display aggressive behaviour. The mortality rate of NETs is not outstandingly increased compared to other malignant tumours, even in the metastatic setting. One of the intrinsic properties of NETs is the expression of SSTRs that serve as drug targets for SST analogues (SSAs), which can delay tumour progression and downregulate hormone overproduction. Additionally, in many NETs, it has been demonstrated that the SSTR expression level provides a prognostic value in predicting a therapeutic response. Furthermore, higher a SSTR expression correlates with a better survival rate in NET patients. In recent studies, other epigenetic regulators affecting SST signalling or SSA–mTOR inhibitor combination therapy in NETs have been considered as novel strategies for tumour control. In conclusion, SST signalling is a relevant regulator of NET functionality. Alongside classical SSA treatment regimens, future advanced therapies and treatment modalities are expected to improve the disease outcomes and overall health of NET patients.
Collapse
|
6
|
Jiang HM, Yang Z, Xue YY, Wang HY, Guo SQ, Xu JP, Li YD, Fu P, Ding XY, Yu K, Liu WJ, Zhang G, Wang J, Zhou HB, Susswein AJ, Jing J. Identification of an allatostatin C signaling system in mollusc Aplysia. Sci Rep 2022; 12:1213. [PMID: 35075137 PMCID: PMC8786951 DOI: 10.1038/s41598-022-05071-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides, as pervasive intercellular signaling molecules in the CNS, modulate a variety of behavioral systems in both protostomes and deuterostomes. Allatostatins are neuropeptides in arthropods that inhibit the biosynthesis of juvenile hormones. Based on amino acid sequences, they are divided into three different types in arthropods: allatostatin A, allatostatin B, allatostatin C. Allatostatin C (AstC) was first isolated from Manduca sexta, and it has an important conserved feature of a disulfide bridge formed by two cysteine residues. Moreover, AstC appears to be the ortholog of mammalian somatostatin, and it has functions in common with somatostatin, such as modulating feeding behaviors. The AstC signaling system has been widely studied in arthropods, but minimally studied in molluscs. In this study, we seek to identify the AstC signaling system in the marine mollusc Aplysia californica. We cloned the AstC precursor from the cDNA of Aplysia. We predicted a 15-amino acid peptide with a disulfide bridge, i.e., AstC, using NeuroPred. We then cloned two putative allatostatin C-like receptors and through NCBI Conserved Domain Search we found that they belonged to the G protein-coupled receptor (GPCR) family. In addition, using an inositol monophosphate 1 (IP1) accumulation assay, we showed that Aplysia AstC could activate one of the putative receptors, i.e., the AstC-R, at the lowest EC50, and AstC without the disulfide bridge (AstC') activated AstC-R with the highest EC50. Moreover, four molluscan AstCs with variations of sequences from Aplysia AstC but with the disulfide bridge activated AstC-R at intermediate EC50. In summary, our successful identification of the Aplysia AstC precursor and its receptor (AstC-R) represents the first example in molluscs, and provides an important basis for further studies of the AstC signaling system in Aplysia and other molluscs.
Collapse
Affiliation(s)
- Hui-Min Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Zhe Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ying-Yu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Hui-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Shi-Qi Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ju-Ping Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ya-Dong Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ping Fu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xue-Ying Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Ke Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Wei-Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Guo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Jian Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, Jiangsu, China.
- Peng Cheng Laboratory, Shenzhen, 518000, China.
| | - Hai-Bo Zhou
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, Jiangsu, China.
- Peng Cheng Laboratory, Shenzhen, 518000, China.
| | - Abraham J Susswein
- The Mina and Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, 52900, Ramat Gan, Israel
| | - Jian Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chinese Academy of Medical Sciences Research Unit of Extracellular RNA, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
- Peng Cheng Laboratory, Shenzhen, 518000, China.
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Tolle V, Ramoz N, Epelbaum J. Is there a hypothalamic basis for anorexia nervosa? HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:405-424. [PMID: 34238474 DOI: 10.1016/b978-0-12-820683-6.00030-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypothalamus has long been known to control food intake and energy metabolism through a complex network of primary and secondary neurons and glial cells. Anorexia nervosa being a complex disorder characterized by abnormal feeding behavior and food aversion, it is thus quite surprising that not much is known concerning potential hypothalamic modifications in this disorder. In this chapter, we review the recent advances in the fields of genetics, epigenetics, structural and functional imaging, and brain connectivity, as well as neuroendocrine findings and emerging animal models, which have begun to unravel the importance of hypothalamic adaptive processes to our understanding of the pathology of eating disorders.
Collapse
|
8
|
Quan FB, Desban L, Mirat O, Kermarquer M, Roussel J, Koëth F, Marnas H, Djenoune L, Lejeune FX, Tostivint H, Wyart C. Somatostatin 1.1 contributes to the innate exploration of zebrafish larva. Sci Rep 2020; 10:15235. [PMID: 32943676 PMCID: PMC7499426 DOI: 10.1038/s41598-020-72039-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Pharmacological experiments indicate that neuropeptides can effectively tune neuronal activity and modulate locomotor output patterns. However, their functions in shaping innate locomotion often remain elusive. For example, somatostatin has been previously shown to induce locomotion when injected in the brain ventricles but to inhibit fictive locomotion when bath-applied in the spinal cord in vitro. Here, we investigated the role of somatostatin in innate locomotion through a genetic approach by knocking out somatostatin 1.1 (sst1.1) in zebrafish. We automated and carefully analyzed the kinematics of locomotion over a hundred of thousand bouts from hundreds of mutant and control sibling larvae. We found that the deletion of sst1.1 did not impact acousto-vestibular escape responses but led to abnormal exploration. sst1.1 mutant larvae swam over larger distance, at higher speed and performed larger tail bends, indicating that Somatostatin 1.1 inhibits spontaneous locomotion. Altogether our study demonstrates that Somatostatin 1.1 innately contributes to slowing down spontaneous locomotion.
Collapse
Affiliation(s)
- Feng B Quan
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
- Muséum National d'Histoire Naturelle (MNHN), CNRS UMR 7221, Paris, France
| | - Laura Desban
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Maxime Kermarquer
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Fanny Koëth
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Hugo Marnas
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Lydia Djenoune
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - François-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle (MNHN), CNRS UMR 7221, Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
9
|
Zhang Y, Yañez Guerra LA, Egertová M, Zampronio CG, Jones AM, Elphick MR. Molecular and functional characterization of somatostatin-type signalling in a deuterostome invertebrate. Open Biol 2020; 10:200172. [PMID: 32898470 PMCID: PMC7536072 DOI: 10.1098/rsob.200172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Somatostatin (SS) and allatostatin-C (ASTC) are structurally and evolutionarily related neuropeptides that act as inhibitory regulators of physiological processes in mammals and insects, respectively. Here, we report the first molecular and functional characterization of SS/ASTC-type signalling in a deuterostome invertebrate—the starfish Asterias rubens (phylum Echinodermata). Two SS/ASTC-type precursors were identified in A. rubens (ArSSP1 and ArSSP2) and the structures of neuropeptides derived from these proteins (ArSS1 and ArSS2) were analysed using mass spectrometry. Pharmacological characterization of three cloned A. rubens SS/ASTC-type receptors (ArSSR1–3) revealed that ArSS2, but not ArSS1, acts as a ligand for all three receptors. Analysis of ArSS2 expression in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed stained cells/fibres in the central nervous system, the digestive system (e.g. cardiac stomach) and the body wall and its appendages (e.g. tube feet). Furthermore, in vitro pharmacological tests revealed that ArSS2 causes dose-dependent relaxation of tube foot and cardiac stomach preparations, while injection of ArSS2 in vivo causes partial eversion of the cardiac stomach. Our findings provide new insights into the molecular evolution of SS/ASTC-type signalling in the animal kingdom and reveal an ancient role of SS-type neuropeptides as inhibitory regulators of muscle contractility.
Collapse
Affiliation(s)
- Ya Zhang
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | - Michaela Egertová
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Cleidiane G Zampronio
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry CV4 7AL, UK
| | - Alexandra M Jones
- School of Life Sciences and Proteomics Research Technology Platform, University of Warwick, Coventry CV4 7AL, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
10
|
Sandru F, Carsote M, Valea A, Albu SE, Petca RC, Dumitrascu MC. Somatostatinoma: Beyond neurofibromatosis type 1 (Review). Exp Ther Med 2020; 20:3383-3388. [PMID: 32905002 DOI: 10.3892/etm.2020.8965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Somatostatinoma is a tumour mainly originating from pancreas or duodenum; overall with an incidence of 1/40 million persons. We introduce a narrative review of literature of somatostatinoma including the relationship with neurofibromatosis type 1. Clinical presentation includes: Diabetes mellitus, cholelithiasis, steatorrhea, abdominal pain, and obstructive jaundice while papillary tumour may cause acute pancreatitis. The neoplasia may develop completely asymptomatic or it is detected as an incidental finding during an imaging or a surgical procedure. It may be sporadic or associated to genetic backgrounds especially for duodenal localisation as neurofibromatosis type 1 (NF1 gene with malfunction of RAS/MAPK pathway) or Pacak-Zhuang syndrome (EPAS1 gene encoding HIF). Surgery represents the central approach if feasible but the prognostic depends on location, and grading as indicated by WHO 2017 classification of neuroendocrine tumours. Previously known as Von Recklinghausen disease, neurofibromatosis type 1, the most frequent neurocutaneous syndrome, is an autosomal dominant disorder including: Café-au-lait spot, skin fold freckling on flexural zones, and neurofibromas as well as tumours such as gliomas of optic nerve, gastrointestinal stromal tumours (GISTs), iris hamartomas and brain tumours. Duodenal somatostatinoma is associated with the syndrome which actually involves more often a duodenal tumour of GIST type than a somatostatin secreting neoplasia. Other neuroendocrine tumours are reported: Gastrointestinal NENs at the level of rectum or jejunum and pheocromocytoma. Overall, one quarter of subjects have gastrointestinal tumours of different types. Somatostatinoma, when not located on pancreas but in duodenoum, may be registered in subjects with neurofibromatosis type 1 most probably in addition to other tumours. Overall, this type of neuroendocrine tumour with a challenging presentation has a poor prognosis unless adequate radical surgery is promptly offered to the patient.
Collapse
Affiliation(s)
- Florica Sandru
- Department of Dermatology, 'Elias' Emergency University Hospital, 125100 Bucharest, Romania.,Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, 'C.I. Parhon' National Institute of Endocrinology, 011863 Bucharest, Romania.,Department of Endocrinology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ana Valea
- Department of Endocrinology, Clinical County Hospital, 400000 Cluj-Napoca, Romania.,Department of Endocrinology, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Simona Elena Albu
- Department of Gynecology, Emergency University Hospital, 050098 Bucharest, Romania.,Department of Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Răzvan-Cosmin Petca
- Deparment of Urology, 'Prof. Dr. Theodor Burghele' Clinical Hospital, 925200 Bucharest, Romania
| | - Mihai Cristian Dumitrascu
- Department of Gynecology, Emergency University Hospital, 050098 Bucharest, Romania.,Department of Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
11
|
Robinson SL, Thiele TE. A role for the neuropeptide somatostatin in the neurobiology of behaviors associated with substances abuse and affective disorders. Neuropharmacology 2020; 167:107983. [PMID: 32027909 DOI: 10.1016/j.neuropharm.2020.107983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
In recent years, neuropeptides which display potent regulatory control of stress-related behaviors have been extensively demonstrated to play a critical role in regulating behaviors associated with substance abuse and affective disorders. Somatostatin (SST) is one neuropeptide known to significantly contribute to emotionality and stress behaviors. However, the role of SST in regulating behavior has received relatively little attention relative to other stress-involved peptides, such as neuropeptide Y or corticotrophin releasing factor. This review characterizes our current understanding of the role of SST and SST-expressing cells in general in modulating several behaviors intrinsically linked to substance abuse and affective disorders, specifically: anxiety and fear; stress and depression; feeding and drinking; and circadian rhythms. We further summarize evidence of a direct role for the SST system, and specifically somatostatin receptors 2 and 4, in substance abuse disorders. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- Stacey L Robinson
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
12
|
Kántás B, Börzsei R, Szőke É, Bánhegyi P, Horváth Á, Hunyady Á, Borbély É, Hetényi C, Pintér E, Helyes Z. Novel Drug-Like Somatostatin Receptor 4 Agonists are Potential Analgesics for Neuropathic Pain. Int J Mol Sci 2019; 20:E6245. [PMID: 31835716 PMCID: PMC6940912 DOI: 10.3390/ijms20246245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
Somatostatin released from the capsaicin-sensitive sensory nerves mediates analgesic and anti-inflammatory effects via the somatostatin sst4 receptor without endocrine actions. Therefore, sst4 is considered to be a novel target for drug development in pain including chronic neuropathy, which is an emerging unmet medical need. Here, we examined the in silico binding, the sst4-linked G-protein activation on stable receptor expressing cells (1 nM to 10 μM), and the effects of our novel pyrrolo-pyrimidine molecules in mouse inflammatory and neuropathic pain models. All four of the tested compounds (C1-C4) bind to the same binding site of the sst4 receptor with similar interaction energy to high-affinity reference sst4 agonists, and they all induce G-protein activation. C1 is the more efficacious (γ-GTP-binding: 218.2% ± 36.5%) and most potent (EC50: 37 nM) ligand. In vivo testing of the actions of orally administered C1 and C2 (500 µg/kg) showed that only C1 decreased the resiniferatoxin-induced acute neurogenic inflammatory thermal allodynia and mechanical hyperalgesia significantly. Meanwhile, both of them remarkably reduced partial sciatic nerve ligation-induced chronic neuropathic mechanical hyperalgesia after a single oral administration of the 500 µg/kg dose. These orally active novel sst4 agonists exert potent anti-hyperalgesic effect in a chronic neuropathy model, and therefore, they can open promising drug developmental perspectives.
Collapse
Affiliation(s)
- Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| | - Rita Börzsei
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| | - Péter Bánhegyi
- Avicor Ltd., Herman Ottó str. 15, H-1022 Budapest, Hungary
| | - Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| | - Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti str. 12, H-7624 Pécs, Hungary
- Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság str. 20, H-7624 Pécs, Hungary
| |
Collapse
|
13
|
Zhang L, Eiden LE. Progress in regulatory peptide research. Ann N Y Acad Sci 2019; 1455:5-11. [PMID: 31646651 DOI: 10.1111/nyas.14260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 09/28/2019] [Indexed: 12/20/2022]
Abstract
The field of regulatory peptide research has developed significant momentum owing to several recent converging trends. Dozens of peptide-based drugs have been approved by the U.S. Food and Drug Administration in the past decade, the majority for the treatment of metabolic disorders, including diabetes. These are the "tip of the spear" for peptide therapeutics, revealing that impediments of delivery, stability, and bioavailability inherent in peptide drugs have in many cases been overcome. While most are orally available, and directed at peripheral targets, pharmaceutical delivery of peptides to the central nervous system through nasal mucosal routes has also seen much progress. Cell-based high-throughput drug discovery methods, the X-ray crystallographic structural definition of G protein-coupled receptors, and deorphanization of peptide-liganded receptors have contributed to the emergence of new targets for pharmacological intervention and accelerated the development of peptide-based as well as nonpeptide congeners for existing ones. Finally, the recognition that peptides act at their receptors, in a cellular context, in conjunction with other peptides and other first messengers, including neurotransmitters, hormones, and autocrine and paracrine factors, has led to an increased appreciation for the combinatorial possibilities of regulatory peptide action, now penetrating to drug design and discovery efforts. The fifteen reviews, reports, and perspectives collected in this special issue of Annals of the New York Academy of Sciences provide a snapshot of the frontiers of the field of regulatory peptide research as they expand physiologically, pharmacologically, and therapeutically.
Collapse
Affiliation(s)
- Limei Zhang
- Departmento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|