1
|
Yoshioka H, Suzuki A, Iwaya C, Iwata J. Suppression of microRNA 124-3p and microRNA 340-5p ameliorates retinoic acid-induced cleft palate in mice. Development 2022; 149:275062. [PMID: 35420127 PMCID: PMC9148563 DOI: 10.1242/dev.200476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The etiology of cleft lip with or without cleft palate (CL/P), a common congenital birth defect, is complex, with genetic and epigenetic, as well as environmental, contributing factors. Recent studies suggest that fetal development is affected by maternal conditions through microRNAs (miRNAs), a group of short noncoding RNAs. Here, we show that miR-129-5p and miR-340-5p suppress cell proliferation in both primary mouse embryonic palatal mesenchymal cells and O9-1 cells, a neural crest cell line, through the regulation of Sox5 and Trp53 by miR-129-5p, and the regulation of Chd7, Fign and Tgfbr1 by miR-340-5p. Notably, miR-340-5p, but not miR-129-5p, was upregulated following all-trans retinoic acid (atRA; tretinoin) administration, and a miR-340-5p inhibitor rescued the cleft palate (CP) phenotype in 47% of atRA-induced CP mice. We have previously reported that a miR-124-3p inhibitor can also partially rescue the CP phenotype in atRA-induced CP mouse model. In this study, we found that a cocktail of miR-124-3p and miR-340-5p inhibitors rescued atRA-induced CP with almost complete penetrance. Taken together, our results suggest that normalization of pathological miRNA expression can be a preventive intervention for CP.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
2
|
Askarian S, Gholami M, Khalili-Tanha G, Tehrani NC, Joudi M, Khazaei M, Ferns GA, Hassanian SM, Avan A, Joodi M. The genetic factors contributing to the risk of cleft lip-cleft palate and their clinical utility. Oral Maxillofac Surg 2022:10.1007/s10006-022-01052-3. [PMID: 35426585 DOI: 10.1007/s10006-022-01052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Cleft lip and cleft palate (CL/P) are among the most common congenital malformations in neonates and have syndromic or nonsyndromic forms. Nonsyndromic forms of malformation are being reported to be associated with chromosomal DNA modification by teratogenic exposure and to complex genetic contributions of multiple genes. Syndromic forms are shown to be related to chromosomal aberrations or monogenic diseases. There is a growing body of data illustrating the association of several genes with risk of developing this malformation, including genetic defects in T-box transcription factor-22 (TBX22), interferon regulatory factor-6 (IRF6), and poliovirus receptor-like-1 (PVRL1), responsible for X-linked cleft palate, cleft lip/palate-ectodermal dysplasia syndrome, and Van der Woude and popliteal pterygium syndromes, respectively. Genetic variants in MTR, PCYT1A, ASS1, SLC 25A13, GSTM1, GSTT1, SUMO1 BHMT1, and BHMT2 are being reported to be linked with CL/P risk. The etiology of nonsyndromic CLP is still remained to be unknown, although mutations in candidate genes have been found. Here, we provide an overview about the potential variants to be associated with CL/P for identification of the relative risk of CLP with respect to the basis of genetic background and environmental factors (e.g., dietary factors, alcohol use).
Collapse
Affiliation(s)
- Saeedeh Askarian
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Masoumeh Gholami
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Chaeichi Tehrani
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Joudi
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Marjan Joodi
- Endoscopic and Minimally Invasive Surgery Research Center, Sarvar Children's Hospital, Mashhad, Iran. .,Department of Pediatric Surgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Yoshioka H, Li A, Suzuki A, Ramakrishnan SS, Zhao Z, Iwata J. Identification of microRNAs and gene regulatory networks in cleft lip common in humans and mice. Hum Mol Genet 2021; 30:1881-1893. [PMID: 34104955 PMCID: PMC8444451 DOI: 10.1093/hmg/ddab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
The etiology of cleft lip with/without cleft palate (CL/P), one of the most frequent craniofacial birth defects worldwide, is complicated by contributions of both genetic and environmental factors. Understanding the etiology of these conditions is essential for developing preventive strategies. This study thus aims to identify regulatory networks of microRNAs (miRNAs), transcriptional factors (TFs) and non-TF genes associated with cleft lip (CL) that are conserved in humans and mice. Notably, we found that miR-27b, miR-133b, miR-205, miR-376b and miR-376c were involved in the regulation of CL-associated gene expression in both humans and mice. Among the candidate miRNAs, the overexpression of miR-27b, miR-133b and miR-205, but not miR-376b and miR-376c, significantly inhibited cell proliferation through suppression of CL-associated genes (miR-27b suppressed PAX9 and RARA; miR-133b suppressed FGFR1, PAX7, and SUMO1; and miR-205 suppressed PAX9 and RARA) in cultured human and mouse lip mesenchymal cells. Taken together, our results suggest that elevated expression of miR-27b, miR-133b and miR-205 may play a crucial role in CL through the suppression of genes associated with CL.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Aimin Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
4
|
Individual and joint effects of genetic polymorphisms in microRNA-machinery genes on congenital heart disease susceptibility. Cardiol Young 2021; 31:965-968. [PMID: 33423710 DOI: 10.1017/s1047951120004874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Single-nucleotide polymorphisms in miRNA-machinery genes may alter the biogenesis of miRNAs affecting disease susceptibility. In this case-control study, we aimed to evaluate the impact of three single-nucleotide polymorphisms (DICER rs1057035, DROSHA rs10719, and XPO5 rs11077) and their combined effect in a genetic risk score model on congenital heart disease (CHD) risk. A total of 639 participants was recruited, including 125 patients with CHD (65 males; age 9.2 ± 10 years) and 514 healthy controls (289 males; age 15.8 ± 18 years). Genotyping of polymorphisms in miRNA-machinery genes was performed using a TaqMan®SNP genotyping assay. A genetic risk score was calculated by summing the number of risk alleles of selected single-nucleotide polymorphisms. There was a significantly increased risk of CHD in patients with XPO5 rs11077 CC genotype as compared to AC heterozygote and AA homozygote patients (ORadjusted = 1.7; 95% CI: 1.1-2.8; p = 0.018). A clear tendency to significance was also found for DROSHA rs10719 AA genotype and CHD risk for both codominant and recessive models (ORadjusted = 1.8; 95% CI: 0.91-3.8; p = 0.09 and ORadjusted = 1.9; 95% CI: 0.92-4; p = 0.08, respectively). The resulting genetic risk score predicted a 1.73 risk for CHD per risk allele (95% CI: 1.2-2.5; p = 0.002). Subjects in the top tertile of genetic risk score were estimated to have more than three-fold increased risk of CHD compared with those in the bottom tertile (ORadjusted = 3.52; 95% CI: 1.4-9; p = 0.009). Our findings show that the genetic variants in miRNA-machinery genes might participate in the development of CHD.
Collapse
|
5
|
Yoshioka H, Ramakrishnan SS, Suzuki A, Iwata J. Phenytoin Inhibits Cell Proliferation through microRNA-196a-5p in Mouse Lip Mesenchymal Cells. Int J Mol Sci 2021; 22:1746. [PMID: 33572377 PMCID: PMC7916186 DOI: 10.3390/ijms22041746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023] Open
Abstract
Cleft lip (CL) is one of the most common birth defects. It is caused by either genetic mutations or environmental factors. Recent studies suggest that environmental factors influence the expression of noncoding RNAs [e.g., microRNA (miRNA)], which can regulate the expression of genes crucial for cellular functions. In this study, we examined which miRNAs are associated with CL. Among 10 candidate miRNAs (miR-98-3p, miR-101a-3p, miR-101b-3p, miR-141-3p, miR-144-3p, miR-181a-5p, miR-196a-5p, miR-196b-5p, miR-200a-3p, and miR-710) identified through our bioinformatic analysis of CL-associated genes, overexpression of miR-181a-5p, miR-196a-5p, miR-196b-5p, and miR-710 inhibited cell proliferation through suppression of genes associated with CL in cultured mouse embryonic lip mesenchymal cells (MELM cells) and O9-1 cells, a mouse cranial neural crest cell line. In addition, we found that phenytoin, an inducer of CL, decreased cell proliferation through miR-196a-5p induction. Notably, treatment with a specific inhibitor for miR-196a-5p restored cell proliferation through normalization of expression of CL-associated genes in the cells treated with phenytoin. Taken together, our results suggest that phenytoin induces CL through miR-196a-5p induction, which suppresses the expression of CL-associated genes.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (H.Y.); (S.S.R.); (A.S.)
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
6
|
Cardoso JV, Medeiros R, Dias F, Costa IA, Ferrari R, Berardo PT, Perini JA. DROSHA rs10719 and DICER1 rs3742330 polymorphisms in endometriosis and different diseases: Case-control and review studies. Exp Mol Pathol 2021; 119:104616. [PMID: 33535080 DOI: 10.1016/j.yexmp.2021.104616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE DROSHA and DICER1 enzymes participate in the main stages of microRNA synthesis. Polymorphisms can influence mRNAs stability and genes expression, and hence affect the binding of miRNAs. Thus, the present study evaluated the association of DROSHA and DICER1 polymorphisms in the development of endometriosis and other diseases. METHODS A total of 240 endometriosis cases and 242 controls were genotyped for the DROSHA rs10719 G > A and DICER1 rs3742330 A > G polymorphisms using the TaqMan system. The association between polymorphisms and endometriosis was estimated by binary logistic regression. A literature review was also performed including all published articles (PubMed database) until December 2020, regarding the association of the studied polymorphisms and different diseases. RESULTS DICER1 rs3742330GG was only found in endometriosis cases (2.1%) and deep infiltrative endometriosis (DIE) (2.5%). The DICER1 rs3742330GG genotype was significantly associated with endometriosis (P < 0.05), suggesting a tendency to present an increased risk for disease. DROSHA rs10719A and DICER1 rs3742330G allele frequencies varied among populations (6%-79% and 10.2%-55.1%, respectively). In the Brazilian population, the frequencies of these alleles were 42.3% and 7.3%, respectively. Both polymorphisms were risk factors for nonsyndromic orofacial clefts, tuberculosis, stroke ischemia and mortality after stroke, recurrent idiopathic pregnancy loss, and some types of cancer. Moreover, the DICER1 rs3742330 polymorphism was a protective factor for precancerous cervical lesions, different types of cancer and tuberculosis. CONCLUSIONS The results suggest that only the DICER1 rs3742330 A > G polymorphism may be associated with susceptibility to endometriosis. The frequencies of both polymorphisms were significantly different among populations, and there were discrepancies in the risk associations with the development of diseases.
Collapse
Affiliation(s)
- Jéssica Vilarinho Cardoso
- Laboratório de Pesquisa de Ciências Farmacêuticas, Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Programa de Pós-guaduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Rui Medeiros
- Grupo de Oncologia Molecular -CI, Instituto Português de Oncologia, Porto, Portugal
| | - Francisca Dias
- Grupo de Oncologia Molecular -CI, Instituto Português de Oncologia, Porto, Portugal
| | - Isabelle Alves Costa
- Laboratório de Pesquisa de Ciências Farmacêuticas, Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil
| | - Renato Ferrari
- Instituto de Ginecologia, Hospital Moncorvo Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Plinio Tostes Berardo
- Departamento de Ginecologia, Faculdade de Medicina, Universidade Estácio de Sá, Rio de Janeiro, RJ, Brazil; Serviço de Ginecologia, Hospital Federal dos Servidores do Estado, Rio de Janeiro, RJ, Brazil
| | - Jamila Alessandra Perini
- Laboratório de Pesquisa de Ciências Farmacêuticas, Unidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brazil; Programa de Pós-guaduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Yoshioka H, Mikami Y, Ramakrishnan SS, Suzuki A, Iwata J. MicroRNA-124-3p Plays a Crucial Role in Cleft Palate Induced by Retinoic Acid. Front Cell Dev Biol 2021; 9:621045. [PMID: 34178974 PMCID: PMC8219963 DOI: 10.3389/fcell.2021.621045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Cleft lip with/without cleft palate (CL/P) is one of the most common congenital birth defects, showing the complexity of both genetic and environmental contributions [e.g., maternal exposure to alcohol, cigarette, and retinoic acid (RA)] in humans. Recent studies suggest that epigenetic factors, including microRNAs (miRs), are altered by various environmental factors. In this study, to investigate whether and how miRs are involved in cleft palate (CP) induced by excessive intake of all-trans RA (atRA), we evaluated top 10 candidate miRs, which were selected through our bioinformatic analyses, in mouse embryonic palatal mesenchymal (MEPM) cells as well as in mouse embryos treated with atRA. Among them, overexpression of miR-27a-3p, miR-27b-3p, and miR-124-3p resulted in the significant reduction of cell proliferation in MEPM cells through the downregulation of CP-associated genes. Notably, we found that excessive atRA upregulated the expression of miR-124-3p, but not of miR-27a-3p and miR-27b-3p, in both in vivo and in vitro. Importantly, treatment with a specific inhibitor for miR-124-3p restored decreased cell proliferation through the normalization of target gene expression in atRA-treated MEPM cells and atRA-exposed mouse embryos, resulting in the rescue of CP in mice. Taken together, our results indicate that atRA causes CP through the induction of miR-124-3p in mice.
Collapse
Affiliation(s)
- Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yurie Mikami
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sai Shankar Ramakrishnan
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
8
|
Morris VE, Hashmi SS, Zhu L, Maili L, Urbina C, Blackwell S, Greives MR, Buchanan EP, Mulliken JB, Blanton SH, Zheng WJ, Hecht JT, Letra A. Evidence for craniofacial enhancer variation underlying nonsyndromic cleft lip and palate. Hum Genet 2020; 139:1261-1272. [PMID: 32318854 DOI: 10.1007/s00439-020-02169-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect for which only ~ 20% of the underlying genetic variation has been identified. Variants in noncoding regions have been increasingly suggested to contribute to the missing heritability. In this study, we investigated whether variation in craniofacial enhancers contributes to NSCLP. Candidate enhancers were identified using VISTA Enhancer Browser and previous publications. Prioritization was based on patterning defects in knockout mice, deletion/duplication of craniofacial genes in animal models and results of whole exome/whole genome sequencing studies. This resulted in 20 craniofacial enhancers to be investigated. Custom amplicon-based sequencing probes were designed and used for sequencing 380 NSCLP probands (from multiplex and simplex families of non-Hispanic white (NHW) and Hispanic ethnicities) using Illumina MiSeq. The frequencies of identified variants were compared to ethnically matched European (CEU) and Los Angeles Mexican (MXL) control genomes and used for association analyses. Variants in mm427/MSX1 and hs1582/SPRY1 showed genome-wide significant association with NSCLP (p ≤ 6.4 × 10-11). In silico analysis showed that these enhancer variants may disrupt important transcription factor binding sites. Haplotypes involving these enhancers and also mm435/ABCA4 were significantly associated with NSCLP, especially in NHW (p ≤ 6.3 × 10-7). Importantly, groupwise burden analysis showed several enhancer combinations significantly over-represented in NSCLP individuals, revealing novel NSCLP pathways and supporting a polygenic inheritance model. Our findings support the role of craniofacial enhancer sequence variation in the etiology of NSCLP.
Collapse
Affiliation(s)
- Vershanna E Morris
- Department of Pediatrics, UTHealth McGovern Medical School, Houston, TX, 77030, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, 77030, USA
| | - S Shahrukh Hashmi
- Department of Pediatrics, UTHealth McGovern Medical School, Houston, TX, 77030, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, 77030, USA
| | - Lisha Zhu
- UTHealth School of Biomedical Informatics, Houston, TX, 77054, USA
| | - Lorena Maili
- Department of Pediatrics, UTHealth McGovern Medical School, Houston, TX, 77030, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, 77030, USA
| | - Christian Urbina
- Department of Pediatrics, UTHealth McGovern Medical School, Houston, TX, 77030, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, 77030, USA
| | | | - Matthew R Greives
- Department of Pediatric Surgery, University of Texas Health Science Center McGovern Medical School, Houston, TX, 77030, USA
| | - Edward P Buchanan
- Department of Plastic Surgery, Texas Children's Hospital, Houston, TX, 77030, USA
| | - John B Mulliken
- Department of Plastic Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Susan H Blanton
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - W Jim Zheng
- UTHealth School of Biomedical Informatics, Houston, TX, 77054, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, UTHealth McGovern Medical School, Houston, TX, 77030, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, 77030, USA.,Shriners' Hospital for Children, Houston, TX, 77030, USA.,Center for Craniofacial Research, UTHealth School of Dentistry, Houston, TX, 77054, USA
| | - Ariadne Letra
- School of Dentistry, Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center At Houston, 1941 East Road, BBSB 4210, Houston, TX, 77054, USA. .,Center for Craniofacial Research, UTHealth School of Dentistry, Houston, TX, 77054, USA.
| |
Collapse
|
9
|
Paiva KBS, Maas CS, dos Santos PM, Granjeiro JM, Letra A. Extracellular Matrix Composition and Remodeling: Current Perspectives on Secondary Palate Formation, Cleft Lip/Palate, and Palatal Reconstruction. Front Cell Dev Biol 2019; 7:340. [PMID: 31921852 PMCID: PMC6923686 DOI: 10.3389/fcell.2019.00340] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Craniofacial development comprises a complex process in humans in which failures or disturbances frequently lead to congenital anomalies. Cleft lip with/without palate (CL/P) is a common congenital anomaly that occurs due to variations in craniofacial development genes, and may occur as part of a syndrome, or more commonly in isolated forms (non-syndromic). The etiology of CL/P is multifactorial with genes, environmental factors, and their potential interactions contributing to the condition. Rehabilitation of CL/P patients requires a multidisciplinary team to perform the multiple surgical, dental, and psychological interventions required throughout the patient's life. Despite progress, lip/palatal reconstruction is still a major treatment challenge. Genetic mutations and polymorphisms in several genes, including extracellular matrix (ECM) genes, soluble factors, and enzymes responsible for ECM remodeling (e.g., metalloproteinases), have been suggested to play a role in the etiology of CL/P; hence, these may be considered likely targets for the development of new preventive and/or therapeutic strategies. In this context, investigations are being conducted on new therapeutic approaches based on tissue bioengineering, associating stem cells with biomaterials, signaling molecules, and innovative technologies. In this review, we discuss the role of genes involved in ECM composition and remodeling during secondary palate formation and pathogenesis and genetic etiology of CL/P. We also discuss potential therapeutic approaches using bioactive molecules and principles of tissue bioengineering for state-of-the-art CL/P repair and palatal reconstruction.
Collapse
Affiliation(s)
- Katiúcia Batista Silva Paiva
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clara Soeiro Maas
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pâmella Monique dos Santos
- Laboratory of Extracellular Matrix Biology and Cellular Interaction, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Mauro Granjeiro
- Clinical Research Laboratory in Dentistry, Federal Fluminense University, Niterói, Brazil
- Directory of Life Sciences Applied Metrology, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Ariadne Letra
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston, TX, United States
- Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX, United States
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX, United States
| |
Collapse
|
10
|
Mendes SMDA, Espinosa DDSG, Moreira PEDO, Marques D, Fagundes NCF, Ribeiro-Dos-Santos Â. miRNAs as biomarkers of orofacial clefts: A systematic review. J Oral Pathol Med 2019; 49:201-209. [PMID: 31479540 DOI: 10.1111/jop.12950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/05/2019] [Accepted: 08/11/2019] [Indexed: 01/26/2023]
Abstract
Orofacial clefts are facial malformations caused by the improper development of the lips and palate. Many genetic and epigenetic molecules have been involved in the mechanisms of orofacial clefts, one of which are miRNAs. This systematic review aimed to identify miRNAs associated to non-syndromic orofacial clefts in humans. After applying a series of criteria, four studies were selected for analysis. In total, one hundred miRNAs were observed in the literature, of which 57 were reported as upregulated and 43 as downregulated in all orofacial cleft classifications. Moreover, nine miRNAs were differentially expressed only in cleft palate patients, which might suggest distinct regulatory mechanisms for the etiology of cleft lips and palates. We suggest broader population sampling in order to include diverse ethnic groups in the future, as well as analyses toward identifying miRNA target genes and pathways. We highlight the need for experimental validation and of these results to allow further translational approaches and clinical applications.
Collapse
Affiliation(s)
- Sissy Maria Dos Anjos Mendes
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | - Diego Marques
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Postgraduate Program in Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
11
|
Li A, Qin G, Suzuki A, Gajera M, Iwata J, Jia P, Zhao Z. Network-based identification of critical regulators as putative drivers of human cleft lip. BMC Med Genomics 2019; 12:16. [PMID: 30704473 PMCID: PMC6357351 DOI: 10.1186/s12920-018-0458-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cleft lip (CL) is one of the most common congenital birth defects with complex etiology. While genome-wide association studies (GWAS) have made significant advances in our understanding of mutations and their related genes with potential involvement in the etiology of CL, it remains unknown how these genes are functionally regulated and interact with each other in lip development. Currently, identifying the disease-causing genes in human CL is urgently needed. So far, the causative CL genes have been largely undiscovered, making it challenging to design experiments to validate the functional influence of the mutations identified from large genomic studies such as CL GWAS. RESULTS Transcription factors (TFs) and microRNAs (miRNAs) are two important regulators in cellular system. In this study, we aimed to investigate the genetic interactions among TFs, miRNAs and the CL genes curated from the previous studies. We constructed miRNA-TF co-regulatory networks, from which the critical regulators as putative drivers in CL were examined. Based on the constructed networks, we identified ten critical hub genes with prior evidence in CL. Furthermore, the analysis of partitioned regulatory modules highlighted a number of biological processes involved in the pathology of CL, including a novel pathway "Signaling pathway regulating pluripotency of stem cells". Our subnetwork analysis pinpointed two candidate miRNAs, hsa-mir-27b and hsa-mir-497, activating the Wnt pathway that was associated with CL. Our results were supported by an independent gene expression dataset in CL. CONCLUSIONS This study represents the first regulatory network analysis of CL genes. Our work presents a global view of the CL regulatory network and a novel approach on investigating critical miRNAs, TFs and genes via combinatory regulatory networks in craniofacial development. The top genes and miRNAs will be important candidates for future experimental validation of their functions in CL.
Collapse
Affiliation(s)
- Aimin Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820, Houston, TX, 77030, USA
| | - Guimin Qin
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820, Houston, TX, 77030, USA.,School of Software, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Mona Gajera
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820, Houston, TX, 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 820, Houston, TX, 77030, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Identification of key genes in cleft lip with or without cleft palate regulated by miR-199a-5p. Int J Pediatr Otorhinolaryngol 2018; 111:128-137. [PMID: 29958595 DOI: 10.1016/j.ijporl.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cleft lip with or without cleft palate (CL/P) is one of the most common congenital defects, which etiology involves both genetic and environmental factors. Previous studies have shown that miR-199a-5p may mediate the occurrence of CL/P. However, the key target genes regulated by miR-199a-5p are not clear. In this study, we employed a systematic bioinformatics analysis of target genes regulated by miR-199a-5p which may be involved in CL/P. METHODS The miRBase, Human miRNA tissue atlas, miRecords, miRpathDB, miRWalk, miRTarBase, DIANA-TarBase (v7.0), Literature search, DAVID software, Cytoscape plugin ClueGO + Cluepedia app, MalaCards, TargetScanhuman7.1, Venny 2.1, STRING and GEO databases were comprehensive employed to identify the key genes regulated by miR-199a-5p associated with CL/P. RESULTS Total 429 experimentally validated target genes were obtained from five miRNAs related databases. Expressions of miR-199a-5p and its experimentally validated target genes were elevated in bone, brain and skin. KEGG pathway analysis revealed that the target genes were enriched in focal adhesion, microRNAs in cancer and hippo signaling pathway. Biological process categorization revealed that significant portions of the target genes were grouped as transcription, DNA-templated. Total eight intersection genes were identified by using MalaCards and TargetScanhuman7.1. The target gene transforming growth factor alpha (TGFA) of miR-199a-5p involved in CL/P is screened and verified. CONCLUSION MiR-199a-5p may mediate CL/P by regulating key target gene TGFA. The study may contribute to a better understanding of the etiology of CL/P.
Collapse
|
13
|
Wu N, Yan J, Han T, Zou J, Shen W. Integrated assessment of differentially expressed plasma microRNAs in subtypes of nonsyndromic orofacial clefts. Medicine (Baltimore) 2018; 97:e11224. [PMID: 29924053 PMCID: PMC6023672 DOI: 10.1097/md.0000000000011224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Orofacial clefts include cleft lip only (CLO), cleft palate only (CPO), and cleft lip with palate (CLP). Previously, we reported the expression profile of plasma microRNAs in CLO, CPO, and CLP, respectively. However, the interaction of each subtype remains poorly investigated. METHODS In this study, we integrated the expression profiles of plasma miRNAs in these 3 subtypes, and assessed the distinct and overlapping dysregulated miRNAs using Venn diagrams. Their respective target genes reported in the literature were further analyzed using pathway analysis. RESULTS AND CONCLUSION The results showed that distinct or overlapping signaling pathways were involved in CLO, CPO, and CLP. The common key gene targets reflected functional relationships to the Wnt, Notch, TGF-beta, and Hedgehog signaling pathways. Further studies should examine the mechanism of the potential target genes, which may provide new avenues for future clinical prevention and therapy.
Collapse
|