1
|
Fan Y, Liu W, Qi L, Zhao Q, Li S, Zou H, Kong C, Li Z, Ren J, Liu Z, Wang B. Correlation of disulfidptosis and periodontitis: New insights and clinical significance. Arch Oral Biol 2024; 166:106046. [PMID: 38991331 DOI: 10.1016/j.archoralbio.2024.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVES This study aims to investigate and predict the therapeutic agents associated with disulfidptosis in periodontitis. DESIGN The dataset GSE10334 was downloaded from the Gene Expression Omnibus (GEO) database and used to train a least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) algorithm to identify genes associated with disulfidptosis in periodontitis. GSE16134 validation sets, polymerase chain reaction (PCR), and gingival immunofluorescence were used to verify the results.Single-gene Gene Set Enrichment Analysis (GSEA) was performed to explore the potential mechanisms and functions of the characterized genes. Immune infiltration and correlation analyses were performed, and competing endogenous RNA (ceRNA) networks were constructed. Effective therapeutic drugs were then predicted using the DGIdb database, and molecular docking was used to validate binding affinity. RESULTS Six genes (SLC7A11, SLC3A2, RPN1, NCKAP1, LRPPRC, and NDUFS1) associated with disulfidptosis in periodontitis were obtained. Validation results from external datasets and experiments were consistent with the screening results. Single-gene GSEA analysis was mainly enriched for antigen presentation and immune-related pathways and functions.Immune infiltration and correlation analyses revealed significant regulatory relationships between these genes and plasma cells, resting dendritic cell, and activated NK cells. The ceRNA network was visualized. And ME-344, NV-128, and RILUZOLE, which have good affinity to target genes, were identified as promising agents for the treatment of periodontitis. CONCLUSIONS SLC7A11, SLC3A2, RPN1, NCKAP1, LRPPRC, and NDUFS1 are targets associated with disulfidptosis in periodontitis, and ME-344, NV-128, and RILUZOLE are promising agents for the treatment of periodontitis.
Collapse
Affiliation(s)
- Yixin Fan
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Wantong Liu
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Le Qi
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Qi Zhao
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Sining Li
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - He Zou
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Chen Kong
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Zhiwei Li
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Jiwei Ren
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Bowei Wang
- The Second Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Gonzalez OA, Kirakodu SS, Ebersole JL. DAMPs and alarmin gene expression patterns in aging healthy and diseased mucosal tissues. FRONTIERS IN ORAL HEALTH 2023; 4:1320083. [PMID: 38098978 PMCID: PMC10720672 DOI: 10.3389/froh.2023.1320083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Periodontitis is delineated by a dysbiotic microbiome at sites of lesions accompanied by a dysregulated persistent inflammatory response that undermines the integrity of the periodontium. The interplay of the altered microbial ecology and warning signals from host cells would be a critical feature for maintaining or re-establishing homeostasis in these tissues. Methods This study used a nonhuman primate model (Macaca mulatta) with naturally-occurring periodontitis (n = 34) and experimental ligature-induced periodontitis (n = 36) to describe the features of gene expression for an array of damage-associate molecular patterns (DAMPs) or alarmins within the gingival tissues. The animals were age stratified into: ≤3 years (Young), 7-12 years (Adolescent), 12-15 years (Adult) and 17-23 years (Aged). Gingival tissue biopsies were examined via microarray. The analysis focused on 51 genes representative of the DAMPs/alarmins family of host cell warning factors and 18 genes associated with tissue destructive processed in the gingival tissues. Bacterial plaque samples were collected by curette sampling and 16S rRNA gene sequences used to describe the oral microbiome. Results A subset of DAMPs/alarmins were expressed in healthy and naturally-occurring periodontitis tissues in the animals and suggested local effects on gingival tissues leading to altered levels of DAMPs/alarmins related to age and disease. Significant differences from adult healthy levels were most frequently observed in the young and adolescent animals with few representatives in this gene array altered in the healthy aged gingival tissues. Of the 51 target genes, only approximately ⅓ were altered by ≥1.5-fold in any of the age groups of animals during disease, with those increases observed during disease initiation. Distinctive positive and negative correlations were noted with the DAMP/alarmin gene levels and comparative expression changes of tissue destructive molecules during disease across the age groups. Finally, specific correlations of DAMP/alarmin genes and relative abundance of particular microbes were observed in health and resolution samples in younger animals, while increased correlations during disease in the older groups were noted. Conclusions Thus, using this human-like preclinical model of induced periodontitis, we demonstrated the dynamics of the activation of the DAMP/alarmin warning system in the gingival tissues that showed some specific differences based on age.
Collapse
Affiliation(s)
- O. A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - S. S. Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - J. L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
3
|
Panahipour L, Abbasabadi AO, Gruber R. Gingival Fibroblasts Are Sensitive to Oral Cell Lysates Indicated by Their IL11 Expression. Bioengineering (Basel) 2023; 10:1193. [PMID: 37892923 PMCID: PMC10604186 DOI: 10.3390/bioengineering10101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Damaged cells that appear as a consequence of invasive dental procedures or in response to dental materials are supposed to release damage-associated signals. These damage-associated signals not only support tissue regeneration but might also contribute to unwanted fibrosis. The aim of this study was to identify a molecular target that reflects how fibroblasts respond to necrotic oral tissue cells. To simulate the cell damage, we prepared necrotic cell lysates by sonication of the osteocytic cell line IDG-SW3 and exposed them to gingival fibroblasts. RNAseq revealed a moderate increase in IL11 expression in the gingival fibroblasts, a pleiotropic cytokine involved in fibrosis and inflammation, and also in regeneration following trauma. Necrotic lysates of the human squamous carcinoma cell lines HSC2 and TR146, as well as of gingival fibroblasts, however, caused a robust increase in IL11 expression in the gingival fibroblasts. Consistently, immunoassay revealed significantly increased IL11 levels in the gingival fibroblasts when exposed to the respective lysates. Considering that IL11 is a TGF-β target gene, IL11 expression was partially blocked by SB431542, a TGF-β receptor type I kinase inhibitor. Moreover, lysates from the HSC2, TR146, and gingival fibroblasts caused a moderate smad2/3 nuclear translocation in the gingival fibroblasts. Taken together and based on IL11 expression, our findings show that fibroblasts are sensitive to damaged oral tissue cells.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.)
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (A.O.A.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
4
|
He J, Zheng Z, Li S, Liao C, Li Y. Identification and assessment of differentially expressed necroptosis long non-coding RNAs associated with periodontitis in human. BMC Oral Health 2023; 23:632. [PMID: 37667236 PMCID: PMC10478209 DOI: 10.1186/s12903-023-03308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Periodontitis is the most common oral disease and is closely related to immune infiltration in the periodontal microenvironment and its poor prognosis is related to the complex immune response. The progression of periodontitis is closely related to necroptosis, but there is still no systematic study of long non-coding RNA (lncRNA) associated with necroptosis for diagnosis and treatment of periodontitis. MATERIAL AND METHODS Transcriptome data and clinical data of periodontitis and healthy populations were obtained from the Gene Expression Omnibus (GEO) database, and necroptosis-related genes were obtained from previously published literature. FactoMineR package in R was used to perform principal component analysis (PCA) for obtaining the necroptosis-related lncRNAs. The core necroptosis-related lncRNAs were screened by the Linear Models for Microarray Data (limma) package in R, PCA principal component analysis and lasso algorithm. These lncRNAs were then used to construct a classifier for periodontitis with logistic regression. The receiver operating characteristic (ROC) curve was used to evaluate the sensitivity and specificity of the model. The CIBERSORT method and ssGSEA algorithm were used to estimate the immune infiltration and immune pathway activation of periodontitis. Spearman's correlation analysis was used to further verify the correlation between core genes and periodontitis immune microenvironment. The expression level of core genes in human periodontal ligament cells (hPDLCs) was detected by RT-qPCR. RESULTS A total of 10 core necroptosis-related lncRNAs (10-lncRNAs) were identified, including EPB41L4A-AS1, FAM30A, LINC01004, MALAT1, MIAT, OSER1-DT, PCOLCE-AS1, RNF144A-AS1, CARMN, and LINC00582. The classifier for periodontitis was successfully constructed. The Area Under the Curve (AUC) was 0.952, which suggested that the model had good predictive performance. The correlation analysis of 10-lncRNAs and periodontitis immune microenvironment showed that 10-lncRNAs had an impact on the immune infiltration of periodontitis. Notably, the RT-qPCR results showed that the expression level of the 10-lncRNAs obtained was consistent with the chip analysis results. CONCLUSIONS The 10-lncRNAs identified from the GEO dataset had a significant impact on the immune infiltration of periodontitis and the classifier based on 10-lncRNAs had good detection efficiency for periodontitis, which provided a new target for diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Jiangfeng He
- Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Zhanglong Zheng
- Department of Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Sijin Li
- Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Chongshan Liao
- Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.
| | - Yongming Li
- Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.
| |
Collapse
|
5
|
Zhang K, Chen X, Zhou R, Chen Z, Wu B, Qiu W, Fang F. Inhibition of gingival fibroblast necroptosis mediated by RIPK3/MLKL attenuates periodontitis. J Clin Periodontol 2023; 50:1264-1279. [PMID: 37366309 DOI: 10.1111/jcpe.13841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/03/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
AIM Necroptosis participates in the pathogenesis of many inflammatory diseases, including periodontitis. Here, we aimed to investigate the role and mechanism of necroptosis inhibitors in attenuating periodontitis. MATERIALS AND METHODS The Gene Expression Omnibus (GEO) dataset GSE164241 was re-analysed to identify the role of necroptosis in periodontitis. Gingival specimens from healthy subjects or periodontitis patients were collected to evaluate the expression level of necroptosis-associated proteins. The therapeutic effect of necroptosis inhibitors on periodontitis was assessed in vivo and in vitro. Moreover, Transwell assays and Western blotting and siRNA transfection were used to identify the effects of necroptotic human gingival fibroblasts (hGFs) on THP-1 macrophages. RESULTS Re-analysis revealed that gingival fibroblasts (GFs) in periodontitis gingiva showed the highest area under the curve score of necroptosis. Elevated levels of necroptosis-associated proteins were identified in GFs in periodontitis gingiva collected from patients and mice. In ligature-induced periodontitis mice, local administration of receptor interacting protein kinase 3(RIPK3) inhibitor GSK'872 or sh-mixed-lineage kinase domain-like pseudokinase (Mlkl) markedly abrogated necroptosis and rescued periodontitis. Analogously, necroptosis inhibitors alleviated the inflammatory response and release of damage-associated molecular patterns in lipopolysaccharide- or LAZ (LPS + AZD'5582 + z-VAD-fmk, necroptosis inducer)-induced GFs and then reduced THP-1 cell migration and M1 polarization. CONCLUSIONS Necroptosis in GFs aggravated gingival inflammation and alveolar bone loss. Necroptosis inhibitors attenuate this process by modulating THP-1 macrophage migration and polarization. This study offers novel insights into the pathogenesis and potential therapeutic targets of periodontitis.
Collapse
Affiliation(s)
- Kaiying Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxin Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Akhondian S, Fatemi K, Ebrahim Zadeh N, Rezaee SA, Bayat S, Shooshtari Z, Mohajertehran F. Necroptosis has a crucial role in the development of chronic periodontitis. J Oral Biol Craniofac Res 2023; 13:465-470. [PMID: 37266108 PMCID: PMC10230260 DOI: 10.1016/j.jobcr.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Background and aim Periodontitis is a non-communicable chronic inflammatory disease that affects the entire periodontium and its severe types cause irreparable destruction. The purpose of this study was to determine the type of cell death in chronic periodontitis (CP) with the expression of receptor-interacting protein kinase (RIPK) type1 and RIPK3 genes. Materials and methods This cross-sectional study was carried out from September 2019 to 2020. The samples (38 participants) were divided into two groups: 20 recently diagnosed CP patients and 18 healthy individuals. Participants' data was collected in the periodontology Department, Dental school, Mashhad University of Medical Sciences and sent to the Immunology Lab for assessment of RIPK1 and RIPK3 expressions using quantitative real time-PCR. Results The study sample consisted of 30 females (78.9%) and 8 males (21.1%) with a mean age of 34 ± 5 years. The expression of the genes of interest in CPs exhibited an opposite pattern. Although, RIPK3 gene expression was significantly greater in CP patients compared to the control group (P = 0.024), the expression of RIPK1 decreased (p < 0.001). Moreover, no significant correlation was observed between age and gender with these molecules in CPs. Conclusion The RIPK3 selectively contributes to necroptosis, therefore, it seems that RIPK3-mediated necroptosis is involved in chronic periodontitis. RIPK1 also participates in necroptosis, but mostly in apoptosis. Therefore, necroptosis as an unprogrammed inflammatory cell death induced by pathogenic damages seems to be another mechanism complicated in periodontitis and could be used as a novel target for CP therapy.
Collapse
Affiliation(s)
- Salehe Akhondian
- Faculty of Dentistry, Mashhad University of Medical Science, Mashhad, Iran
| | - Kazem Fatemi
- Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Bayat
- Faculty of Dentistry, Mashhad University of Medical Science, Mashhad, Iran
| | - Zahra Shooshtari
- Dental Research Center, Mashhad Dental School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Mohajertehran
- Oral and Maxillofacial Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Oral Cell Lysates Reduce the Inflammatory Response of Activated Macrophages. J Clin Med 2023; 12:jcm12041701. [PMID: 36836236 PMCID: PMC9962209 DOI: 10.3390/jcm12041701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Necrotic cell damage occurs as a consequence of invasive dental procedures. Loss of membrane integrity being the hallmark of necrotic cells leads to the release of cytoplasmic and membranous components. Macrophages are predestined to respond to lysates originating from necrotic cells. Here, we implement necrotic lysates from human gingival fibroblasts, HSC2, and TR146 oral epithelial cell lines, and RAW264.7 macrophage cell lines to be tested for their potential to modulate the inflammatory response of macrophages. To this aim, necrotic cell lysates were prepared by sonication or freezing/thawing of the respective cell suspension. Necrotic cell lysates were tested for their potential to modulate the lipopolysaccharide (LPS)-induced expression of inflammatory cytokines using RAW264.7 macrophages as a bioassay. We show here that all necrotic cell lysates, independent of the origin and the preparation way, reduced the expression of IL1 and IL6 in LPS-induced RAW264.7 macrophages, most obviously shown for TR146 cells. This finding was supported in a bioassay when macrophages were exposed to poly (I:C) HMW, an agonist of TLR-3. Consistently, all necrotic lysates from gingival fibroblasts, HSC2, TR146, and RAW264.7 cells reduced the nuclear translocation of p65 in LPS-exposed macrophages. This screening approach supports the overall concept that necrotic cell lysates can modulate the inflammatory capacity of macrophages.
Collapse
|
8
|
Panahipour L, Cervantes LCC, Oladzad Abbasabadi A, Sordi MB, Kargarpour Z, Gruber R. Blocking of Caspases Exerts Anti-Inflammatory Effects on Periodontal Cells. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071045. [PMID: 35888133 PMCID: PMC9316350 DOI: 10.3390/life12071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Periodontitis is an inflammatory process that is associated with caspase activity. Caspases could thus become molecular targets for the modulation of the inflammatory response to harmful factors, such as lipopolysaccharides (LPS) and TNFα. Here, the impact of the pan-caspase inhibitor Z-VAD-FMK (carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoro-methyl ketone) on the modulation of the LPS-induced inflammatory response of murine RAW 264.7 cells and primary macrophages was examined. Moreover, the inflammatory responses of human gingival fibroblasts, HSC2 oral squamous carcinoma cells and murine ST2 mesenchymal fibroblasts when exposed to TNFα were studied. Data showed that Z-VAD-FMK significantly lowered the inflammatory response of RAW 264.7 cells and primary macrophages, as indicated by the expression of IL1 and IL6. In murine ST2 mesenchymal fibroblasts, the TNFα-induced expression of CCL2 and CCL5 was significantly reduced. In human gingival fibroblasts and HSC2 cells, Z-VAD-FMK considerably reduced the TNFα-induced expression of CXCL8 and CXCL10. These findings suggest that pharmacological blocking of caspases in an inflammatory environment lowers the expression of cytokines and chemokines in periodontal cells.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (L.C.C.C.); (A.O.A.); (M.B.S.); (Z.K.)
| | - Lara Cristina Cunha Cervantes
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (L.C.C.C.); (A.O.A.); (M.B.S.); (Z.K.)
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Sao Paulo 16015-050, Brazil
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (L.C.C.C.); (A.O.A.); (M.B.S.); (Z.K.)
| | - Mariane Beatriz Sordi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (L.C.C.C.); (A.O.A.); (M.B.S.); (Z.K.)
- Centre for Research on Dental Implants (CEPID), Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianopolis 88040-900, Brazil
| | - Zahra Kargarpour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (L.C.C.C.); (A.O.A.); (M.B.S.); (Z.K.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (L.C.C.C.); (A.O.A.); (M.B.S.); (Z.K.)
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria
- Correspondence:
| |
Collapse
|
9
|
Geng F, Liu J, Yin C, Zhang S, Pan Y, Sun H. Porphyromonas gingivalis lipopolysaccharide induced RIPK3/MLKL-mediated necroptosis of oral epithelial cells and the further regulation in macrophage activation. J Oral Microbiol 2022; 14:2041790. [PMID: 35251521 PMCID: PMC8890547 DOI: 10.1080/20002297.2022.2041790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Necroptosis, a new type of regulated cell death with massive release of damage-associated molecular patterns (DAMPs), is involved in the pathogenesis of periodontitis. However, the role of necroptosis in oral epithelial cells and the following effect on macrophages activation remain unknown. Human immortalized oral epithelial cells were stimulated with Porphyromonas gingivalis lipopolysaccharide (LPS). Cell death was assessed while expressions of RIPK3/MLKL and toll-like receptors (TLRs) were evaluated. Necrosulfonamide (NSA), an inhibitor of MLKL was applied to block necroptosis. The expression of DAMPs and the epithelial connection protein were evaluated by qPCR and immunofluorescence, respectively. Immortalized human monocytes U937 were induced into the M0 or M2 subset, and influences of HIOECs-derived DAMPs on macrophage polarization as well as activation of the Mincle/SYK axis were assessed. P. gingivalis LPS could be recognized by TLR2 and regulates necroptosis of HIOECs by activating RIPK3/MLKL. NSA inhibited cell death of HIOECs, alleviated impaired epithelial connection, and inhibited expressions of DAMPs. Low dose of DAMPs derived from HIOECs promoted M2-like polarization by activating the Mincle/SYK axis, which was significantly suppressed with increased doses of DAMPs. P. gingivalis LPS destructed oral epithelial cells via RIPK3/MLKL-mediated necroptosis, which further regulated macrophage activation via DAMPs from oral epithelial cells.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chengcheng Yin
- Center of Implant Dentistry School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shuwei Zhang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics and Oral Biology, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hongchen Sun
- Department of Oral Pathology, China Medical University School of Stomatology, Shenyang, China
| |
Collapse
|
10
|
Aguirre JI, Castillo EJ, Kimmel DB. Biologic and pathologic aspects of osteocytes in the setting of medication-related osteonecrosis of the jaw (MRONJ). Bone 2021; 153:116168. [PMID: 34487892 PMCID: PMC8478908 DOI: 10.1016/j.bone.2021.116168] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a potentially severe, debilitating condition affecting patients with cancer and patients with osteoporosis who have been treated with powerful antiresorptives (pARs) or angiogenesis inhibitors (AgIs). Oral risk factors associated with the development of MRONJ include tooth extraction and inflammatory dental disease (e.g., periodontitis, periapical infection). In bone tissues, osteocytes play a bidirectional role in which they not only act as the "receiver" of systemic signals from blood vessels, such as hormones and drugs, or local signals from the mineralized matrix as it is deformed, but they also play a critical role as "transmitter" of signals to the cells that execute bone modeling and remodeling (osteoclasts, osteoblasts and lining cells). When the survival capacity of osteocytes is overwhelmed, they can die. Osteocyte death has been associated with several pathological conditions. Whereas the causes and mechanisms of osteocyte death have been studied in conditions like osteonecrosis of the femoral head (ONFH), few studies of the causes and mechanisms of osteocyte death have been done in MRONJ. The three forms of cell death that affect most of the different cells in the body (apoptosis, autophagy, and necrosis) have been recognized in osteocytes. Notably, necroptosis, a form of regulated cell death with "a necrotic cell death phenotype," has also been identified as a form of cell death in osteocytes under certain pathologic conditions. Improving the understanding of osteocyte death in MRONJ may be critical for preventing disease and developing treatment approaches. In this review, we intend to provide insight into the biology of osteocytes, cell death, in general, and osteocyte death, in particular, and discuss hypothetical mechanisms involved in osteocyte death associated with MRONJ.
Collapse
Affiliation(s)
- J I Aguirre
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - E J Castillo
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America.
| | - D B Kimmel
- Department of Physiological Sciences, University of Florida (UF), Gainesville, FL, United States of America
| |
Collapse
|
11
|
Liu X, Xie X, Ren Y, Shao Z, Zhang N, Li L, Ding X, Zhang L. The role of necroptosis in disease and treatment. MedComm (Beijing) 2021; 2:730-755. [PMID: 34977874 PMCID: PMC8706757 DOI: 10.1002/mco2.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Necroptosis, a distinctive type of programmed cell death different from apoptosis or necrosis, triggered by a series of death receptors such as tumor necrosis factor receptor 1 (TNFR1), TNFR2, and Fas. In case that apoptosis process is blocked, necroptosis pathway is initiated with the activation of three key downstream mediators which are receptor-interacting serine/threonine protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). The whole process eventually leads to destruction of the cell membrane integrity, swelling of organelles, and severe inflammation. Over the past decade, necroptosis has been found widely involved in life process of human beings and animals. In this review, we attempt to explore the therapeutic prospects of necroptosis regulators by describing its molecular mechanism and the role it played in pathological condition and tissue homeostasis, and to summarize the research and clinical applications of corresponding regulators including small molecule inhibitors, chemicals, Chinese herbal extracts, and biological agents in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Xie
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Yuanyuan Ren
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Zhiying Shao
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Cancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Nie Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Liantao Li
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Ding
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Longzhen Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| |
Collapse
|
12
|
Li YY, Cai Q, Li BS, Qiao SW, Jiang JY, Wang D, Du XC, Meng WY. The Effect of Porphyromonas gingivalis Lipopolysaccharide on the Pyroptosis of Gingival Fibroblasts. Inflammation 2021; 44:846-858. [PMID: 33140204 DOI: 10.1007/s10753-020-01379-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022]
Abstract
Periodontitis is a chronic inflammatory disease induced by Porphyromonas gingivalis (P. gingivalis) and other pathogens. P. gingivalis release various virulence factors including lipopolysaccharide (LPS). However, whether P. gingivalis-LPS inducing pyroptosis in human gingival fibroblasts (HGFs) remains unknown. In present study, P. gingivalis-LPS decreased the membrane integrity of HGFs, and pyroptosis-associated cytokines were upregulated at the mRNA level. In addition, pyroptosis proteins were highly expressed in gingival tissues of periodontitis. P. gingivalis-LPS induced gingivitis in the rat model, and the expression level of pyroptosis-associated proteins increased. Together, P. gingivalis-LPS can activate the pyroptosis reaction, which may be a pro-pyroptosis status in a relative low concentration.
Collapse
Affiliation(s)
- Yu-Yang Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Qing Cai
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Bao-Sheng Li
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Shu-Wei Qiao
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Jia-Yang Jiang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Dan Wang
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Xue-Chun Du
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, Jilin, China
| | - Wei-Yan Meng
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
13
|
Wei X, Liu Q, Guo S, Wu Y. Role of Wnt5a in periodontal tissue development, maintenance, and periodontitis: Implications for periodontal regeneration (Review). Mol Med Rep 2021; 23:167. [PMID: 33398377 PMCID: PMC7821221 DOI: 10.3892/mmr.2020.11806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023] Open
Abstract
The periodontium is a highly dynamic microenvironment constantly adapting to changing external conditions. In the processes of periodontal tissue formation and remodeling, certain molecules may serve an essential role in maintaining periodontal homeostasis. Wnt family member 5a (Wnt5a), as a member of the Wnt family, has been identified to have extensive biological roles in development and disease, predominantly through the non‑canonical Wnt signaling pathway or through interplay with the canonical Wnt signaling pathway. An increasing number of studies has also demonstrated that it serves crucial roles in periodontal tissues. Wnt5a participates in the development of periodontal tissues, maintains a non‑mineralized state of periodontal ligament, and regulates bone homeostasis. In addition, Wnt5a is involved in the pathogenesis of periodontitis. Recently, it has been shown to serve a positive role in the regeneration of integrated periodontal complex. The present review article focuses on recent research studies of Wnt5a and its functions in development, maintenance, and pathological disorders of periodontal tissues, as well as its potential effect on periodontal regeneration.
Collapse
Affiliation(s)
- Xiuqun Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
14
|
Magrin GL, Strauss FJ, Benfatti CAM, Maia LC, Gruber R. Effects of Short-Chain Fatty Acids on Human Oral Epithelial Cells and the Potential Impact on Periodontal Disease: A Systematic Review of In Vitro Studies. Int J Mol Sci 2020; 21:ijms21144895. [PMID: 32664466 PMCID: PMC7402343 DOI: 10.3390/ijms21144895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Short-chain fatty acids (SCFA), bacterial metabolites released from dental biofilm, are supposed to target the oral epithelium. There is, however, no consensus on how SCFA affect the oral epithelial cells. The objective of the present study was to systematically review the available in vitro evidence of the impact of SCFA on human oral epithelial cells in the context of periodontal disease. A comprehensive electronic search using five databases along with a grey literature search was performed. In vitro studies that evaluated the effects of SCFA on human oral epithelial cells were eligible for inclusion. Risk of bias was assessed by the University of Bristol's tool for assessing risk of bias in cell culture studies. Certainty in cumulative evidence was evaluated using GRADE criteria (grading of recommendations assessment, development, and evaluation). Of 3591 records identified, 10 were eligible for inclusion. A meta-analysis was not possible due to the heterogeneity between the studies. The risk of bias across the studies was considered "serious" due to the presence of methodological biases. Despite these limitations, this review showed that SCFA negatively affect the viability of oral epithelial cells by activating a series of cellular events that includes apoptosis, autophagy, and pyroptosis. SCFA impair the integrity and presumably the transmigration of leucocytes through the epithelial layer by changing junctional and adhesion protein expression, respectively. SCFA also affect the expression of chemokines and cytokines in oral epithelial cells. Future research needs to identify the underlying signaling cascades and to translate the in vitro findings into preclinical models.
Collapse
Affiliation(s)
- Gabriel Leonardo Magrin
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (G.L.M.); (F.J.S.)
- Department of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis 88040-900, Brazil;
| | - Franz Josef Strauss
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (G.L.M.); (F.J.S.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Av. Sergio Livingstone 943, Santiago 7500566, Chile
| | - Cesar Augusto Magalhães Benfatti
- Department of Dentistry, Center for Education and Research on Dental Implants, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis 88040-900, Brazil;
| | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 325, Rio de Janeiro 21941-617, Brazil;
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (G.L.M.); (F.J.S.)
- Correspondence:
| |
Collapse
|
15
|
Panahipour L, Kochergina E, Laggner M, Zimmermann M, Mildner M, Ankersmit HJ, Gruber R. Role for Lipids Secreted by Irradiated Peripheral Blood Mononuclear Cells in Inflammatory Resolution in Vitro. Int J Mol Sci 2020; 21:ijms21134694. [PMID: 32630157 PMCID: PMC7370068 DOI: 10.3390/ijms21134694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022] Open
Abstract
Periodontal inflammation is associated with dying cells that potentially release metabolites helping to promote inflammatory resolution. We had shown earlier that the secretome of irradiated, dying peripheral blood mononuclear cells support in vitro angiogenesis. However, the ability of the secretome to promote inflammatory resolution remains unknown. Here, we determined the expression changes of inflammatory cytokines in murine bone marrow macrophages, RAW264.7 cells, and gingival fibroblasts exposed to the secretome obtained from γ-irradiated peripheral blood mononuclear cells in vitro by RT-PCR and immunoassays. Nuclear translocation of p65 was detected by immunofluorescence staining. Phosphorylation of p65 and degradation of IκB was determined by Western blot. The secretome of irradiated peripheral blood mononuclear cells significantly decreased the expression of IL1 and IL6 in primary macrophages and RAW264.7 cells when exposed to LPS or saliva, and of IL1, IL6, and IL8 in gingival fibroblasts when exposed to IL-1β and TNFα. These changes were associated with decreased phosphorylation and nuclear translocation of p65 but not degradation of IκB in macrophages. We also show that the lipid fraction of the secretome lowered the inflammatory response of macrophages exposed to the inflammatory cues. These results demonstrate that the secretome of irradiated peripheral blood mononuclear cells can lower an in vitro simulated inflammatory response, supporting the overall concept that the secretome of dying cells promotes inflammatory resolution.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (E.K.)
| | - Evgeniya Kochergina
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (E.K.)
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Währingergürtel 18-20, 1090 Vienna, Austria; (M.L.); (H.J.A.)
- Division of Thoracic Surgery, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
| | - Matthias Zimmermann
- Department of Oral and Maxillofacial Surgery, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Hendrik J. Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Währingergürtel 18-20, 1090 Vienna, Austria; (M.L.); (H.J.A.)
- Division of Thoracic Surgery, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (E.K.)
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria
- Correspondence:
| |
Collapse
|
16
|
Loss of periodontal ligament fibroblasts by RIPK3-MLKL-mediated necroptosis in the progress of chronic periodontitis. Sci Rep 2019; 9:2902. [PMID: 30814594 PMCID: PMC6393530 DOI: 10.1038/s41598-019-39721-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontal homeostasis is maintained by the dynamic equilibrium between cell death, differentiation and proliferation of resident cells in the periodontal microenvironment. Loss of resident periodontal ligament fibroblasts (PDLFs) has been a major challenge in the periodontal treatment. This study aimed to investigate the exact role of necroptotic cell death in periodontal diseases. Elevated levels of receptor-interacting protein serine-threonine kinases -1 (RIPK1), phosphorylated RIPK3, mixed lineage kinase domain-like protein (MLKL), phosphorylated MLKL and FLIPL were observed in gingival tissues collected from patients with untreated chronic periodontitis; whereas no difference in caspase 8 was observed between the periodontitis and healthy control group. In contrast to the high incidence of necroptotic cell death in monocytes during live P. gingivalis infection with a low multiplicity of infection (MOI), necroptosis was only observed in PDLFs with a high MOI. Priming PDLFs with frozen thawed monocytes enhanced proinflammatory responses to P. gingivalis infection; moreover, frozen thawed monocytes stimulation triggered RIPK1, RIPK3 and MLKL-mediated-necroptotic cell death in PDLFs. These results indicated that RIPK3 and MLKL-mediated-necroptotic cell death participated in the pathogenesis of periodontitis, and DAMPs released from monocytes after P. gingivalis stimulation by necroptosis triggered not only inflammatory responses, but also necroptosis of PDLFs.
Collapse
|
17
|
Yan B, Wei K, Hou L, Dai T, Gu Y, Qiu X, Chen J, Feng Y, Cheng H, Yu Z, Zhang Y, Zhang H, Li D. Receptor-Interacting Protein 3/Caspase-8 May Regulate Inflammatory Response and Promote Tissue Regeneration in the Periodontal Microenvironment. Med Sci Monit 2018; 24:5247-5257. [PMID: 30057402 PMCID: PMC6080583 DOI: 10.12659/msm.909192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Periodontal ligament stem cells (PDLSCs) possess characteristics of multi-potential differentiation and immuno-modulation, and PDLSCs-mediated periodontal tissue regeneration is regarded as a hopeful method for periodontitis treatment. Recent studies demonstrated that RIP3 and caspase8 regulate bacteria-induced innate immune response and programmed necrosis, which is also called necroptosis. This study aimed to determine the role of the RIP3/Caspase8 signal pathway on necroptosis of PDLSCs under the inflammatory microenvironment, both in vitro and in vivo. Material/Methods PDLSCs were cultured, and transmission electron microscopy and flow cytometry were used to detect necroptosis. PCR, ALP, and Alizarin Red S staining were used to assess the effect of necroptosis on osteogenesis differentiation of PDLSCs in vitro, while HE and Masson staining were taken after the nude mouse subcutaneous transplant experiment. Results Our research indicates that RIP3/caspase8 can regulate the immune response of PDLSCs, and blockade of RIP3/caspase8 can protect the biological characteristics of the PDLSCs, effectively promoting periodontal tissue regeneration in the inflammatory microenvironment. Conclusions Inhibiting RIP3/caspase8 can effectively promote periodontal tissue regeneration in the inflammatory microenvironment.
Collapse
Affiliation(s)
- Bingbing Yan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Kewen Wei
- Department of Burns and Plastic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Lipeng Hou
- Department of Stomatology, Ninth Hospital, Xi'an, Shaanxi, China (mainland)
| | - Taiqiang Dai
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Yongchun Gu
- Department of Dentistry, First People's Hospital of Wujiang Dist, Nantong University, Suzhou, Jiangsu, China (mainland)
| | - Xinyu Qiu
- Research and Development Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Jiangwei Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Yuan Feng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Haode Cheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Zhuo Yu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Yizhe Zhang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Hongmei Zhang
- Department of Burns and Plastic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Dehua Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|