1
|
Feng Y, Wang H, Xu S, Huang J, Pei Q, Wang Z. The detection of Gper1 as an important gene promoting jawbone regeneration in the context of estrogen deficiency. Bone 2024; 180:116990. [PMID: 38141748 DOI: 10.1016/j.bone.2023.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Numerous studies have demonstrated that estrogen deficiency inhibit the proliferation and differentiation of pre-osteoblasts in skeleton by affecting osteogenic signaling, lead to decreased bone mass and impaired regeneration. To explore the mechanisms maintaining bone regeneration under estrogen deficiency, we randomly selected 1102 clinical cases, in which female patients aged between 18 and 75 have underwent tooth extraction in Stomatological Hospital of Tongji University, there is little difference in the healing effect of extraction defects, suggesting that to some extent, the regeneration of jawbone is insensitive to the decreased estrogen level. To illuminate the mechanisms promoting jawbone regeneration under estrogen deficiency, a tooth extraction defect model was established in the maxilla of female rats who underwent ovariectomy (OVX) or sham surgery, and jawbone marrow stromal cells (BMSCs) were isolated for single-cell sequencing. Further quantitative PCR, RNA interference, alizarin red staining, immunohistochemistry and western blotting experiments demonstrated that in the context of ovariectomy, maxillary defects promoted G protein-coupled estrogen receptor 1 (Gper1) expression, stimulate downstream cAMP/PKA/pCREB signaling, and facilitate cell proliferation, and thus provided sufficient progenitors for osteogenesis and enhanced the regeneration capacity of the jawbone. Correspondingly, the heterozygous deletion of the Gper1 gene attenuated the phosphorylation of CREB, led to decreased cell proliferation, and impaired the restoration of maxillary defects. This study demonstrates the importance of Gper1 in maintaining jawbone regeneration, especially in the context of estrogen deficiency.
Collapse
Affiliation(s)
- Yuan Feng
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Haicheng Wang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Shuyu Xu
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Jie Huang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Qingguo Pei
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Zuolin Wang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China.
| |
Collapse
|
2
|
Wang H, Wang R, Yang J, Feng Y, Xu S, Pei QG. Interactions of Fibroblast Subtypes Influence Osteoclastogenesis and Alveolar Bone Destruction in Periodontitis. J Inflamm Res 2023; 16:3143-3156. [PMID: 37520667 PMCID: PMC10386858 DOI: 10.2147/jir.s418099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Background To analyze the fibroblasts subtypes in the gingival tissues of healthy controls, gingivitis and periodontitis patients, as well as the effects of interaction between subtypes on alveolar bone destruction. Methods Gingival tissues were divided into three groups according to clinical and radiographic examination, and the immunostaining of EDA+FN was assessed. Fibroblasts from gingiva developed colony formation units (CFUs) and induced Trap+MNCs. The expression of osteoclastogenesis-related genes was assessed by real-time PCR. Variances in the gene profiles of CFUs were identified by principal component analysis, and cluster analysis divided CFUs into subtypes. The induction of Trap+MNCs and gene expression were compared among individual or cocultured subtypes. The fibroblast subtypes exerted critical effect on Trap+MNCs formation were selected and edited by CRISPR/Cas to investigate the influence on osteoclastogenesis in the periodontitis in mice. Results Most periodontitis samples exhibited intensive EDA+FN staining (P < 0.05), and these fibroblasts also induced most Trap+MNCs among three groups; consistently, fibroblasts from periodontitis highly expressed genes facilitating osteoclastogenesis. According to gene profiles and osteoclastogenic induction, four clusters of CFUs were identified. The proportion of clusters was significantly different (P < 0.05) among three groups, and their interaction influenced osteoclastogenic induction. Although Cluster 4 induced less osteoclasts, it enhanced the effects of Clusters 1 and 3 on Trap+MNCs formation (P < 0.05). EDA knockout in Cluster 4 abrogated this promotion (P < 0.05), and decreased osteoclasts and alveolar bone destruction in experimental periodontitis (P < 0.05). Conclusion Heterogeneous fibroblast subtypes affect the switch or development of periodontitis. A subtype (Cluster 4) played important role during alveolar bone destruction, by regulating other subtypes via EDA+FN paracrine.
Collapse
Affiliation(s)
- Haicheng Wang
- Department of Pathology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, People’s Republic of China
| | - Renbin Wang
- Department of Gastroenterology, The People’s Hospital of Zhongjiang, Zhongjiang, Sichuan Province, 618100, People’s Republic of China
| | - Jingwen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People’s Republic of China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, 100081, People’s Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, People’s Republic of China
| | - Yuan Feng
- Department of Oral Implantology, School of & Hospital Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, People’s Republic of China
| | - Shuyu Xu
- Department of Oral Implantology, School of & Hospital Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, People’s Republic of China
| | - Qing-Guo Pei
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| |
Collapse
|
3
|
Isola G. Prospective Advances in Genome Editing Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:301-313. [DOI: 10.1007/978-981-19-5642-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
4
|
Chavez-Granados PA, Manisekaran R, Acosta-Torres LS, Garcia-Contreras R. CRISPR/Cas gene-editing technology and its advances in dentistry. Biochimie 2021; 194:96-107. [PMID: 34974144 DOI: 10.1016/j.biochi.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022]
Abstract
A recent discovery of revolutionary Clustered regularly interspaced palindromic repeats (CRISPR) is a gene-editing tool that provides a type of adaptive immunity in prokaryotic organisms, which is currently used as a revolutionizing tool in biomedical research. It has a mechanism of correcting genome errors, turning on/off genes in cells and organisms. Most importantly playing a crucial function in bacterial defence by identifying and destroying Deoxyribonucleic acid (DNA) segments during bacteriophage invasions since the CRISPR-associated protein 9 (Cas9) enzyme recognizes and cleaves invasive DNA sequences complementary to CRISPR. Therefore, researchers employ this biological device to manipulate the genes to develop new therapies to combat systemic diseases. Currently, the most significant advance at the laboratory level is the generation of cell and animal models, functional genomic screens, live images of the cell genome, and defective DNA repairs to find the cure for genetic disorders. Even though this technology has enormous biomedical applications in various sectors, this review will summarize CRISPR/Cas emphasizing both the therapeutic and diagnostic mechanisms developed in the field of dentistry and the promising attempts to transfer this technology to clinical application. Finally, future developments are also described, which proposes to use CRISPR/Cas systems for prospective clinical dentistry applications.
Collapse
Affiliation(s)
- Patricia Alejandra Chavez-Granados
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES) León Unit, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684, León, Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES) León Unit, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684, León, Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES) León Unit, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684, León, Mexico
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, National School of Higher Studies (ENES) León Unit, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37684, León, Mexico.
| |
Collapse
|
5
|
Jacobs Catane L, Moshel O, Smith Y, Davidson B, Reich R. Splice-Variant Knock-Out of TGFβ Receptors Perturbates the Proteome of Ovarian Carcinoma Cells. Int J Mol Sci 2021; 22:ijms222312647. [PMID: 34884451 PMCID: PMC8657817 DOI: 10.3390/ijms222312647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to analyze the biological role of different transforming growth factor-β (TGFβ) receptor splice variants in ovarian carcinoma (OC). Specific receptor variant knockouts (KO) were prepared using the CRISPR/Cas9 genome editing system in two OC cell lines, TβRI variant 1 (TβRIv1) KO in ES-2 cells and TβRII variant 1 (TβRIIv1) KO in OVCAR-8 cells. Control and KO cells were compared by proteomic analysis, functional tests, analysis of epithelial–mesenchymal transition (EMT) drivers, and Western blot of signaling proteins. Proteomic analysis revealed significant changes in protein pathways in the KO cells. TβRIv1 KO resulted in a significant reduction in both cellular motility and invasion, while TβRIIv1 KO significantly reduced cellular motility and increased Reactive Oxygen Species (ROS) production. Both receptor variant KOs reduced MET protein levels. Of the EMT drivers, a significant decrease in TWIST protein expression, and increase in SNAIL protein and MALAT1 mRNA levels were observed in the TβRIIv1 KO compared to control. A significant decrease in JNK1 and JNK2 activation was found in the TβRIv1 KO compared to control cells. These findings provide new insight regarding the biological role of the TGFβ receptor variants in the biology and potentially the progression of OC.
Collapse
Affiliation(s)
- Liora Jacobs Catane
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel;
| | - Ofra Moshel
- Core Research Facility, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel;
| | - Yoav Smith
- Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel;
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway;
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316 Oslo, Norway
| | - Reuven Reich
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel;
- Correspondence: ; Tel.: +972-2-6757505
| |
Collapse
|
6
|
Mohammadinejad R, Biagioni A, Arunkumar G, Shapiro R, Chang KC, Sedeeq M, Taiyab A, Hashemabadi M, Pardakhty A, Mandegary A, Thiery JP, Aref AR, Azimi I. EMT signaling: potential contribution of CRISPR/Cas gene editing. Cell Mol Life Sci 2020; 77:2701-2722. [PMID: 32008085 PMCID: PMC11104910 DOI: 10.1007/s00018-020-03449-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a complex plastic and reversible cellular process that has critical roles in diverse physiological and pathological phenomena. EMT is involved in embryonic development, organogenesis and tissue repair, as well as in fibrosis, cancer metastasis and drug resistance. In recent years, the ability to edit the genome using the clustered regularly interspaced palindromic repeats (CRISPR) and associated protein (Cas) system has greatly contributed to identify or validate critical genes in pathway signaling. This review delineates the complex EMT networks and discusses recent studies that have used CRISPR/Cas technology to further advance our understanding of the EMT process.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alessio Biagioni
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ganesan Arunkumar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Kun-Che Chang
- Department of Ophthalmology, School of Medicine, Byers Eye Institute, Stanford University, Palo Alto, CA, 94303, USA
| | - Mohammed Sedeeq
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Aftab Taiyab
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Mohammad Hashemabadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology and Department of Toxicology & Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Jean-Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Amir Reza Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Iman Azimi
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
7
|
Yang J, Xu S, Wang HC. Heterogeneity of fibroblasts from radicular cyst influenced osteoclastogenesis and bone destruction. Oral Dis 2020; 26:983-997. [PMID: 32112663 DOI: 10.1111/odi.13317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/17/2023]
Abstract
AIM To analyze the heterogeneity of fibroblasts isolated from the fibrous capsules of radicular cysts and explore the effects of fibroblast subsets on bone destruction. METHODOLOGY Radicular cysts were divided into groups according to varying perilesional sclerosis identified by radiograph. Colony-forming units (CFUs) were isolated from the fibrous capsules of cysts, by which Trap + MNCs were induced, and the expression of osteoclastogenesis-related genes was compared among groups by real-time PCR. The variances in gene profiles of CFUs were identified by principal component analysis, and then, CFUs were divided into subsets using cluster analysis. The induction of Trap + MNCs and related gene expression was compared among subsets, and osteoclastogenic induction was blocked by IST-9 or bevacizumab. The fibroblast subsets in cysts were investigated by retrospective immunostaining with IST-9, VEGF-A, and CD34. A fibroblast subset that underwent gene editing by CRISPR/Cas was injected into the site of bone defects in animal models, and the in vivo effects on osteoclastogenesis were investigated. RESULTS The fibroblast CFUs isolated from radicular cysts with perilesional unsclerotized cysts induced more Trap + MNCs than those with perilesional sclerotic cysts (p < .05). Most fibroblast CFUs from unsclerotized cysts belonged to Cluster 2, which induced more Trap + MNCs (p < .05) and highly expressed genes facilitating osteoclastogenesis; these results were different from those of Cluster 1 (p < .05), in which most CFUs were isolated from perilesional sclerotic cysts or controls (p < .05). The high expression of EDA + FN and VEGF-A was investigated in both the fibroblasts of Cluster 2 and the fibrous capsules of unsclerotized cysts (p < .05), and the number of Trap + MNCs induced by Cluster 2 was decreased by treatment with IST-9 and bevacizumab (p < .05). Consistently, EDA exon exclusion significantly decreased the osteoclastogenic induction of fibroblasts from Cluster 2 in vivo (p < .05). CONCLUSION The fibrous capsules of radicular cysts contain heterogeneous fibroblasts that can form subsets exhibiting different effects on osteoclastogenesis. The subset, which depending on the autocrine effects of EDA + FN on VEGF-A, mainly contributes to the osteoclastogenesis and bone destruction of radicular cysts. The regulation of the proportion of subsets is a possible strategy for artificially interfering with osteoclastogenesis.
Collapse
Affiliation(s)
- Jingwen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shuyu Xu
- Department of Oral Implant, School & Hospital Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Hai-Cheng Wang
- Department of Pathology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Yang JW, Jiang JH, Wang HC, Li CY. The extra domain A of fibronectin facilitates osteoclastogenesis in radicular cysts through vascular endothelial growth factor. Int Endod J 2019; 53:478-491. [PMID: 31654436 DOI: 10.1111/iej.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/24/2019] [Indexed: 11/28/2022]
Abstract
AIM To analyse the effects of the alternatively spliced fibronectin (FN) gene and its isoforms on osteoclastogenesis in radicular cysts. METHODOLOGY Specimens of radicular cysts were collected surgically from 22 patients whose radiolucent periapical areas were measured on digital panoramic radiographs before surgery. The associations between the radiolucent areas and FN isoforms, vascular endothelial growth factor (VEGF) expression or micro-vessel density, as well as the relationships amongst them, were analysed by immunohistochemical staining using the antibodies IST-9, BC-1, P1F11, VEGF and CD34. Fibroblasts isolated from those specimens were used to induce Trap + MNCs, and the effects of induction were assessed by blocking FN containing extra domain A (EDA + FN), COX-2 or VEGF in vitro. The effects of EDA exon knockout using CRISPR/Cas system were also assessed. Quantitative PCR was used to analyse relative expression of FN isoforms and osteoclastogenic genes. Data were analysed using linear regression, Spearman's rank correlation analysis, chi-square test and Student's t-test; P < 0.05 was considered significant. RESULTS Micro-vessel density and EDA + FN staining were positively associated with the size of radiolucent periapical areas (mm2 ; P < 0.05), consistent with a positive association between Trap + MNCs and VEGF expression in fibroblasts (P < 0.05). Blocking the interaction between EDA + FN and fibroblasts inhibited Trap + MNC formation. In addition, EDA exon knockout decreased VEGF expression and inhibited Trap + MNC formation to the extent of blocking VEGF by bevacizumab, but osteoclastogenic induction was restored by recombinant VEGF. Using retrospective clinicopathological data, VEGF staining was shown to be positively associated with EDA + FN staining, micro-vessel density and the size of radiolucent areas (P < 0.05). CONCLUSION In fibrous capsules of radicular cysts, the alternatively spliced isoform EDA + FN generated by fibroblasts stimulated VEGF expression via an autocrine effect and then facilitated osteoclastogenesis. Both blockage of VEGF and EDA exon knockout could be used to inhibit bone destruction.
Collapse
Affiliation(s)
- J W Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - J H Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - H C Wang
- Department of Pathology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - C Y Li
- The Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
9
|
Jiang C, Meng L, Yang B, Luo X. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin Genet 2019; 97:73-88. [PMID: 31231788 DOI: 10.1111/cge.13589] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
In recent years, gene editing, especially that using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9, has made great progress in the field of gene function. Rapid development of gene editing techniques has contributed to their significance in the field of medicine. Because the CRISPR/Cas9 gene editing tool is not only powerful but also has features such as strong specificity and high efficiency, it can accurately and rapidly screen the whole genome, facilitating the administration of gene therapy for specific diseases. In the field of tumor research, CRISPR/Cas9 can be used to edit genomes to explore the mechanisms of tumor occurrence, development, and metastasis. In these years, this system has been increasingly applied in tumor treatment research. CRISPR/Cas9 can be used to treat tumors by repairing mutations or knocking out specific genes. To date, numerous preliminary studies have been conducted on tumor treatment in related fields. CRISPR/Cas9 holds great promise for gene-level tumor treatment. Personalized and targeted therapy based on CRISPR/Cas9 will possibly shape the development of tumor therapy in the future. In this study, we review the findings of CRISPR/Cas9 for tumor treatment research to provide references for related future studies on the pathogenesis and clinical treatment of tumors.
Collapse
Affiliation(s)
- Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Lingxiang Meng
- Department of Anorectal Surgery, Anorectal Surgery Center, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Bingjun Yang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xin Luo
- Department of Radiotherapy, The Second Hospital of PingLiang City, Second Affiliated Hospital of Gansu Medical College, PingLiang, People's Republic of China
| |
Collapse
|
10
|
Wang HC, Wang P, Chen YW, Zhang Y. Bevacizumab or fibronectin gene editing inhibits the osteoclastogenic effects of fibroblasts derived from human radicular cysts. Acta Pharmacol Sin 2019; 40:949-956. [PMID: 30382180 DOI: 10.1038/s41401-018-0172-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/14/2018] [Indexed: 02/05/2023] Open
Abstract
Fibronectin (FN) is a main component of extracellular matrix (ECM) in most adult tissues. Under pathological conditions, particularly inflammation, wound healing and tumors, an alternatively spliced exon extra domain A (EDA) is included in the FN protein (EDA+FN), which facilitates cellular proliferation, motility, and aggressiveness in different lesions. In this study we investigated the effects of EDA+FN on bone destruction in human radicular cysts and explored the possibility of editing FN gene or blocking the related paracrine signaling pathway to inhibit the osteoclastogenesis. The specimens of radicular cysts were obtained from 20 patients. We showed that the vessel density was positively associated with both the lesion size (R = 0.49, P = 0.001) and EDA+FN staining (R = 0.26, P = 0.022) in the specimens. We isolated fibroblasts from surgical specimens, and used the CRISPR/Cas system to knockout the EDA exon, or used IST-9 antibody and bevacizumab to block EDA+FN and VEGF, respectively. Compared to control fibroblasts, the fibroblasts from radicular cysts exhibited significantly more Trap+MNCs, the relative expression level of VEGF was positively associated with both the ratio of EDA+FN/total FN (R = 0.271, P = 0.019) and with the number of Trap+MNCs (R = 0.331, P = 0.008). The knockout of the EDA exon significantly decreased VEGF expression in the fibroblasts derived from radicular cysts, leading to significantly decreased osteoclastogenesis; similar results were observed using bevacizumab to block VEGF, but block of EDA+FN with IST-9 antibody had no effect. Furthermore, the inhibitory effects of gene editing on Trap+MNC development were restored by exogenous VEGF. These results suggest that EDA+FN facilitates osteoclastogenesis in the fibrous capsule of radicular cysts, through a mechanism mediated by VEGF via an autocrine effect on the fibroblasts. Bevacizumab inhibits osteoclastogenesis in radicular cysts as effectively as the exclusion of the EDA exon by gene editing.
Collapse
|
11
|
Liu C, Wang H. The fibroblast of radicular cyst facilitate osteoclastogenesis via the autocrine of Fibronectin containing extra domain A. Oral Dis 2019; 25:1136-1146. [PMID: 30770599 DOI: 10.1111/odi.13064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Chun‐yan Liu
- Department of Endodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration Tongji University Shanghai China
| | - Hai‐Cheng Wang
- Department of Pathology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration Tongji University Shanghai China
| |
Collapse
|
12
|
Yu N, Yang J, Mishina Y, Giannobile WV. Genome Editing: A New Horizon for Oral and Craniofacial Research. J Dent Res 2018; 98:36-45. [PMID: 30354846 DOI: 10.1177/0022034518805978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Precise and efficient genetic manipulations have enabled researchers to understand gene functions in disease and development, providing a platform to search for molecular cures. Over the past decade, the unprecedented advancement of genome editing techniques has revolutionized the biological research fields. Early genome editing strategies involved many naturally occurring nucleases, including meganucleases, zinc finger nucleases, and transcription activator-like effector-based nucleases. More recently, the clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nucleases (CRISPR/Cas) system has greatly enriched genetic manipulation methods in conducting research. Those nucleases generate double-strand breaks in the target gene sequences and then utilize DNA repair mechanisms to permit precise yet versatile genetic manipulations. The oral and craniofacial field harbors a plethora of diseases and developmental defects that require genetic models that can exploit these genome editing techniques. This review provides an overview of the genome editing techniques, particularly the CRISPR/Cas9 technique, for the oral and craniofacial research community. We also discuss the details about the emerging applications of genome editing in oral and craniofacial biology.
Collapse
Affiliation(s)
- N Yu
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J Yang
- 2 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,3 The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Mishina
- 2 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - W V Giannobile
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,4 Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Lv WQ, Wang HC, Peng J, Wang YX, Jiang JH, Li CY. Gene editing of the extra domain A positive fibronectin in various tumors, amplified the effects of CRISPR/Cas system on the inhibition of tumor progression. Oncotarget 2017; 8:105020-105036. [PMID: 29285230 PMCID: PMC5739617 DOI: 10.18632/oncotarget.21136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/30/2017] [Indexed: 12/18/2022] Open
Abstract
Background The low efficiency of clustered, regularly interspaced, palindromic repeats-associated Cas (CRISPR/Cas) system editing genes in vivo limits the application. A components of the extracellular matrix (ECM), the extra domain A positive fibronectin (EDA+FN), may be a target for CRISPR/Cas system for the pro-oncogenic effects. The exclusion of EDA exon would alter the microenvironment and inhibit tumor progression, even the frequency of gene editing is still limited. Results The pro-oncogenic effects were confirmed by the exclusion of EDA exon from the fibronectin gene, as illustrated by the down-regulated proliferation, migration and invasion of CNE-2Z or SW480 cells (P<0.05). Furthermore, although the efficacy of EDA exon knockout through CRISPR/Cas system was shown to be low in vivo, the EDA+FN protein levels decrease obviously, inhibiting the tumor growth rate significantly (P<0.05), which was accompanied by a decrease in Ki-67 expression and microvessel numbers, and increased E-cadherin or decreased Vimentin expression (P<0.05). Methods and materials Human nasopharyngeal carcinoma cell line CNE-2Z, and the colorectal carcinoma cell line SW480 were transfected with CRISPR/Cas9 plasmids targeting EDA exon. The effects of the exclusion of EDA on the cell proliferation, motility and epithelial-mesenchymal transition (EMT) were investigated, and the western blot and real-time PCR were performed to analyze the underlying mechanisms. Furthermore, CRISPR/Cas9 plasmids were injected into xenograft tumors to knockout EDA exon in vivo, and tumor growth, cell proliferation, EMT rate, or vascularization were investigated using western blot, PCR and immunohistochemistry. Conclusion CRISPR/Cas system targeting ECM components was shown to be an effective method for the inhibition of tumor progression, as these paracrine or autocrine molecules are necessary for various tumor cells. This may represent a novel strategy for overcoming the drug evasion or resistance, in addition, circumventing the low efficiency of CRISPR/Cas system in vivo.
Collapse
Affiliation(s)
- Wan-Qi Lv
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Hai-Cheng Wang
- Department of Pathology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Jing Peng
- Department of Beijing Citident Stomatology Hospital, Beijing 100032, China
| | - Yi-Xiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jiu-Hui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Cui-Ying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
14
|
Peng J, Wang HC, Liu Y, Jiang JH, Lv WQ, Yang Y, Li CY, Qiu XY. Involvement of non-B cell-derived immunoglobulin G in the metastasis and prognosis of salivary adenoid cystic carcinoma. Oncol Lett 2017; 14:4491-4498. [PMID: 29085446 PMCID: PMC5649563 DOI: 10.3892/ol.2017.6782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 02/27/2017] [Indexed: 11/20/2022] Open
Abstract
Cancer cell-derived immunoglobulin G (cancer-IgG) has been implicated in the pathogenesis and progression of various types of cancer. However, its role in salivary adenoid cystic carcinoma (SACC) remains unclear. The present study aimed to investigate the effects of cancer-IgG on metastasis and prognosis in 96 patients with SACC. Immunohistochemical staining showed that cancer-IgG expression was present in all 96 individual SACC tissues. Additionally, high cancer-IgG expression was significantly correlated with metastasis, nerve invasion and recurrence in SACC (P<0.05). Moreover, cancer-IgG expression was significantly correlated with the survival duration of patients with SACC (P<0.05). Proliferation, cell motility and invasion all decreased significantly following knockdown of cancer-IgG in SACC cells (P<0.05) through population-doubling time, wound healing and transwell invasion assays. Additionally, cancer-IgG-knockdown in SACC cells induced the increased expression of E-cadherin and matrix metalloproteinase 9, and promoted the epithelial-mesenchymal transition, but decreased the expression of F-actin filaments. Taken together, these results showed that the high expression of cancer-IgG was strongly associated with metastasis, recurrence and invasion in SACC, suggesting that cancer-IgG expression could serve as a useful biomarker to predict the prognosis of the disease.
Collapse
Affiliation(s)
- Jing Peng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Hai-Cheng Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Yang Liu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
| | - Jiu-Hui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Wan-Qi Lv
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Yue Yang
- Department of Dentistry, Capital Medical University Xuanwu Hospital, Beijing 100053, P.R. China
| | - Cui-Ying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Xiao-Yan Qiu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
| |
Collapse
|
15
|
Lv WQ, Peng J, Wang HC, Chen DP, Yang Y, Zhao Y, Qiu XY, Jiang JH, Li CY. Expression of cancer cell-derived IgG and extra domain A-containing fibronectin in salivary adenoid cystic carcinoma. Arch Oral Biol 2017; 81:15-20. [PMID: 28460248 DOI: 10.1016/j.archoralbio.2017.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/19/2017] [Accepted: 04/17/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Cancer-IgG is a newly-discovered molecule, mainly derived from epithelial carcinoma cells and is significantly correlated with differentiation, metastasis, local invasion, and poor prognosis of many cancers. In our previous study we detected IgG expression in oral epithelial carcinoma, including salivary adenoid cystic carcinoma (SACC), using an IgG-specific commercial antibody. Here, we explored the correlation between cancer-IgG and clinicopathological features of SACC. DESIGN A total of 68 human SACC tissue specimens and 2 siRNAs were used to analyze the correlation between cancer-IgG and extra domain A (EDA+)-containing fibronectin using the cancer-IgG-specific monoclonal antibody, RP215. RESULTS We found an unexpected correlation between cancer-IgG and EDA+ fibronectin, both of which showed aberrant expression in SACC tissue samples. Both were highly expressed in SACC with nerve invasion. In our previous study, EDA+ fibronectin overexpression in SACC cells decreased N-cadherin expression. In the present study, we used SACC-83 cells, wherein EDA+ fibronectin is overexpressed and cancer-IgG is knocked down. EDA+ fibronectin expression was reduced with cancer-IgG knockdown, while cancer-IgG expression did not affect EDA+ fibronectin overexpression. Furthermore, knockdown of non-B cell-derived IgG in SACC cells decreased cellular motility (P<0.05) as well as increased E-cadherin and alpha-smooth muscle actin levels. CONCLUSION The results suggest that cancer IgG potentially regulates EDA+ fibronectin expression, thereby suggesting possible new therapeutic approaches for SACC.
Collapse
Affiliation(s)
- Wan-Qi Lv
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing 100081, China
| | - Jing Peng
- Department of Beijing Citident Stomatology Hospital, 109 North Xidan Avenue, Xicheng District, Beijing 100032,China
| | - Hai-Cheng Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Tongji University Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - De-Ping Chen
- Department of Beijing Citident Stomatology Hospital, 109 North Xidan Avenue, Xicheng District, Beijing 100032,China
| | - Yue Yang
- Department of Dentistry Capital Medical University Xuanwu Hospital, 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yang Zhao
- Department of Beijing Citident Stomatology Hospital, 109 North Xidan Avenue, Xicheng District, Beijing 100032,China
| | - Xiao-Yan Qiu
- Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Jiu-Hui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing 100081, China.
| | - Cui-Ying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 South Zhongguancun Avenue, Haidian District, Beijing 100081, China.
| |
Collapse
|
16
|
Peterson A. CRISPR: express delivery to any DNA address. Oral Dis 2016; 23:5-11. [PMID: 27040868 DOI: 10.1111/odi.12487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/26/2022]
Abstract
The sudden emergence and worldwide adoption of CRISPR gene-editing technology confronts humanity with unprecedented opportunities and choices. CRISPR's transformative impact on our future understanding of biology, along with its potential to unleash control over the most fundamental of biological processes, is predictable by already achieved applications. Although its origin, composition, and function were revealed only recently, close to 3000 CRISPR-based publications have appeared including insightful and diversely focused reviews referenced here. Adding further to scientific and public awareness, a recent symposium addressed the ethical implications of interfacing CRISPR technology and human biology. However, the magnitude of CRISPR's rapidly emerging power mandates its broadest assessment. Only with the participation of a diverse and informed community can the most effective and humanity-positive CRISPR applications be defined. This brief review is aimed at those with little previous exposure to the CRISPR revolution. The molecules that constitute CRISPR's core components and their functional organization are described along with how the mechanism has been harnessed to edit genome structure and modulate gene function. Additionally, a glimpse into CRISPR's potential to unleash genetic changes with far-reaching consequences is presented.
Collapse
Affiliation(s)
- A Peterson
- Laboratory of Developmental Biology, Departments of Oncology, Human Genetics, Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|