1
|
Chen D, Yao Z, Liu J, Wu H, Hu X. Social conformity updates the neural representation of facial attractiveness. Commun Biol 2024; 7:1369. [PMID: 39438704 PMCID: PMC11496808 DOI: 10.1038/s42003-024-06791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
People readily change their behavior to comply with others. However, to which extent they will internalize the social influence remains elusive. In this preregistered electroencephalogram (EEG) study, we investigated how learning from one's in-group or out-group members about facial attractiveness would change explicit attractiveness ratings and spontaneous neural representations of facial attractiveness. Specifically, we quantified the neural representational similarities of learned faces with prototypical attractive faces during a face perception task without overt social influence and intentional evaluation. We found that participants changed their explicit attractiveness ratings to both in-group and out-group influences. Moreover, social conformity updated spontaneous neural representation of facial attractiveness, an effect particularly evident when participants learned from their in-group members and among those who perceived tighter social norms. These findings offer insights into how group affiliations and individual differences in perceived social norms modulate the internalization of social influence.
Collapse
Affiliation(s)
- Danni Chen
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Ziqing Yao
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Liu
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau SAR, China
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China.
| |
Collapse
|
2
|
Wen W, Grover S, Hazel D, Berning P, Baumgardt F, Viswanathan V, Tween O, Reinhart RMG. Beta-band neural variability reveals age-related dissociations in human working memory maintenance and deletion. PLoS Biol 2024; 22:e3002784. [PMID: 39259713 PMCID: PMC11389900 DOI: 10.1371/journal.pbio.3002784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Maintaining and removing information in mind are 2 fundamental cognitive processes that decline sharply with age. Using a combination of beta-band neural oscillations, which have been implicated in the regulation of working memory contents, and cross-trial neural variability, an undervalued property of brain dynamics theorized to govern adaptive cognitive processes, we demonstrate an age-related dissociation between distinct working memory functions-information maintenance and post-response deletion. Load-dependent decreases in beta variability during maintenance predicted memory performance of younger, but not older adults. Surprisingly, the post-response phase emerged as the predictive locus of working memory performance for older adults, with post-response beta variability correlated with memory performance of older, but not younger adults. Single-trial analysis identified post-response beta power elevation as a frequency-specific signature indexing memory deletion. Our findings demonstrate the nuanced interplay between age, beta dynamics, and working memory, offering valuable insights into the neural mechanisms of cognitive decline in agreement with the inhibition deficit theory of aging.
Collapse
Affiliation(s)
- Wen Wen
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Shrey Grover
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Douglas Hazel
- Tufts University, Department of Biology, Medford, Massachusetts, United States of America
| | - Peyton Berning
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Frederik Baumgardt
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Vighnesh Viswanathan
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Olivia Tween
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Robert M G Reinhart
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Cognitive Neuroimaging Center, Boston University, Boston, Massachusetts, United States of America
- Center for Research in Sensory Communication and Emerging Neural Technology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Mao R, Long C. Adaptive adjustment after conflict with group opinion: evidence from neural electrophysiology. Cereb Cortex 2024; 34:bhad484. [PMID: 38102971 DOI: 10.1093/cercor/bhad484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Individuals inherently seek social consensus when making decisions or judgments. Previous studies have consistently indicated that dissenting group opinions are perceived as social conflict that demands attitude adjustment. However, the neurocognitive processes of attitude adjustment are unclear. In this electrophysiological study, participants were recruited to perform a face attractiveness judgment task. After forming their own judgment of a face, participants were informed of a purported group judgment (either consistent or inconsistent with their judgment), and then, critically, the same face was presented again. The neural responses to the second presented faces were measured. The second presented faces evoked a larger late positive potential after conflict with group opinions than those that did not conflict, suggesting that more motivated attention was allocated to stimulus. Moreover, faces elicited greater midfrontal theta (4-7 Hz) power after conflict with group opinions than after consistency with group opinions, suggesting that cognitive control was initiated to support attitude adjustment. Furthermore, the mixed-effects model revealed that single-trial theta power predicted behavioral change in the Conflict condition, but not in the No-Conflict condition. These findings provide novel insights into the neurocognitive processes underlying attitude adjustment, which is crucial to behavioral change during conformity.
Collapse
Affiliation(s)
- Rui Mao
- Key Laboratory of Cognition and Personality of the Ministry of Education, Southwest University, Chongqing 400715, China
| | - Changquan Long
- Key Laboratory of Cognition and Personality of the Ministry of Education, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Zhang H, Chen K, Bao J, Wu H. Oxytocin enhances the triangular association among behavior, resting-state, and task-state functional connectivity. Hum Brain Mapp 2023; 44:6074-6089. [PMID: 37771300 PMCID: PMC10619367 DOI: 10.1002/hbm.26498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Considerable advances in the role of oxytocin (OT) effect on behavior and the brain network have been made, but the effect of OT on the association between inter-individual differences in functional connectivity (FC) and behavior is elusive. Here, by using a face-perception task and multiple connectome-based predictive models, we aimed to (1) determine whether OT could enhance the association among behavioral performance, resting-state FC (rsFC), and task-state FC (tsFC) and (2) if so, explore the role of OT in enhancing this triangular association. We found that in the OT group, the prediction performance of using rsFC or tsFC to predict task behavior was higher than that of the PL group. Additionally, the correlation coefficient between rsFC and tsFC was substantially higher in the OT group than in the PL group. The strength of these associations could be partly explained by OT altering the brain's FCs related to social cognition and face perception in both the resting and task states, mainly in brain regions such as the limbic system, prefrontal cortex, temporal poles, and temporoparietal junction. Taken together, these results provide novel evidence and a corresponding mechanism for how neuropeptides cause increased associations among inter-individual differences across different levels (e.g., behavior and large-scale brain networks in both resting and task-state), and may inspire future research on the role of neuropeptides in the cross levels association of both clinical and nonclinical use.
Collapse
Affiliation(s)
- Haoming Zhang
- Centre for Cognitive and Brain Sciences and Department of PsychologyUniversity of MacauMacauChina
| | - Kun Chen
- Centre for Cognitive and Brain Sciences and Department of PsychologyUniversity of MacauMacauChina
| | - Jin Bao
- Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences (CAS)ShenzhenChina
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenChina
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of PsychologyUniversity of MacauMacauChina
| |
Collapse
|