1
|
Lozac'hmeur A, Danek T, Yang Q, Rosasco MG, Welch JS, Go WY, Ng EW, Mardiros A, Maloney DG, Garon EB, Kirtane K, Simeone DM, Molina JR, Salahudeen AA, Stein MM, Hecht JR. Detecting HLA loss of heterozygosity within a standard diagnostic sequencing workflow for prognostic and therapeutic opportunities. NPJ Precis Oncol 2024; 8:174. [PMID: 39103508 DOI: 10.1038/s41698-024-00665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
To enable interrogation of tumor HLA LOH as a clinical diagnostic for precision oncology, we developed and validated an assay that detects HLA LOH within the context of an FDA-approved clinical diagnostic test, Tempus xT CDx. Validation was conducted via: (1) analytical evaluation of 17 archival patient samples and 42 cell line admixtures and (2) independent clinical evaluation of LOH prevalence in the HLA-A gene (HLA-A LOH) across 10,982 patients. To evaluate the prognostic relevance of HLA-A LOH we assessed 256 immunotherapy-treated non-small cell lung cancer (NSCLC) patients. To determine the feasibility of prospectively identifying and enrolling HLA-A LOH patients into a clinical trial, we established BASECAMP-1 (NCT04981119). We observed a positive predictive agreement of 97% and a negative predictive agreement of 100% in samples with ≥ 40% tumor purity. We observed HLA-A LOH in 16.1% of patients (1771/10,982), comparable to previous reports. HLA-A LOH was associated with longer survival among NSCLC adenocarcinoma patients (HR = 0.60, 95% CI [0.37, 0.96], p = 0.032) with a trend towards shorter survival among squamous cell patients (HR = 1.64, 95% CI [0.80, 3.41], p = 0.183). In 20 months, we prospectively screened 1720 subjects using the Tempus AWARE program, identifying 26 HLA-A*02 LOH patients at 8 sites, with 14 (54%) enrolled into BASECAMP-1. In conclusion, we developed and validated an investigational assay that detects tumor HLA LOH within an FDA-approved clinical diagnostic test, enabling HLA LOH utilization in diagnostic, prognostic, and therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eric W Ng
- A2 Biotherapeutics, Agoura Hills, CA, USA
| | | | | | - Edward B Garon
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Diane M Simeone
- Moores Cancer Center, UC San Diego Health, San Diego, CA, USA
| | | | - Ameen A Salahudeen
- University of Illinois at Chicago College of Medicine, Departments of Medicine, Biochemistry & Molecular Genetics, Chicago, IL, USA
| | | | - J Randolph Hecht
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Arboleda-García A, Alarcon-Ruiz I, Boada-Acosta L, Boada Y, Vignoni A, Jantus-Lewintre E. Advancements in synthetic biology-based bacterial cancer therapy: A modular design approach. Crit Rev Oncol Hematol 2023; 190:104088. [PMID: 37541537 DOI: 10.1016/j.critrevonc.2023.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Synthetic biology aims to program living bacteria cells with artificial genetic circuits for user-defined functions, transforming them into powerful tools with numerous applications in various fields, including oncology. Cancer treatments have serious side effects on patients due to the systemic action of the drugs involved. To address this, new systems that provide localized antitumoral action while minimizing damage to healthy tissues are required. Bacteria, often considered pathogenic agents, have been used as cancer treatments since the early 20th century. Advances in genetic engineering, synthetic biology, microbiology, and oncology have improved bacterial therapies, making them safer and more effective. Here we propose six modules for a successful synthetic biology-based bacterial cancer therapy, the modules include Payload, Release, Tumor-targeting, Biocontainment, Memory, and Genetic Circuit Stability Module. These will ensure antitumor activity, safety for the environment and patient, prevent bacterial colonization, maintain cell stability, and prevent loss or defunctionalization of the genetic circuit.
Collapse
Affiliation(s)
- Andrés Arboleda-García
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Ivan Alarcon-Ruiz
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lissette Boada-Acosta
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Yadira Boada
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Alejandro Vignoni
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain.
| | - Eloisa Jantus-Lewintre
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
3
|
DiAndreth B, Hamburger AE, Xu H, Kamb A. The Tmod cellular logic gate as a solution for tumor-selective immunotherapy. Clin Immunol 2022; 241:109030. [PMID: 35561999 DOI: 10.1016/j.clim.2022.109030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
Abstract
Immune cells that are engineered with receptors to integrate signals from multiple antigens offer a promising route to achieve the elusive property of therapeutic selectivity in cancer patients. Several types of multi-signal integrators have been described, among them mechanisms that pair activating and inhibitory receptors which are termed NOT gates by analogy to logical operations performed by machines. Here we review one such NOT-gated signal integrator called the Tmod system which is being developed for patients with solid tumors. Coupled with rigorous selection for patients with defined lesions in their tumor genomes (loss of heterozygosity), the Tmod approach presents an unusual opportunity to create truly selective therapies for certain cancer patients. Several of these agents are advancing toward the clinic, supported by a large body of quantitative preclinical data.
Collapse
Affiliation(s)
| | | | - Han Xu
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA 91301, USA
| | - Alexander Kamb
- A2 Biotherapeutics, 30301 Agoura Rd., Agoura Hills, CA 91301, USA.
| |
Collapse
|