2
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
4
|
Han X, Yang H, Liu H, Zhang C, Cao Y, Fan Z, Shi R. miR-196b-5p inhibits proliferation of Wharton's jelly umbilical cord stem cells. FEBS Open Bio 2020; 11:278-288. [PMID: 33206457 PMCID: PMC7780118 DOI: 10.1002/2211-5463.13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells can be obtained from different parts of the umbilical cord, including Wharton's jelly. Transplantation of Wharton's jelly umbilical cord stem cells (WJCMSCs) is a promising strategy for the treatment of various diseases. However, the molecular mechanisms underlying the proliferation of WJCMSCs are incompletely understood. Here, we report that overexpression of miR‐196b‐5p in WJCMSCs suppresses proliferation and arrests the cell cycle in G0/G1 phase, whereas knockdown of miR‐196b‐5p promotes WJCMSC proliferation and cell‐cycle progression. Moreover, miR‐196b‐5p overexpression resulted in decreased levels of Cyclin A, Cyclin D, Cyclin E and cyclin‐dependent kinases 2 and increased levels of p15INK4b, whereas miR‐196b‐5p knockdown had the opposite effects. In conclusion, our data suggests that miR‐196b‐5p inhibits WJCMSC proliferation by enhancing G0/G1‐phase arrest.
Collapse
Affiliation(s)
- Xiao Han
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Huina Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Chen Zhang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Ruitang Shi
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.,Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Li Y, Bian M, Zhou Z, Wu X, Ge X, Xiao T, Yu J. Circular RNA SIPA1L1 regulates osteoblastic differentiation of stem cells from apical papilla via miR-204-5p/ALPL pathway. Stem Cell Res Ther 2020; 11:461. [PMID: 33138854 PMCID: PMC7607702 DOI: 10.1186/s13287-020-01970-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Osteogenesis is a complex biological process which requires the coordination of multiple molecular mechanisms. This research aimed to explore the biological role and underlying regulatory mechanism of circSIPA1L1 during the osteogenic differentiation of stem cells from apical papilla (SCAPs). METHODS EdU retention assay, flow cytometry assay, and CCK-8 assay were used to evaluate the proliferation capacity of SCAPs. Western blot assay, alkaline phosphatase (ALP), and alizarin red staining (ARS) were conducted to investigate the biological roles of circSIPA1L1 and miR-204-5p. Fluorescence in situ hybridization was applied for circSIPA1L1 localization. Dual-luciferase reporter assay was performed to prove the interaction of circSIPA1L1 and miR-204-5p. RESULTS CircSIPA1L1 had no significant effect on the proliferative capacity of SCAPs. CircSIPA1L1 promotes osteogenic differentiation of SCAPs by serving as a miRNA sponge for miR-204-5p. Either knockdown of circSIPA1L1 or overexpression of miR-204-5p significantly suppresses osteogenic differentiation of SCAPs. CONCLUSIONS CircSIPA1L1 upregulates ALPL through targeting miR-204-5p and promotes the osteogenic differentiation of SCAPs.
Collapse
Affiliation(s)
- Yuzhi Li
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minxia Bian
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhou Zhou
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Wu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xingyun Ge
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China
| | - Tong Xiao
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China.,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Endodontic Department, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Xu J, Zhang Z, Qian M, Wang S, Qiu W, Chen Z, Sun Z, Xiong Y, Wang C, Sun X, Zhao R, Xue H, Li G. Cullin-7 (CUL7) is overexpressed in glioma cells and promotes tumorigenesis via NF-κB activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:59. [PMID: 32252802 PMCID: PMC7132976 DOI: 10.1186/s13046-020-01553-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cullin-7 (CUL7) is a member of the DOC domain-containing cullin family and is involved in the regulation of cell transformation. However, the clinical significance, potential mechanism and upstream regulators of CUL7 in malignant gliomas remain to be determined. METHODS Expression level data and clinical information were obtained via the Cancer Genome Atlas (TCGA) database, the Chinese Glioma Genome Atlas (CGGA) database, immunohistochemistry (IHC) and western blot analysis. Gene set enrichment analysis (GSEA) was used to explore the potential molecular mechanisms of CUL7. RNA silencing was performed using siRNA or lentiviral constructs in U87MG and U251 glioma cell lines and GSC267 glioma stem cells. CUL7 overexpression was performed using the GV141-CUL7 plasmid construct. In addition, overexpression of miR-3940-5p was performed and validated by quantitative real-time PCR (qRT-PCR). Cells were characterized in vitro or in vivo to evaluate their molecular status, cell proliferation, invasion, and migration by Cell Counting Kit (CCK)-8, EdU, flow cytometry, colony formation, Transwell and 3D tumour spheroid invasion assays. Coimmunoprecipitation (co-IP) and western blotting were performed to test the mechanisms of activation of the NF-κB signalling pathway. RESULTS High CUL7 expression was associated with a high tumour grade, a mesenchymal molecular glioma subtype and a poor prognosis in patients. Gene silencing of CUL7 in U87MG and U251 cells significantly inhibited tumour growth, invasion and migration in vitro and in vivo. Western blot analysis revealed that cyclin-dependent kinase inhibitors and epithelial-mesenchymal transition (EMT) molecular markers changed under CUL7 silencing conditions. In contrast, CUL7 overexpression promoted tumour growth, invasion and migration. Gene set enrichment analysis (GSEA) and western blot analysis revealed that CUL7 was positively associated with the NF-κB pathway. Moreover, with coimmunoprecipitation assays, we discovered that CUL7 physically associated with MST1, which further led to ubiquitin-mediated MST1 protein degradation, which promoted activation of the NF-κB signalling pathway. Finally, CUL7 was found to be downregulated by miR-3940-5p, which suppressed the development of gliomas. CONCLUSIONS Our findings indicate that CUL7 plays a significant role in promoting tumorigenesis via NF-κB activation and that it can be negatively regulated by miR-3940-5p in human gliomas. Furthermore, CUL7 might be a candidate molecular target for the treatment of glioma.
Collapse
Affiliation(s)
- Jianye Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Zongpu Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Mingyu Qian
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Zihang Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Zhongzheng Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Department of Neurosurgery, The Second Hospital of Shandong University, #247 Beiyuan Street, Jinan, 250033, China
| | - Ye Xiong
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Fanhai Xi Road, Wenzhou, 325000, China
| | - Chaochao Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Department of Neurosurgery, Qilu hospital of Shandong University (Qingdao), #758 Hefei Road, Qingdao, 266035, China
| | - Xiaopeng Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Department of Neurosurgery, Dezhou People's Hospital, #1751 XinhuStreet, Dezhou, 253014, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China. .,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China. .,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China. .,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China. .,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|