1
|
Zhuang Y, Zhang R, Li M, Zou Y, Jiang S, Zhang Y, Liu S, Yu B. A Novel Ectodysplasin a Gene mutation of X-Linked Hypohidrotic Ectodermal Dysplasia. Clin Cosmet Investig Dermatol 2024; 17:1505-1517. [PMID: 38952411 PMCID: PMC11215660 DOI: 10.2147/ccid.s451125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/06/2024] [Indexed: 07/03/2024]
Abstract
Introduction Hypohidrotic ectodermal dysplasia (HED) is a genetic disorder that influences structures of ectodermal origin, such as teeth, hair, and sweat glands. Compared with autosomal recessive and dominant modes of inheritance, the X-linked HED (XLHED) characterized by Hypodontia/Oligodontia teeth, Absent/sparse hair, Anhidrosis/hypohidrosis, and characteristic facial features, is the most frequent and its primary cause is the mutation of ectodysplasin A (EDA) gene. This research aimed to expound the clinical and molecular features of a Chinese male with XLHED and to summarize and compare several previous findings. Methods Genomic DNA was obtained from the peripheral blood of the proband and his family members, then Sanger sequencing was used to perform a mutational analysis of EDA. Real-time quantitative PCR and Western blotting were used to detect EDA expression. The transcriptional activity of NF-κB was detected using a luciferase assay. Results The probandwith XLHED was identified a novel EDA mutation, c.1119G>C(p.M373I), that affected the molecular analysis of transmembrane protein exon8 mutations, inherited from the mother. He showed a severe multiple-tooth loss, with over 20 permanent teeth missing and sparse hair and eyebrows, dry, thin, and itching skin. Furthermore, his sweating function was abnormal to a certain extent. Discussion The functional study showed that this novel mutant led to a significant decrease in the EDA expression level and transcriptional activity of NF-κB. Our findings extend the range of EDA mutations in XLHED patients, which provides the basis and idea for further exploring the pathogenesis of XLHED.
Collapse
Affiliation(s)
- Yuan Zhuang
- Dermatological Department, The Affiliated Hospital of QingdaoUniversity, Qingdao, People’s Republic of China
- dermatological department, Women and Children’s hospital, Qingdao University, Qingdao, People’s Republic of China
| | - Ru Zhang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Miaomiao Li
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yaru Zou
- Dermatological Department, The Affiliated Hospital of QingdaoUniversity, Qingdao, People’s Republic of China
| | - Shui Jiang
- Dermatological Department, The Affiliated Hospital of QingdaoUniversity, Qingdao, People’s Republic of China
| | - Yanan Zhang
- Dermatological Department, The Affiliated Hospital of QingdaoUniversity, Qingdao, People’s Republic of China
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Bo Yu
- Dermatological Department, The Affiliated Hospital of QingdaoUniversity, Qingdao, People’s Republic of China
| |
Collapse
|
2
|
Wu Y, Sun J, Zhang C, Ma S, Liu Y, Wu X, Gao Q. The oligodontia phenotype in a X-linked hypohidrotic ectodermal dysplasia patient with a novel EVC2 variant. Heliyon 2024; 10:e23056. [PMID: 38163170 PMCID: PMC10756976 DOI: 10.1016/j.heliyon.2023.e23056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives To analyse the pathogenic genes in a patient with hypohidrotic ectodermal dysplasia (HED) and explore the relationship between pathogenic genes and the oligodontia phenotype. Methods Clinical data and peripheral blood were collected from a patient with HED. Pathogenic genes were analysed by whole-exon sequencing (WES) and verified by Singer sequencing. The secondary and tertiary structures of the variant proteins were predicted to analyse their toxicity. Results The patient exhibited a severe oligodontia phenotype, wherein only two deciduous canines were left in the upper jaw. WES revealed a hemizygous EDA variant c.466C > T p.(Arg156Cys) and a novel heterozygous EVC2 variant c.1772T > C p.(Leu591Ser). Prediction of the secondary and tertiary structures of the EDA variant p.(Arg156Cys) and EVC2 variant p.(Leu591Ser) indicated impaired function of both molecules. Conclusion The patient demonstrated a more severe oligodontia phenotype when compared with the other patients caused by the EDA variant c.466C > T. Since Evc2 is a positive regulator of the Sonic Hedgehog (Shh) signal pathway, we speculated that the EVC2 variant p.(Leu591Ser) may play a synergistic role in the oligodontia phenotype of HED, thereby exacerbating the oligodontia phenotype. Knowledge of oligodontia caused by multiple gene variants is of great significance for understanding individual differences in oligodontia phenotypes.
Collapse
Affiliation(s)
- Yi Wu
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Jing Sun
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Caiqi Zhang
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Siyuan Ma
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Yiting Liu
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| | - Xiaoshan Wu
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qingping Gao
- The Stomatology Center of Xiangya Hospital, Academician Workstation for Oral & Maxillofacial Regenerative Medicine, Research Center of Oral and Maxillofacial Development and Regeneration, National Clinical Research Center for Geriatric Diseases, Central South Universtiy, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Castilho NL, Resende KKM, dos Santos JA, Machado RA, Coletta RD, Guerra ENS, Acevedo AC, Martelli-Junior H. Oligodontia in the Clinical Spectrum of Syndromes: A Systematic Review. Dent J (Basel) 2023; 11:279. [PMID: 38132417 PMCID: PMC10742796 DOI: 10.3390/dj11120279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The aim of this systematic review was to describe the clinical and genetic features of syndromes showing oligodontia as a sign. The review was performed according to the PRISMA 2020 checklist guidelines, and the search was conducted using PubMed, Scopus, Lilacs, Web of science, Livivo, and EMBASE and supplemented by a gray literature search on Google Scholar and ProQuest, applying key terms relevant to the research questions. The systematic review identified 47 types of syndromes in 83 studies, and the most common was hypohidrotic ectodermal dysplasia, which was reported in 24 patients in 22 studies. Other common syndromes that reported oligodontia included Axenfeld-Rieger syndrome, Witkop's syndrome, Ellis-van Creveld syndrome, blepharocheilodontic syndrome, and oculofaciocardiodental syndrome. The X-linked mode of inheritance was the most reported (n = 13 studies), followed by the autosomal dominant (n = 13 studies). The review describes the main syndromes that may have oligodontia as a clinical sign and reinforces the need for orodental-facial examining for adequate diagnosis and treatment of the affected patients. Molecular analysis in order to better understand the occurrence of oligodontia is imperative.
Collapse
Affiliation(s)
- Natália Lopes Castilho
- Health Science Postgraduate Program, State University of Montes Claros, Montes Claros 39400-000, Brazil;
| | - Kêmelly Karolliny Moreira Resende
- Laboratory of Oral Histopathology, Oral Care Center for Inherited Diseases, Health Sciences Faculty, University of Brasilia, Brasilia 70040-010, Brazil; (K.K.M.R.); (E.N.S.G.); (A.C.A.)
| | - Juliana Amorim dos Santos
- Laboratory of Oral Histopathology, Health Sciences Faculty, University of Brasilia, Brasilia 70040-010, Brazil;
| | - Renato Assis Machado
- Department of Oral Diagnosis and Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba 13414-018, Brazil; (R.A.M.); (R.D.C.)
| | - Ricardo D. Coletta
- Department of Oral Diagnosis and Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba 13414-018, Brazil; (R.A.M.); (R.D.C.)
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Oral Care Center for Inherited Diseases, Health Sciences Faculty, University of Brasilia, Brasilia 70040-010, Brazil; (K.K.M.R.); (E.N.S.G.); (A.C.A.)
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Oral Care Center for Inherited Diseases, Health Sciences Faculty, University of Brasilia, Brasilia 70040-010, Brazil; (K.K.M.R.); (E.N.S.G.); (A.C.A.)
| | - Hercílio Martelli-Junior
- Health Science Postgraduate Program, State University of Montes Claros, Montes Claros 39400-000, Brazil;
- Oral Medicine and Oral Pathology, School of Dentistry, State University of Montes Claros, Unimontes, Montes Claros 39400-000, Brazil
| |
Collapse
|
4
|
Gao Y, Jiang X, Wei Z, Long H, Lai W. The EDA/EDAR/NF-κB pathway in non-syndromic tooth agenesis: A genetic perspective. Front Genet 2023; 14:1168538. [PMID: 37077539 PMCID: PMC10106650 DOI: 10.3389/fgene.2023.1168538] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Non-syndromic tooth agenesis (NSTA) is one of the most common dental developmental malformations affected by genetic factors predominantly. Among all 36 candidate genes reported in NSTA individuals, EDA, EDAR, and EDARADD play essential roles in ectodermal organ development. As members of the EDA/EDAR/NF-κB signaling pathway, mutations in these genes have been implicated in the pathogenesis of NSTA, as well as hypohidrotic ectodermal dysplasia (HED), a rare genetic disorder that affects multiple ectodermal structures, including teeth. This review provides an overview of the current knowledge on the genetic basis of NSTA, with a focus on the pathogenic effects of the EDA/EDAR/NF-κB signaling pathway and the role of EDA, EDAR, and EDARADD mutations in developmental tooth defects. We also discuss the phenotypic overlap and genetic differences between NSTA and HED. Ultimately, this review highlights the importance of genetic analysis in diagnosing and managing NSTA and related ectodermal disorders, and the need for ongoing research to improve our understanding of these conditions.
Collapse
Affiliation(s)
- Yanzi Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohui Jiang
- Human Sperm Bank, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Wenli Lai,
| |
Collapse
|
5
|
Liu X, Zhao Y, Zhu J. A novel mutation in the collagen domain of
EDA
results in hypohidrotic ectodermal dysplasia by impacting the receptor‐binding capability. Mol Genet Genomic Med 2022; 11:e2119. [PMID: 36448232 PMCID: PMC10094068 DOI: 10.1002/mgg3.2119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Hypohidrotic ectodermal dysplasia (HED) mainly results from gene mutations in the EDA/EDAR/NF-κB pathway. Function analysis of the mutations in the collagen domain of ectodysplasin A (EDA)result in HED has been rarely studied. This study aimed at determining the mechanism by which the novel collagen domain mutation of EDA results in HED. METHODS We analyzed the DNAs from a Chinese family with HED and performed bioinformatics analysis. A new three-dimensional structure model of the EDA trimer was built and used to predict the effect of the mutations on EDA. We performed a western blot to detect EDA1 proteins in cell lysates and supernatants. We then performed coimmunoprecipitation to determine whether the mutation would affect the interaction of EDA1 with the EDA receptor (EDAR). Dual luciferase reporter assay and immunofluorescence were performed to detect the effect of the mutant EDA1 protein on nuclear factor kappa B (NF-κB) activation. RESULTS A novel missense mutation (c.593G > A, p. Gly198Glu) in the collagen domain of EDA was detected. The mutation was predicted to be disease-causing. A three-dimensional structure model of the EDA trimer was first built in this study, in which the mutation site is located around the receptor binding domain. Functional studies showed that there was no difference in the secretion activity between the mutant EDA1 and the wild-type EDA1. However, the receptor-binding activity and the transcription activation of NF-κB were impaired by the mutation. CONCLUSION We identified a novel mutation (c.593G > A, p. Gly198Glu) in the collagen domain of EDA. Bioinformatics analysis and functional studies showed this mutation was damaging, indicating that mutations in the collagen domain of EDA could result in HED by affecting the receptor-binding activity of EDA and the transcriptional activity of NF-κB.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory Peking University School and Hospital of Stomatology Beijing China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory Peking University School and Hospital of Stomatology Beijing China
| | - Junxia Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Central Laboratory Peking University School and Hospital of Stomatology Beijing China
| |
Collapse
|
6
|
Tumminello M, Gangemi A, Matina F, Guardino M, Giuffrè BL, Corsello G. First report of X-linked hypohidrotic ectodermal dysplasia with a hemizygous c.1142G > C in the EDA gene: variant of uncertain significance or new pathogenic variant? Ital J Pediatr 2021; 47:128. [PMID: 34078430 PMCID: PMC8173841 DOI: 10.1186/s13052-021-01078-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
Background Hypohidrotic Ectodermal Dysplasia (HED) is a genetic disorder which affects structures of ectodermal origin. X-linked hypohidrotic ectodermal dysplasia (XLHED) is the most common form of disease. XLHED is characterized by hypotrichosis, hypohydrosis and hypodontia. The cardinal features of classic HED become obvious during childhood. Identification of a hemizygous EDA pathogenic variant in an affected male confirms the diagnosis. Case presentation We report on a male newborn with the main clinical characteristics of the X-linked HED including hypotrichosis, hypodontia and hypohidrosis. Gene panel sequencing identified a new hemizygous missense variant of uncertain significance (VUS) c.1142G > C (p.Gly381Ala) in the EDA gene, located on the X chromosome and inherited from the healthy mother. Conclusion Despite the potential functional impact of VUS remains uncharacterized, our goal is to evaluate the clinical potential consequences of missense VUS on EDA gene. Even if the proband’s phenotype is characteristic for classic HED, further reports of patients with same clinical phenotype and the same genomic variant are needed to consider this novel VUS as responsible for the development of HED.
Collapse
Affiliation(s)
- Mario Tumminello
- Neonatal Intensive Care Unit, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Antonella Gangemi
- Neonatal Intensive Care Unit, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Federico Matina
- Neonatal Intensive Care Unit, Villa Sofia-Cervello Hospital, Palermo, Italy.
| | - Melania Guardino
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Bianca Lea Giuffrè
- Neonatal Intensive Care Unit, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Mintoff D, Pace NP, Mercieca V, Bauer P, Borg I. A novel c.916C>A EDA gene pathogenic variant in a boy with X-linked hypohidrotic ectodermal dysplasia. Clin Exp Dermatol 2020; 46:618-620. [PMID: 33222196 DOI: 10.1111/ced.14522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Affiliation(s)
- D Mintoff
- Department of Dermatology and Venereology, Mater Dei Hospital, Malta
| | - N P Pace
- Centre for Molecular Medicine and Biobanking, University of Malta, Malta
| | - V Mercieca
- Department of Paediatrics, Gozo General Hospital, Victoria, Gozo, Malta
| | - P Bauer
- CENTOGENE AG, Rostock, Germany
| | - I Borg
- Centre for Molecular Medicine and Biobanking, University of Malta, Malta.,Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Malta.,Medical Genetics Unit, Department of Pathology, Mater Dei Hospital, Malta
| |
Collapse
|
8
|
Yamada A, Kawasaki M, Miake Y, Yamada Y, Blackburn J, Kawasaki K, Trakanant S, Nagai T, Nihara J, Kudo T, Meguro F, Schmidt-Ullrich R, Liu B, Hu Y, Page A, Ramírez Á, Sharpe PT, Maeda T, Takagi R, Ohazama A. Overactivation of the NF-κB pathway impairs molar enamel formation. Oral Dis 2020; 26:1513-1522. [PMID: 32369672 DOI: 10.1111/odi.13384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Hypohidrotic ectodermal dysplasia (HED) is a hereditary disorder characterized by abnormal structures and functions of the ectoderm-derived organs, including teeth. HED patients exhibit a variety of dental symptoms, such as hypodontia. Although disruption of the EDA/EDAR/EDARADD/NF-κB pathway is known to be responsible for HED, it remains unclear whether this pathway is involved in the process of enamel formation. EXPERIMENTAL SUBJECTS AND METHODS To address this question, we examined the mice overexpressing Ikkβ (an essential component required for the activation of NF-κB pathway) under the keratin 5 promoter (K5-Ikkβ). RESULTS Upregulation of the NF-κB pathway was confirmed in the ameloblasts of K5-Ikkβ mice. Premature abrasion was observed in the molars of K5-Ikkβ mice, which was accompanied by less mineralized enamel. However, no significant changes were observed in the enamel thickness and the pattern of enamel rods in K5-Ikkβ mice. Klk4 expression was significantly upregulated in the ameloblasts of K5-Ikkβ mice at the maturation stage, and the expression of its substrate, amelogenin, was remarkably reduced. This suggests that abnormal enamel observed in K5-Ikkβ mice was likely due to the compromised degradation of enamel protein at the maturation stage. CONCLUSION Therefore, we could conclude that the overactivation of the NF-κB pathway impairs the process of amelogenesis.
Collapse
Affiliation(s)
- Akane Yamada
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuo Miake
- Department of Oral Anatomy, School of Dental Medicine, Tsurumi University, Tsurumi, Japan
| | - Yurie Yamada
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - James Blackburn
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - Supaluk Trakanant
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takahiro Nagai
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Jun Nihara
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takehisa Kudo
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Ruth Schmidt-Ullrich
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bigang Liu
- University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Yinling Hu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Instituto de Investigación Sanitaria Hospital12 de Octubre (imas12), CIBERONC, Madrid, Spain
| | - Ángel Ramírez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Instituto de Investigación Sanitaria Hospital12 de Octubre (imas12), CIBERONC, Madrid, Spain
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Takeyasu Maeda
- Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
9
|
Han Y, Wang X, Zheng L, Zhu T, Li Y, Hong J, Xu C, Wang P, Gao M. Pathogenic EDA Mutations in Chinese Han Families With Hypohidrotic Ectodermal Dysplasia and Genotype-Phenotype: A Correlation Analysis. Front Genet 2020; 11:21. [PMID: 32117440 PMCID: PMC7010634 DOI: 10.3389/fgene.2020.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/07/2020] [Indexed: 11/26/2022] Open
Abstract
Background This study aimed to investigate the genetic causes of hypohidrotic ectodermal dysplasia (HED) in two families and elucidate the molecular pathogenesis of HED in Chinese Han patients. Methods Whole-exome sequencing (WES) was used to screen HED-related genes in two family members, followed by confirmatory Sanger sequencing. Bioinformatics analysis was performed for the mutations. We reviewed HED-related articles in PubMed. χ2- and Fisher's tests were used to analyze the genotype–phenotype correlations. Results (1) WES identified EDA missense mutations [c.1127 C > T (p.T376M; NM_001005609)] in family 1 and an EDA nonframeshift deletion mutation [c.648_683delACCTGGTCCTCCAGGTCCTCCTGGTCCTCAAGGACC (p.216_228delPPGPPGPPGPQGP; NM_001005609)] in family 2. Sanger sequencing validated the results. ANNOVAR (ANNOtate VARiation) annotation indicated that c.1127 c > T was a deleterious mutation. (2) The review of published papers revealed 68 novel mutations related to HED: 57 (83.8%) were EDA mutations, 8 (11.8%) were EDAR mutations, 2 (2.9%) were EDARADD mutations, 1 (1.5%) was a WNT10A mutation, 31 (45.6%) were missense mutations, 23 (33.8%) were deletion mutations, and 1 (1.5%) was an indel. Genotype–phenotype correlation analysis revealed that patients with EDA missense mutations had a higher frequency of hypohidrosis (P = 0.021). Conclusions This study identified two EDA gene mutations in two Chinese Han HED families and provides a foundation for genetic diagnosis and counseling.
Collapse
Affiliation(s)
- Yang Han
- Department of Dermatology of First Affiliated Hospital, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Xiuli Wang
- Department of Dermatology of First Affiliated Hospital, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Liyun Zheng
- Department of Dermatology of First Affiliated Hospital, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Tingting Zhu
- Department of Dermatology of First Affiliated Hospital, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Yuwei Li
- Department of Dermatology of First Affiliated Hospital, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Jiaqi Hong
- Department of Dermatology of First Affiliated Hospital, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Congcong Xu
- Department of Dermatology of First Affiliated Hospital, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Peiguang Wang
- Department of Dermatology of First Affiliated Hospital, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China
| | - Min Gao
- Department of Dermatology of First Affiliated Hospital, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Zeng B, Liao J, Zhang H, Fu S, Chen W, Pan G, Li Q, Chen W, Ferrone S, Wu B, Sun S, Hu J, Ahn MHY, Lin Z, Yu D, Ou Z, Wang X, Mo F, Huang N, Hamilton JA, Li J, Fan S. Novel ANO5 mutation c.1067G>T (p.C356F) identified by whole genome sequencing in a big family with atypical gnathodiaphyseal dysplasia. Head Neck 2018; 41:230-238. [PMID: 30554457 DOI: 10.1002/hed.25516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/04/2018] [Accepted: 07/19/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Gnathodiaphyseal dysplasia (GDD) is a rare skeletal disorder that has not been well studied. METHODS Sanger sequencing, whole-genome sequencing (WGS), and bioinformatics and structural modeling analyses were performed. RESULTS A family with patients with fibro-osseous lesions of the jawbones were initially diagnosed with cherubism. Sequencing of SH3BP2, which is the causal gene of cherubism, revealed no pathogenic mutation. Through WGS, we identified a novel mutation c.1067G>T (p.C356F) in ANO5, and bioinformatics analyses and structural modeling showed that the mutation was deleterious. Because ANO5 is the gene responsible for GDD, we reappraised the clinical data of the patients, and the diagnosis was corrected to atypical GDD. A review of the literature showed that 67% of GDD cases confirmed by molecular testing were initially misdiagnosed. CONCLUSIONS The novel mutation c.1067G>T (p.C356F) in ANO5 is responsible for the atypical GDD observed in our patients. GDD should be included in the differential diagnosis for patients with fibro-osseous lesions.
Collapse
Affiliation(s)
- Binghui Zeng
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Junkun Liao
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Hanqing Zhang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Sha Fu
- Department of Pathology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weixiong Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Guokai Pan
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Qunxing Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Weiliang Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Soldano Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Binghao Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Sun
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jiali Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Michael Ho-Young Ahn
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zhaoyu Lin
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhanpeng Ou
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Xinhui Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fengbo Mo
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nasi Huang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Physiology and Biophysics, Boston University, Boston, Massachusetts
| | - James A Hamilton
- Physiology and Biophysics, Boston University, Boston, Massachusetts
| | - Jinsong Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Song Fan
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Hammersen J, Wohlfart S, Goecke TW, Köninger A, Stepan H, Gallinat R, Morris S, Bücher K, Clarke A, Wünsche S, Beckmann MW, Schneider H, Faschingbauer F. Reliability of prenatal detection of X-linked hypohidrotic ectodermal dysplasia by tooth germ sonography. Prenat Diagn 2018; 39:796-805. [PMID: 30394555 DOI: 10.1002/pd.5384] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVE In X-linked hypohidrotic ectodermal dysplasia (XLHED), dysfunction of ectodysplasin A1 (EDA1) due to EDA mutations results in malformation of hair, teeth, and sweat glands. Hypohidrosis, which can cause life-threatening hyperthermia, is amenable to intrauterine therapy with recombinant EDA1. This study aimed at evaluating tooth germ sonography as a noninvasive means to identify affected fetuses in pregnant carrier women. METHODS Sonography, performed at 10 study sites between gestational weeks 18 and 28, led to the diagnosis of XLHED if fewer than six tooth germs were detected in mandible or maxilla. The assessment was verified postnatally by EDA sequencing and/or clinical findings. Estimated fetal weights and postnatal weight gain of boys with XLHED were assessed using appropriate growth charts. RESULTS In 19 of 38 sonographic examinations (23 male and 13 female fetuses), XLHED was detected prenatally. The prenatal diagnosis proved to be correct in 37 cases; one affected male fetus was missed. Specificity and positive predictive value were both 100%. Tooth counts obtained by clinical examination corresponded well with findings on panoramic radiographs. We observed no weight deficits of subjects with XLHED in utero but occasionally during infancy. CONCLUSION Tooth germ sonography is highly specific and reliable in detecting XLHED prenatally.
Collapse
Affiliation(s)
- Johanna Hammersen
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | - Sigrun Wohlfart
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | - Tamme W Goecke
- Department of Gynecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - Angela Köninger
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Holger Stepan
- Department of Obstetrics, University Hospital Leipzig, Leipzig, Germany
| | - Ralph Gallinat
- Frauenärztliche Gemeinschaftspraxis Günzburg-Ichenhausen, Günzburg, Germany
| | - Susan Morris
- Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK
| | - Katharina Bücher
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Angus Clarke
- Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK.,Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Stephanie Wünsche
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | - Matthias W Beckmann
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | - Holm Schneider
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
12
|
Zeng B, Lu H, Xiao X, Yu X, Li S, Zhu L, Yu D, Zhao W. KDF1 is a novel candidate gene of non-syndromic tooth agenesis. Arch Oral Biol 2018; 97:131-136. [PMID: 30384154 DOI: 10.1016/j.archoralbio.2018.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/24/2018] [Accepted: 10/21/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Tooth agenesis (TA) is featured by congenital loss of teeth, and can be divided into two subtypes, non-syndromic TA (NSTA) and syndromic TA (STA). Although 12 candidate genes of NSTA have been revealed, the genetic basis of NSTA needs to be further studied. We noticed an overlap of candidate genes between NSTA and STA, and hypothesized that some candidate genes of STA may be new candidate genes of NSTA. METHODS Sanger sequencing, whole exome sequencing, bioinformatics analyses and immunohistochemical staining were performed to reveal the genetic basis of the patients in a family with NSTA. RESULTS No pathogenic mutation was found in the 12 candidate genes of NSTA. We screened the variants of 76 STA candidate genes and identified a novel pathogenic mutation c.G908C (p.R303 P) in Keratinocyte Differentiation Factor 1 (KDF1). This mutation was cosegregated with the disease in the family. Bioinformatics analyses predicted the mutation to be pathogenic. Immunohistochemical staining of kdf1 in developing tooth germs indicated that kdf1 expression is important for the development of teeth. CONCLUSIONS This study identified KDF1 as a novel candidate gene for NSTA. STA candidate genes may be a promising source of new NSTA genes.
Collapse
Affiliation(s)
- Binghui Zeng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Hui Lu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Xue Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Xinlin Yu
- International Department, The Affiliated High School of SCNU, Guangzhou, 510630, China
| | - Sijie Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Ling Zhu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| | - Wei Zhao
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, China.
| |
Collapse
|
13
|
Higashino T, Lee JYW, McGrath JA. Advances in the genetic understanding of hypohidrotic ectodermal dysplasia. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1405806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Toshihide Higashino
- St John’s Institute of Dermatology, King’s College London, Guy’s Hospital, London, UK
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| | - John Y. W. Lee
- St John’s Institute of Dermatology, King’s College London, Guy’s Hospital, London, UK
| | - John A. McGrath
- St John’s Institute of Dermatology, King’s College London, Guy’s Hospital, London, UK
| |
Collapse
|
14
|
Zeng B, Zhao Q, Li S, Lu H, Lu J, Ma L, Zhao W, Yu D. Novel EDA or EDAR Mutations Identified in Patients with X-Linked Hypohidrotic Ectodermal Dysplasia or Non-Syndromic Tooth Agenesis. Genes (Basel) 2017; 8:genes8100259. [PMID: 28981473 PMCID: PMC5664109 DOI: 10.3390/genes8100259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 01/02/2023] Open
Abstract
Both X-linked hypohidrotic ectodermal dysplasia (XLHED) and non-syndromic tooth agenesis (NSTA) result in symptoms of congenital tooth loss. This study investigated genetic causes in two families with XLHED and four families with NSTA. We screened for mutations of WNT10A, EDA, EDAR, EDARADD, PAX9, MSX1, AXIN2, LRP6, and WNT10B through Sanger sequencing. Whole exome sequencing was performed for the proband of NSTA Family 4. Novel mutation c.1051G>T (p.Val351Phe) and the known mutation c.467G>A (p.Arg156His) of Ectodysplasin A (EDA) were identified in families with XLHED. Novel EDA receptor (EDAR) mutation c.73C>T (p.Arg25*), known EDA mutation c.491A>C (p.Glu164Ala), and known Wnt family member 10A (WNT10A) mutations c.511C>T (p.Arg171Cys) and c.742C>T (p.Arg248*) were identified in families with NSTA. The novel EDA and EDAR mutations were predicted as being pathogenic through bioinformatics analyses and structural modeling. Two variants of WNT10A, c.374G>A (p.Arg125Lys) and c.125A>G (p.Asn42Ser), were found in patients with NSTA. The two WNT10A variants were predicted to affect the splicing of message RNA, but minigene experiments showed normal splicing of mutated minigenes. This study uncovered the genetic foundations with respect to six families with XLHED or NSTA. We identified six mutations, of which two were novel mutations of EDA and EDAR. This is the first report of a nonsense EDAR mutation leading to NSTA.
Collapse
Affiliation(s)
- Binghui Zeng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qi Zhao
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, China.
| | - Sijie Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Hui Lu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Jiaxuan Lu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Lan Ma
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Wei Zhao
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Dongsheng Yu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
15
|
Eight Mutations of Three Genes (EDA, EDAR, and WNT10A) Identified in Seven Hypohidrotic Ectodermal Dysplasia Patients. Genes (Basel) 2016; 7:genes7090065. [PMID: 27657131 PMCID: PMC5042395 DOI: 10.3390/genes7090065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 01/03/2023] Open
Abstract
Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the teeth, hair, and sweat glands. Ectodysplasin A (EDA), Ectodysplasin A receptor (EDAR), and EDAR-associated death domain (EDARADD) are candidate genes for HED, but the relationship between WNT10A and HED has not yet been validated. In this study, we included patients who presented at least two of the three ectodermal dysplasia features. The four genes were analyzed in seven HED patients by PCR and Sanger sequencing. Five EDA and one EDAR heterozygous mutations were identified in families 1–6. Two WNT10A heterozygous mutations were identified in family 7 as a compound heterozygote. c.662G>A (p.Gly221Asp) in EDA and c.354T>G (p.Tyr118*) in WNT10A are novel mutations. Bioinformatics analyses results confirmed the pathogenicity of the two novel mutations. In family 7, we also identified two single-nucleotide polymorphisms (SNPs) that were predicted to affect the splicing of EDAR. Analysis of the patient’s total RNA revealed normal splicing of EDAR. This ascertained that the compound heterozygous WNT10A mutations are the genetic defects that led to the onset of HED. Our data revealed the genetic basis of seven HED patients and expended the mutational spectrum. Interestingly, we confirmed WNT10A as a candidate gene of HED and we propose WNT10A to be tested in EDA-negative HED patients.
Collapse
|
16
|
De novo EDA mutations: Variable expression in two Egyptian families. Arch Oral Biol 2016; 68:21-8. [PMID: 27054699 DOI: 10.1016/j.archoralbio.2016.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Mutations in the EDA gene, encoding the epithelial morphogen ectodysplasin-A, can result in different but overlapping phenotypes. Therefore the aim of the study was to search for etiological variations of EDA and other candidate genes in two unrelated Egyptian male children with sporadic non-syndromic tooth agenesis (NTA) and hypohidrotic ectodermal dysplasia (HED). DESIGN Direct sequencing of the coding regions including exon-intron boundaries of EDA, MSX1, PAX9, WNT10A and EDAR was performed in probands and their available family members. RESULTS Two etiological mutations were found in the EDA coding region. The patient with NTA in both deciduous and permanent dentition was a carrier of a novel in-frame deletion situated in the short collagenous domain (c.663-680delTCCTCCTGGTCCTCAAGG, p.222-227delPPGPQG). The second mutation, located outside the minimal furin consensus motif (c.463C>T, p.Arg155Cys, rs132630312), was identified in the patient exhibiting all typical features of HED. The identified EDA mutations were not detected in probands' family members as well as in 188 unrelated control individuals. No pathogenic variants were found in the MSX1, PAX9, WNT10A and EDAR genes. CONCLUSION Our results increase the knowledge of the spectrum of EDA mutations and confirm that this gene is an important candidate gene for two developmental diseases sharing the common feature of the congenital lack of teeth. In addition, these results can support the hypothesis that X-linked HED and EDA-related NTA are the same disease with different degrees of severity.
Collapse
|