1
|
Recknagel H, Močivnik L, Zakšek V, Luo Y, Kostanjšek R, Trontelj P. Generation of genome-wide SNP markers from minimally invasive sampling in endangered animals and applications in species ecology and conservation. Mol Ecol Resour 2024; 24:e13995. [PMID: 39056440 DOI: 10.1111/1755-0998.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
High-density genotyping methods have revolutionized the field of population and conservation genetics in the past decade. To exploit the technological and analytical advances in the field, access to high-quality genetic material is a key component. However, access to such samples in endangered and rare animals is often challenging or even impossible. Here, we used a minimally invasive sampling method (MIS) in the endangered cave salamander Proteus anguinus, the olm, to generate thousands of genetic markers using ddRADseq for population and conservation genomic analyses. Using tail clips and MIS skin swabs taken from the same individual, we investigated genotyping data properties of the two different sampling types. We found that sufficient DNA can be extracted from swab samples to generate up to 200,000 polymorphic SNPs in divergent Proteus lineages. Swab and tissue samples were highly reproducible exhibiting low SNP genotyping error rates. We found that SNPs were most frequently (~50%) located within genic regions, while the rest mapped to mostly flanking regions of repetitive DNA. The vast majority of DNA recovered from swabbing was host DNA. However, a fraction of DNA recovered from swabs contained additional ecological information on the species, including eDNA from the surrounding environment and bacterial skin fauna. Most exogenous DNA recovered from swabs were bacteria (~80%), followed by vertebrates (~20%). Our results demonstrate that MIS can be used to (i) generate tens of thousands of ddRADseq markers for conservation and population genomic analyses and (ii) inform on the species health status and ecology from exogenous DNA.
Collapse
Affiliation(s)
- Hans Recknagel
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Močivnik
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Valerija Zakšek
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | - Rok Kostanjšek
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Trontelj
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Li MS. Request for an Opinion: conservation of the illegitimate prokaryotic generic name Proteus Hauser 1885 (Approved Lists 1980). Int J Syst Evol Microbiol 2024; 74. [PMID: 38922319 DOI: 10.1099/ijsem.0.006434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
The prokaryotic generic name Proteus Hauser 1885 (Approved Lists 1980) is a later homonym of the protozoan genus name Proteus Müller, 1786 and therefore should be considered illegitimate and in need of replacement according to Rules 51b(4) and 54 of the International Code of Nomenclature of Prokaryotes. However, it would be unwelcome for medical and veterinary community to propose by anyone any replacement name and discontinue the current usage. To prevent from any unfavourable replacement, conservation of the illegitimate prokaryotic generic name Proteus Hauser 1885 (Approved Lists 1980) according to Rules 23a Note 4 and 56b is needed, and therefore, a request for conservation by the Judicial Commission over its earlier protozoan homonym is made here by the author, with Judicial Opinions 9 and 12 serving as precedents.
Collapse
Affiliation(s)
- Meng-Syun Li
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
3
|
Lukić M, Jovović L, Bedek J, Grgić M, Kuharić N, Rožman T, Čupić I, Weck B, Fong D, Bilandžija H. A practical guide for the husbandry of cave and surface invertebrates as the first step in establishing new model organisms. PLoS One 2024; 19:e0300962. [PMID: 38573919 PMCID: PMC10994295 DOI: 10.1371/journal.pone.0300962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
While extensive research on traditional model species has significantly advanced the biological sciences, the ongoing search for new model organisms is essential to tackle contemporary challenges such as human diseases or climate change, and fundamental phenomena including adaptation or speciation. Recent methodological advances such as next-generation sequencing, gene editing, and imaging are widely applicable and have simplified the selection of species with specific traits from the wild. However, a critical milestone in this endeavor remains the successful cultivation of selected species. A historically overlooked but increasingly recognized group of non-model organisms are cave dwellers. These unique animals offer invaluable insights into the genetic basis of human diseases like eye degeneration, metabolic and neurological disorders, and basic evolutionary principles and the origin of adaptive phenotypes. However, to take advantage of the beneficial traits of cave-dwelling animals, laboratory cultures must be established-a practice that remains extremely rare except for the cavefish Astyanax mexicanus. For most cave-dwelling organisms, there are no published culturing protocols. In this study, we present the results of our multi-year effort to establish laboratory cultures for a variety of invertebrate groups. We have developed comprehensive protocols for housing, feeding, and husbandry of cave dwellers and their surface relatives. Our recommendations are versatile and can be applied to a wide range of species. Hopefully our efforts will facilitate the establishment of new laboratory animal facilities for cave-dwelling organisms and encourage their greater use in experimental biology.
Collapse
Affiliation(s)
- Marko Lukić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Croatian Natural History Museum, Zagreb, Croatia
| | - Lada Jovović
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jana Bedek
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Croatian Biospeleological Society, Zagreb, Croatia
| | - Magdalena Grgić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Tin Rožman
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Croatian Biospeleological Society, Zagreb, Croatia
| | - Iva Čupić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Croatian Biospeleological Society, Zagreb, Croatia
| | - Bob Weck
- Department of Biology, Southwestern Illinois College, Belleville, Illinois, United States of America
| | - Daniel Fong
- Department of Biology, American University, Washington, DC, United States of America
| | - Helena Bilandžija
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Croatian Biospeleological Society, Zagreb, Croatia
| |
Collapse
|
4
|
Recknagel H, Zakšek V, Delić T, Gorički Š, Trontelj P. Multiple transitions between realms shape relict lineages of Proteus cave salamanders. Mol Ecol 2024; 33:e16868. [PMID: 36715250 DOI: 10.1111/mec.16868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023]
Abstract
In comparison to biodiversity on Earth's surface, subterranean biodiversity has largely remained concealed. The olm (Proteus anguinus) is one of the most enigmatic extant cave inhabitants, and until now little was known regarding its genetic structure and evolutionary history. Olms inhabit subterranean waters throughout the Dinaric Karst of the western Balkans, with a seemingly uniform phenotypic appearance of cave-specialized traits: an elongate body, snout and limbs, degenerated eyes and loss of pigmentation ("white olm"). Only a single small region in southeastern Slovenia harbours olms with a phenotype typical of surface animals: pigmented skin, eyes, a blunt snout and short limbs ("black olm"). We used a combination of mitochondrial DNA and genome-wide single nucleotide polymorphism data to investigate the molecular diversity, evolutionary history and biogeography of olms along the Dinaric Karst. We found nine deeply divergent species-level lineages that separated between 17 and 4 million years ago, while molecular diversity within lineages was low. We detected no signal of recent admixture between lineages and only limited historical gene flow. Biogeographically, the contemporaneous distribution of lineages mostly mirrors hydrologically separated subterranean environments, while the historical separation of olm lineages follows microtectonic and climatic changes in the area. The reconstructed phylogeny suggests at least four independent transitions to the cave phenotype. Two of the species-level lineages have miniscule ranges and may represent Europe's rarest amphibians. Their rarity and the decline in other lineages call for protection of their subterranean habitats.
Collapse
Affiliation(s)
- H Recknagel
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - V Zakšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - T Delić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Š Gorički
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Scriptorium biologorum, Murska Sobota, Slovenia
| | - P Trontelj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Shilovsky GA, Putyatina TS, Markov AV. Evolution of Longevity in Tetrapods: Safety Is More Important than Metabolism Level. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:322-340. [PMID: 38622099 DOI: 10.1134/s0006297924020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 04/17/2024]
Abstract
Various environmental morphological and behavioral factors can determine the longevity of representatives of various taxa. Long-lived species develop systems aimed at increasing organism stability, defense, and, ultimately, lifespan. Long-lived species to a different extent manifest the factors favoring longevity (gerontological success), such as body size, slow metabolism, activity of body's repair and antioxidant defense systems, resistance to toxic substances and tumorigenesis, and presence of neotenic features. In continuation of our studies of mammals, we investigated the characteristics that distinguish long-lived ectotherms (crocodiles and turtles) and compared them with those of other ectotherms (squamates and amphibians) and endotherms (birds and mammals). We also discussed mathematical indicators used to assess the predisposition to longevity in different species, including standard indicators (mortality rate, maximum lifespan, coefficient of variation of lifespan) and their derivatives. Evolutionary patterns of aging are further explained by the protective phenotypes and life history strategies. We assessed the relationship between the lifespan and various studied factors, such as body size and temperature, encephalization, protection of occupied ecological niches, presence of protective structures (for example, shells and osteoderms), and environmental temperature, and the influence of these factors on the variation of the lifespan as a statistical parameter. Our studies did not confirm the hypothesis on the metabolism level and temperature as the most decisive factors of longevity. It was found that animals protected by shells (e.g., turtles with their exceptional longevity) live longer than species that have poison or lack such protective adaptations. The improvement of defense against external threats in long-lived ectotherms is consistent with the characteristics of long-lived endotherms (for example, naked mole-rats that live in underground tunnels, or bats and birds, whose ability to fly is one of the best defense mechanisms).
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
6
|
Shilovsky GA, Putyatina TS, Markov AV. Evolution of Longevity as a Species-Specific Trait in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1579-1599. [PMID: 36717448 DOI: 10.1134/s0006297922120148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
From the evolutionary point of view, the priority problem for an individual is not longevity, but adaptation to the environment associated with the need for survival, food supply, and reproduction. We see two main vectors in the evolution of mammals. One is a short lifespan and numerous offspring ensuring reproductive success (r-strategy). The other one is development of valuable skills in order compete successfully (K-strategy). Species with the K-strategy should develop and enhance specific systems (anti-aging programs) aimed at increasing the reliability and adaptability, including lifespan. These systems are signaling cascades that provide cell repair and antioxidant defense. Hence, any arbitrarily selected long-living species should be characterized by manifestation to a different extent of the longevity-favoring traits (e.g., body size, brain development, sociality, activity of body repair and antioxidant defense systems, resistance to xenobiotics and tumor formation, presence of neotenic traits). Hereafter, we will call a set of such traits as the gerontological success of a species. Longevity is not equivalent to the evolutionary or reproductive success. This difference between these phenomena reaches its peak in mammals due to the development of endothermy and cephalization associated with the cerebral cortex expansion, which leads to the upregulated production of oxidative radicals by the mitochondria (and, consequently, accelerated aging), increase in the number of non-dividing differentiated cells, accumulation of the age-related damage in these cells, and development of neurodegenerative diseases. The article presents mathematical indicators used to assess the predisposition to longevity in different species (including the standard mortality rate and basal metabolic rate, as well as their derivatives). The properties of the evolution of mammals (including the differences between modern mammals and their ancestral forms) are also discussed.
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
7
|
Premate E, Fišer Ž, Kuralt Ž, Pekolj A, Trajbarič T, Milavc E, Hanc Ž, Kostanjšek R. Behavioral observations of the olm (Proteus anguinus) in a karst spring via direct observations and camera trapping. SUBTERRANEAN BIOLOGY 2022. [DOI: 10.3897/subtbiol.44.87295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The olm (Proteus anguinus), an endemic amphibian of the Dinarides’ underground waters (Europe), is one of the world’s most widely known subterranean species. Although various aspects of olm biology have been extensively studied, the data on their behavior in the wild remain scarce mostly due to inaccessibility of their natural habitat. Yet, olms also occur in several karstic springs during nighttime. These are easier to access and present an exciting opportunity to study olm behavior in nature. Here, we report on systematic observations of olms in one such spring in Slovenia, where we observed them for nine consecutive summer nights, coupling direct on-site observations with IR camera trap recordings. We used IR camera trap recordings to construct simple ethograms, as well as to quantify olm movement activity by video-tracking. Olms regularly occurred on the surface during the night, and dawn appeared to be a key stimulus for their retreat underground. They were constantly active, but rarely swam far from the spring. Despite the short-term nature of the study, we collected new occurrence and movement data, and at the same time tested the usability of IR cameras for surveying olm presence and behavior in nature. Experience gained through the study may prompt long-term and more complex behavioral studies using similar approaches.
Collapse
|
8
|
Mammola S, Meierhofer MB, Borges PA, Colado R, Culver DC, Deharveng L, Delić T, Di Lorenzo T, Dražina T, Ferreira RL, Fiasca B, Fišer C, Galassi DMP, Garzoli L, Gerovasileiou V, Griebler C, Halse S, Howarth FG, Isaia M, Johnson JS, Komerički A, Martínez A, Milano F, Moldovan OT, Nanni V, Nicolosi G, Niemiller ML, Pallarés S, Pavlek M, Piano E, Pipan T, Sanchez‐Fernandez D, Santangeli A, Schmidt SI, Wynne JJ, Zagmajster M, Zakšek V, Cardoso P. Towards evidence-based conservation of subterranean ecosystems. Biol Rev Camb Philos Soc 2022; 97:1476-1510. [PMID: 35315207 PMCID: PMC9545027 DOI: 10.1111/brv.12851] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.
Collapse
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Melissa B. Meierhofer
- BatLab Finland, Finnish Museum of Natural History Luomus (LUOMUS)University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
| | - Paulo A.V. Borges
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| | - Raquel Colado
- Departament of Ecology and HidrologyUniversity of MurciaMurcia30100Spain
| | - David C. Culver
- Department of Environmental ScienceAmerican University4400 Massachusetts Avenue, N.WWashingtonDC20016U.S.A.
| | - Louis Deharveng
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS UMR 7205, MNHN, UPMC, EPHEMuseum National d'Histoire Naturelle, Sorbonne UniversitéParisFrance
| | - Teo Delić
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET‐CNR), National Research CouncilVia Madonna del Piano 10, 50019 Sesto FiorentinoFlorenceItaly
| | - Tvrtko Dražina
- Division of Zoology, Department of BiologyFaculty of Science, University of ZagrebRooseveltov Trg 6Zagreb10000Croatia
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Rodrigo L. Ferreira
- Center of Studies in Subterranean Biology, Biology Department, Federal University of LavrasCampus universitário s/n, Aquenta SolLavrasMG37200‐900Brazil
| | - Barbara Fiasca
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Cene Fišer
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Diana M. P. Galassi
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Laura Garzoli
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Vasilis Gerovasileiou
- Department of Environment, Faculty of EnvironmentIonian University, M. Minotou‐Giannopoulou strPanagoulaZakynthos29100Greece
- Hellenic Centre for Marine Research (HCMR), Institute of Marine BiologyBiotechnology and Aquaculture (IMBBC)Thalassocosmos, GournesCrete71500Greece
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, Division of LimnologyUniversity of ViennaDjerassiplatz 1Vienna1030Austria
| | - Stuart Halse
- Bennelongia Environmental Consultants5 Bishop StreetJolimontWA6014Australia
| | | | - Marco Isaia
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Joseph S. Johnson
- Department of Biological SciencesOhio University57 Oxbow TrailAthensOH45701U.S.A.
| | - Ana Komerički
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Alejandro Martínez
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Filippo Milano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Oana T. Moldovan
- Emil Racovita Institute of SpeleologyClinicilor 5Cluj‐Napoca400006Romania
- Romanian Institute of Science and TechnologySaturn 24‐26Cluj‐Napoca400504Romania
| | - Veronica Nanni
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Giuseppe Nicolosi
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Matthew L. Niemiller
- Department of Biological SciencesThe University of Alabama in Huntsville301 Sparkman Drive NWHuntsvilleAL35899U.S.A.
| | - Susana Pallarés
- Departamento de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales, CSICCalle de José Gutiérrez Abascal 2Madrid28006Spain
| | - Martina Pavlek
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
- Ruđer Bošković InstituteBijenička cesta 54Zagreb10000Croatia
| | - Elena Piano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Tanja Pipan
- ZRC SAZUKarst Research InstituteNovi trg 2Ljubljana1000Slovenia
- UNESCO Chair on Karst EducationUniversity of Nova GoricaGlavni trg 8Vipava5271Slovenia
| | | | - Andrea Santangeli
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiViikinkaari 1Helsinki00014Finland
| | - Susanne I. Schmidt
- Institute of Hydrobiology, Biology Centre CASNa Sádkách 702/7České Budějovice370 05Czech Republic
- Department of Lake ResearchHelmholtz Centre for Environmental ResearchBrückstraße 3aMagdeburg39114Germany
| | - J. Judson Wynne
- Department of Biological SciencesCenter for Adaptable Western Landscapes, Box 5640, Northern Arizona UniversityFlagstaffAZ86011U.S.A.
| | - Maja Zagmajster
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Valerija Zakšek
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| |
Collapse
|
9
|
Zalar P, Gubenšek A, Gostincar C, Kostanjšek R, Bizjak-Mali L, Gunde-Cimerman N. Cultivable Skin Mycobiota of Healthy and Diseased Blind Cave Salamander (Proteus anguinus). Front Microbiol 2022; 13:926558. [PMID: 35910647 PMCID: PMC9329069 DOI: 10.3389/fmicb.2022.926558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Proteus anguinus is a neotenic cave salamander, endemic to the Dinaric Karst and a symbol of world natural heritage. It is classified as “vulnerable” by the International Union for Conservation of Nature (IUCN) and is one of the EU priority species in need of strict protection. Due to inaccessibility of their natural underground habitat, scientific studies of the olm have been conducted mainly in captivity, where the amphibians are particularly susceptible to opportunistic microbial infections. In this report, we focused on the diversity of cultivable commensal fungi isolated from the skin of asymptomatic and symptomatic animals obtained from nature (20 specimens) and captivity (22 specimens), as well as from underground water of two karstic caves by direct water filtration and by exposure of keratin-based microbial baits and subsequent isolation from them. In total 244 fungal isolates were recovered from the animals and additional 153 isolates were obtained from water samples. Together, these isolates represented 87 genera and 166 species. Symptomatic animals were colonized by a variety of fungal species, most of them represented by a single isolate, including genera known for their involvement in chromomycosis, phaeohyphomycosis and zygomycosis in amphibians: Acremonium, Aspergillus, Cladosporium, Exophiala, Fusarium, Mucor, Ochroconis, Phialophora and Penicillium. One symptomatic specimen sampled from nature was infected by the oomycete Saprolegnia parasitica, the known causative agent of saprolegniosis. This is the first comprehensive report on cultivable skin mycobiome of this unique amphibian in nature and in captivity, with an emphasis on potentially pathogenic fungi and oomycetes.
Collapse
Affiliation(s)
- Polona Zalar
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Gubenšek
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Cene Gostincar
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Kostanjšek
- Chair of Zoology, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Lilijana Bizjak-Mali
- Chair of Zoology, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Chair of Molecular Genetics and Biology of Microorganisms, Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Nina Gunde-Cimerman,
| |
Collapse
|
10
|
Tesařová M, Mancini L, Mauri E, Aljančič G, Năpăruş-Aljančič M, Kostanjšek R, Bizjak Mali L, Zikmund T, Kaucká M, Papi F, Goyens J, Bouchnita A, Hellander A, Adameyko I, Kaiser J. Living in darkness: Exploring adaptation of Proteus anguinus in 3 dimensions by X-ray imaging. Gigascience 2022; 11:giac030. [PMID: 35380661 PMCID: PMC8982192 DOI: 10.1093/gigascience/giac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/06/2022] [Accepted: 02/27/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Lightless caves can harbour a wide range of living organisms. Cave animals have evolved a set of morphological, physiological, and behavioural adaptations known as troglomorphisms, enabling their survival in the perpetual darkness, narrow temperature and humidity ranges, and nutrient scarcity of the subterranean environment. In this study, we focused on adaptations of skull shape and sensory systems in the blind cave salamander, Proteus anguinus, also known as olm or simply proteus-the largest cave tetrapod and the only European amphibian living exclusively in subterranean environments. This extraordinary amphibian compensates for the loss of sight by enhanced non-visual sensory systems including mechanoreceptors, electroreceptors, and chemoreceptors. We compared developmental stages of P. anguinus with Ambystoma mexicanum, also known as axolotl, to make an exemplary comparison between cave- and surface-dwelling paedomorphic salamanders. FINDINGS We used contrast-enhanced X-ray computed microtomography for the 3D segmentation of the soft tissues in the head of P. anguinus and A. mexicanum. Sensory organs were visualized to elucidate how the animal is adapted to living in complete darkness. X-ray microCT datasets were provided along with 3D models for larval, juvenile, and adult specimens, showing the cartilage of the chondrocranium and the position, shape, and size of the brain, eyes, and olfactory epithelium. CONCLUSIONS P. anguinus still keeps some of its secrets. Our high-resolution X-ray microCT scans together with 3D models of the anatomical structures in the head may help to elucidate the nature and origin of the mechanisms behind its adaptations to the subterranean environment, which led to a series of troglomorphisms.
Collapse
Affiliation(s)
- Markéta Tesařová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| | - Lucia Mancini
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 - km 163,5 in Area Science Park, Basovizza, Trieste, 34149, Italy
| | - Edgardo Mauri
- Speleovivarium Erwin Pichl, Adriatic Speleology Society, Via Guido Reni, 2/C, Trieste, 34123, Italy
| | - Gregor Aljančič
- Institute Tular Cave Laboratory, Oldhamska 8a, Kranj, 4000, Slovenia
| | - Magdalena Năpăruş-Aljančič
- Institute Tular Cave Laboratory, Oldhamska 8a, Kranj, 4000, Slovenia
- Research Centre of the Slovenian Academy of Sciences and Arts: Karst Research Institute, Titov trg 2, Postojna, 6230, Slovenia
| | - Rok Kostanjšek
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, Ljubljana, 1000, Slovenia
| | - Lilijana Bizjak Mali
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, Ljubljana, 1000, Slovenia
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| | - Markéta Kaucká
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plon, 24306, Germany
| | - Federica Papi
- Speleovivarium Erwin Pichl, Adriatic Speleology Society, Via Guido Reni, 2/C, Trieste, 34123, Italy
| | - Jana Goyens
- Laboratory of Functional Morphology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Anass Bouchnita
- Department of Information Technology, Uppsala University, Box 337, Uppsala, 755 01, Sweden
- Department of Integrative Biology, University of Texas at Austin, Austin, 78712, Texas, USA
| | - Andreas Hellander
- Department of Information Technology, Uppsala University, Box 337, Uppsala, 755 01, Sweden
| | - Igor Adameyko
- Medical University of Vienna, Center for Brain Research, Department of Neuroimmunology, Spitalgasse 4, 1090 Vienna, Austria
- Karolinska Institutet, Department of Physiology and Pharmacology, Solnavagen 9, 17165 Solna, Sweden
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
| |
Collapse
|
11
|
Recknagel H, Trontelj P. From Cave Dragons to Genomics: Advancements in the Study of Subterranean Tetrapods. Bioscience 2022; 72:254-266. [PMID: 35241972 PMCID: PMC8888124 DOI: 10.1093/biosci/biab117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Throughout most of the kingdom Animalia, evolutionary transitions from surface life to a life permanently bound to caves and other subterranean habitats have occurred innumerous times. Not so in tetrapods, where a mere 14 cave-obligate species-all plethodontid and proteid salamanders-are known. We discuss why cave tetrapods are so exceptional and why only salamanders have made the transition. Their evolution follows predictable and convergent, albeit independent pathways. Among the many known changes associated with transitions to subterranean life, eye degeneration, starvation resistance, and longevity are especially relevant to human biomedical research. Recently, sequences of salamander genomes have become available opening up genomic research for cave tetrapods. We discuss new genomic methods that can spur our understanding of the evolutionary mechanisms behind convergent phenotypic change, the relative roles of selective and neutral evolution, cryptic species diversity, and data relevant for conservation such as effective population size and demography.
Collapse
Affiliation(s)
- Hans Recknagel
- University of Ljubljana, Slovenia, working, Biotechnical Faculty, Dept. of Biology, Subterranean Biology Lab
| | - Peter Trontelj
- University of Ljubljana, Slovenia, working, Biotechnical Faculty, Dept. of Biology, Subterranean Biology Lab
| |
Collapse
|