1
|
Dhummakupt ES, Jenkins CC, Rizzo GM, Clay AE, Horsmon JR, Goralski TDP, Renner JA, Angelini DJ. Multiomic analysis of Lewisite exposed human dermal equivalent tissues. Chem Biol Interact 2025; 405:111295. [PMID: 39486569 DOI: 10.1016/j.cbi.2024.111295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Lewisite (Military Code: L) is an arsenical vesicant chemical warfare agent (CWA) that was developed in the United States during World War I. Even though its use has not been documented in warfare, large stockpiles were created and still exist in various locations around the world. Given that large quantities exist as well as the relative straightforward process for its creation, Lewisite still presents itself as a serious threat agent. In this study, we examined the effects of Lewisite on human dermal equivalent tissues (EpiDerm™/EpiDerm™-FT) through the evaluation of cellular viability, histology, and multiomic analysis.
Collapse
Affiliation(s)
- Elizabeth S Dhummakupt
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.
| | - Conor C Jenkins
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Gabrielle M Rizzo
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Allison E Clay
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Jennifer R Horsmon
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Tyler D P Goralski
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Julie A Renner
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Daniel J Angelini
- U.S. Army, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.
| |
Collapse
|
2
|
Thyagarajan A, Travers JB, Sahu RP. Relevance of the Platelet-activating factor system in chemical warfare agents-induced effects. Free Radic Biol Med 2024; 228:62-67. [PMID: 39706499 DOI: 10.1016/j.freeradbiomed.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The threats to chemical warfare-associated agents (CWA), including nitrogen mustard, are increasing, and no direct antidote is currently available to mitigate the deleterious cutaneous and systemic responses to prevent mortality. Though most of these agents act as alkylating agents, a significant knowledge gap exists in the molecular mechanisms of how these vesicants cause toxic effects. Studies, including ours, have shown that exposure to reactive oxygen species (ROS)-generating stimuli, including alkylating chemotherapeutic agents, and thermal burn injuries with ethanol produce the potent family of lipid mediators, Platelet-activating factor (PAF) agonists that induce local inflammation, and multi-system organ dysfunction (MOD). Notably, nano-sized microvesicle particles (MVPs), released from cells in response to stimuli, carry PAF-agonists and act as potent signaling agents to induce the local (cutaneous) and systemic responses. The current review highlights mechanistic insights and applicable approaches to mitigate CWA-induced local and systemic toxic responses with implications in cellular senescence and aging.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA; Department of Dermatology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA; Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, 45428, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
3
|
Guo J, Chen Z, Huang R, Tang D, Wang Y, Song P, Mei L, Hou S, Peng W, He L, Ren Q. Development and optimization of the Glabridin-loaded dissolving microneedle for enhanced treatment of keloid. Int J Pharm X 2024; 8:100267. [PMID: 39055743 PMCID: PMC11269287 DOI: 10.1016/j.ijpx.2024.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Glabridin (Gla) has been reported to have significant effects in scar treatment, and however, the water insolubility of Gla leads to its poor transdermal absorption ability, which affects its bioactivities. Therefore, we attempted to prepare the Gla dissolving microneedles (Gla-MN) to improve the absorbtion of Gla. After investigation of the 3 factors including the needle tip matrix concentration, the prescription concentration of backing material, and the dissolution method of Gla, we finally determined the process parameters of 10% hyaluronic acid (HA) as the needle tip and 5% polyvinyl alcohol (PVA) as the backing, according to which the Gla-MN was prepared with the good characteristics of high hardness, complete appearance and good in vitro dissolution ability. We then loaded Gla onto the microneedles and measured that the average drug loading of Gla-MN was 2.26 ± 0.11 μg/mg and the cumulative transdermal release of Gla-MN was up to 76.9% after 24 h. In addition, Gla-MN had good skin penetration properties, with Gla-MN penetrating at least 4 to 5 layers of parafilm. And the skin basically could return to normal after 4 h of piercing. Importantly, our results showed that Gla-MN had higher transdermal delivery and therapeutic effects against keloid than that of Gla at the same dosage.
Collapse
Affiliation(s)
- Juan Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhongtang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Rong Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dandan Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yuhuan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Pan Song
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610041, PR China
| | - Liangyu Mei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shuguang Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Lisha He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Qiang Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| |
Collapse
|
4
|
Radmard A, Kumar Srivastava R, Shrestha N, Khan J, Muzaffar S, Athar M, Banga AK. Enhancing topical delivery of ISRIB: Optimizing cream formulations with chemical enhancers and pH adjustment. Int J Pharm 2024; 665:124661. [PMID: 39244069 PMCID: PMC11601214 DOI: 10.1016/j.ijpharm.2024.124661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Chemical warfare agents, particularly vesicants like lewisite, pose a threat due to their ability to cause skin damage through accidental exposure or deliberate attacks. Lewisite rapidly penetrates the skin, causing inflammation and blistering. This study focuses on developing a cream formulation of a therapeutic agent, called integrated stress response inhibitor (ISRIB), to treat lewisite-induced injuries. Moreover, animal studies demonstrate a molecular target engagement (ISR) and significant efficacy of ISRIB against lewisite-induced cutaneous injury. The goal of this formulation is to enhance the delivery of ISRIB directly to affected skin areas using an oil-in-water cream emulsion system. We investigated various excipients, including oils, surfactants, emollients, and permeation enhancers, to optimize ISRIB's solubility and penetration through the skin. The result of this study indicated that the optimal formulation includes 30 % w/w of N-Methyl-2-pyrrolidone, dimethyl sulfoxide and Azone® at a pH of 5. 5. It delivered the highest amount of ISRIB into the skin, demonstrating highest skin absorption with no detectable systemic exposure. Additionally, characterization of the cream, including texture analysis, emulsion type, and content uniformity, confirmed its' suitability for topical application. These findings suggest that ISRIB cream formulation is a promising approach for the localized treatment of skin injuries caused by lewisite.
Collapse
Affiliation(s)
- Ariana Radmard
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Ritesh Kumar Srivastava
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nisha Shrestha
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ajay K Banga
- Center for Drug Delivery Research, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| |
Collapse
|
5
|
Goswami DG, Singh SK, Okoyeocha EOM, Roney AK, Madadgar O, Tuttle R, Sosna W, Anantharam P, Croutch CR, Agarwal R, Tewari-Singh N. Dermal Exposure to Vesicating Nettle Agent Phosgene Oxime: Clinically Relevant Biomarkers and Skin Injury Progression in Murine Models. J Pharmacol Exp Ther 2024; 388:536-545. [PMID: 37652710 PMCID: PMC10801780 DOI: 10.1124/jpet.123.001718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Phosgene oxime (CX), categorized as a vesicating chemical threat agent, causes effects that resemble an urticant or nettle agent. CX is an emerging potential threat agent that can be deployed alone or with other chemical threat agents to enhance their toxic effects. Studies on CX-induced skin toxicity, injury progression, and related biomarkers are largely unknown. To study the physiologic changes, skin clinical lesions and their progression, skin exposure of SKH-1 and C57BL/6 mice was carried out with vapor from 10 μl CX for 0.5-minute or 1.0-minute durations using a designed exposure system for consistent CX vapor exposure. One-minute exposure caused sharp (SKH-1) or sustained (C57BL/6) decrease in respiratory and heart rate, leading to mortality in both mouse strains. Both exposures caused immediate blanching, erythema with erythematous ring (wheel) and edema, and an increase in skin bifold thickness. Necrosis was also observed in the 0.5-minute CX exposure group. Both mouse strains showed comparative skin clinical lesions upon CX exposure; however, skin bifold thickness and erythema remained elevated up to 14 days postexposure in SKH-1 mice but not in C57BL/6 mice. Our data suggest that CX causes immediate changes in the physiologic parameters and gross skin lesions resembling urticaria, which could involve mast cell activation and intense systemic toxicity. This novel study recorded and compared the progression of skin injury to establish clinical biomarkers of CX dermal exposure in both the sexes of two murine strains relevant for skin and systemic injury studies and therapeutic target identification. SIGNIFICANCE STATEMENT: Phosgene oxime (CX), categorized as a vesicating agent, is considered as a potent chemical weapon and is of high military and terrorist threat interest since it produces rapid onset of severe injury as an urticant. However, biomarkers of clinical relevance related to its toxicity and injury progression are not studied. Data from this study provide useful clinical markers of CX skin toxicity in mouse models using a reliable CX exposure system for future mechanistic and efficacy studies.
Collapse
Affiliation(s)
- Dinesh G Goswami
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine (D.G.G., E.O.M.O., A.K.R., O.M., N.T.-S.) and Department of Biomedical Engineering (S.K.S.), Michigan State University, East Lansing, Michigan; MRIGlobal, Kansas City, Missouri (R.T., W.S., P.A., C.R.C.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (R.A.)
| | - Satyendra K Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine (D.G.G., E.O.M.O., A.K.R., O.M., N.T.-S.) and Department of Biomedical Engineering (S.K.S.), Michigan State University, East Lansing, Michigan; MRIGlobal, Kansas City, Missouri (R.T., W.S., P.A., C.R.C.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (R.A.)
| | - Ebenezar O M Okoyeocha
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine (D.G.G., E.O.M.O., A.K.R., O.M., N.T.-S.) and Department of Biomedical Engineering (S.K.S.), Michigan State University, East Lansing, Michigan; MRIGlobal, Kansas City, Missouri (R.T., W.S., P.A., C.R.C.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (R.A.)
| | - Andrew K Roney
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine (D.G.G., E.O.M.O., A.K.R., O.M., N.T.-S.) and Department of Biomedical Engineering (S.K.S.), Michigan State University, East Lansing, Michigan; MRIGlobal, Kansas City, Missouri (R.T., W.S., P.A., C.R.C.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (R.A.)
| | - Omid Madadgar
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine (D.G.G., E.O.M.O., A.K.R., O.M., N.T.-S.) and Department of Biomedical Engineering (S.K.S.), Michigan State University, East Lansing, Michigan; MRIGlobal, Kansas City, Missouri (R.T., W.S., P.A., C.R.C.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (R.A.)
| | - Rick Tuttle
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine (D.G.G., E.O.M.O., A.K.R., O.M., N.T.-S.) and Department of Biomedical Engineering (S.K.S.), Michigan State University, East Lansing, Michigan; MRIGlobal, Kansas City, Missouri (R.T., W.S., P.A., C.R.C.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (R.A.)
| | - William Sosna
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine (D.G.G., E.O.M.O., A.K.R., O.M., N.T.-S.) and Department of Biomedical Engineering (S.K.S.), Michigan State University, East Lansing, Michigan; MRIGlobal, Kansas City, Missouri (R.T., W.S., P.A., C.R.C.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (R.A.)
| | - Poojya Anantharam
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine (D.G.G., E.O.M.O., A.K.R., O.M., N.T.-S.) and Department of Biomedical Engineering (S.K.S.), Michigan State University, East Lansing, Michigan; MRIGlobal, Kansas City, Missouri (R.T., W.S., P.A., C.R.C.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (R.A.)
| | - Claire R Croutch
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine (D.G.G., E.O.M.O., A.K.R., O.M., N.T.-S.) and Department of Biomedical Engineering (S.K.S.), Michigan State University, East Lansing, Michigan; MRIGlobal, Kansas City, Missouri (R.T., W.S., P.A., C.R.C.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (R.A.)
| | - Rajesh Agarwal
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine (D.G.G., E.O.M.O., A.K.R., O.M., N.T.-S.) and Department of Biomedical Engineering (S.K.S.), Michigan State University, East Lansing, Michigan; MRIGlobal, Kansas City, Missouri (R.T., W.S., P.A., C.R.C.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (R.A.)
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine (D.G.G., E.O.M.O., A.K.R., O.M., N.T.-S.) and Department of Biomedical Engineering (S.K.S.), Michigan State University, East Lansing, Michigan; MRIGlobal, Kansas City, Missouri (R.T., W.S., P.A., C.R.C.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (R.A.)
| |
Collapse
|
6
|
Srivastava RK, Muzaffar S, Khan J, Crossman DK, Agarwal A, Athar M. HSP90, a Common Therapeutic Target for Suppressing Skin Injury Caused by Exposure to Chemically Diverse Classes of Blistering Agents. J Pharmacol Exp Ther 2024; 388:546-559. [PMID: 37914412 PMCID: PMC10801768 DOI: 10.1124/jpet.123.001795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Vesicants such as arsenicals and mustards produce highly painful cutaneous inflammatory and blistering responses, hence developed as chemical weapons during World War I/II. Here, using lewisite and sulfur mustard surrogates, namely phenylarsine oxide (PAO) and 2-chloroethyl ethyl sulfide (CEES), respectively, we defined a common underlying mechanism of toxic action by these two distinct classes of vesicants. Murine skin exposure to these chemicals causes tissue destruction characterized by increase in skin bifold thickness, Draize score, infiltration of inflammatory cells, and apoptosis of epidermal and dermal cells. RNA sequencing analysis identified ∼346 inflammatory genes that were commonly altered by both PAO and CEES, along with the identification of cytokine signaling activation as the top canonical pathway. Activation of several proinflammatory genes and pathways is associated with phosphorylation-dependent activation of heat shock protein 90α (p-HSP90α). Topical treatment with known HSP90 inhibitors SNX-5422 and IPI-504 post PAO or CEES skin challenge significantly attenuated skin damage including reduction in overall skin injury and clinical scores. In addition, highly upregulated inflammatory genes Saa3, Cxcl1, Ccl7, IL-6, Nlrp3, Csf3, Chil3, etc. by both PAO and CEES were significantly diminished by treatment with HSP90 inhibitors. These drugs not only reduced PAO- or CEES-induced p-HSP90α expression but also its client proteins NLRP3 and pP38 and the expression of their target inflammatory genes. Our data confirm a critical role of HSP90 as a shared underlying molecular target of toxicity by these two distinct vesicants and provide an effective and novel medical countermeasure to suppress vesicant-induced skin injury. SIGNIFICANCE STATEMENT: Development of effective and novel mechanism-based antidotes that can simultaneously block cutaneous toxic manifestations of distinct vesicants is important and urgently needed. Due to difficulties in determining the exact nature of onsite chemical exposure, a potent drug that can suppress widespread cutaneous damage may find great utility. Thus, this study identified HSP90 as a common molecular regulator of cutaneous inflammation and injury by two distinct warfare vesicants, arsenicals and mustards, and HSP90 inhibitors afford significant protection against skin damage.
Collapse
Affiliation(s)
- Ritesh Kumar Srivastava
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - David K Crossman
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Departments of Dermatology (R.K.S., S.M., J.K., M.A.) and Genetics (D.K.C.) and Division of Nephrology, Department of Medicine (A.A.), University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
7
|
Desmond LW, Holbrook EM, Wright CTO, Zambrano CA, Stamper CE, Bohr AD, Frank MG, Podell BK, Moreno JA, MacDonald AS, Reber SO, Hernández-Pando R, Lowry CA. Effects of Mycobacterium vaccae NCTC 11659 and Lipopolysaccharide Challenge on Polarization of Murine BV-2 Microglial Cells. Int J Mol Sci 2023; 25:474. [PMID: 38203645 PMCID: PMC10779110 DOI: 10.3390/ijms25010474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Previous studies have shown that the in vivo administration of soil-derived bacteria with anti-inflammatory and immunoregulatory properties, such as Mycobacterium vaccae NCTC 11659, can prevent a stress-induced shift toward an inflammatory M1 microglial immunophenotype and microglial priming in the central nervous system (CNS). It remains unclear whether M. vaccae NCTC 11659 can act directly on microglia to mediate these effects. This study was designed to determine the effects of M. vaccae NCTC 11659 on the polarization of naïve BV-2 cells, a murine microglial cell line, and BV-2 cells subsequently challenged with lipopolysaccharide (LPS). Briefly, murine BV-2 cells were exposed to 100 µg/mL whole-cell, heat-killed M. vaccae NCTC 11659 or sterile borate-buffered saline (BBS) vehicle, followed, 24 h later, by exposure to 0.250 µg/mL LPS (Escherichia coli 0111: B4; n = 3) in cell culture media vehicle (CMV) or a CMV control condition. Twenty-four hours after the LPS or CMV challenge, cells were harvested to isolate total RNA. An analysis using the NanoString platform revealed that, by itself, M. vaccae NCTC 11659 had an "adjuvant-like" effect, while exposure to LPS increased the expression of mRNAs encoding proinflammatory cytokines, chemokine ligands, the C3 component of complement, and components of inflammasome signaling such as Nlrp3. Among LPS-challenged cells, M. vaccae NCTC 11659 had limited effects on differential gene expression using a threshold of 1.5-fold change. A subset of genes was assessed using real-time reverse transcription polymerase chain reaction (real-time RT-PCR), including Arg1, Ccl2, Il1b, Il6, Nlrp3, and Tnf. Based on the analysis using real-time RT-PCR, M. vaccae NCTC 11659 by itself again induced "adjuvant-like" effects, increasing the expression of Il1b, Il6, and Tnf while decreasing the expression of Arg1. LPS by itself increased the expression of Ccl2, Il1b, Il6, Nlrp3, and Tnf while decreasing the expression of Arg1. Among LPS-challenged cells, M. vaccae NCTC 11659 enhanced LPS-induced increases in the expression of Nlrp3 and Tnf, consistent with microglial priming. In contrast, among LPS-challenged cells, although M. vaccae NCTC 11659 did not fully prevent the effects of LPS relative to vehicle-treated control conditions, it increased Arg1 mRNA expression, suggesting that M. vaccae NCTC 11659 induces an atypical microglial phenotype. Thus, M. vaccae NCTC 11659 acutely (within 48 h) induced immune-activating and microglial-priming effects when applied directly to murine BV-2 microglial cells, in contrast to its long-term anti-inflammatory and immunoregulatory effects observed on the CNS when whole-cell, heat-killed preparations of M. vaccae NCTC 11659 were given peripherally in vivo.
Collapse
Affiliation(s)
- Luke W. Desmond
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Evan M. Holbrook
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Caelan T. O. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Cristian A. Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Christopher E. Stamper
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Adam D. Bohr
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Matthew G. Frank
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Brendan K. Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Julie A. Moreno
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Center for Healthy Aging, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK;
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|