1
|
Wang X, Nie X, Xu G, Gao J, Wang B, Yang J, Song G. miR-450b promotes cell migration and invasion by inhibiting SERPINB2 in oral squamous cell carcinoma. Oral Dis 2024; 30:376-389. [PMID: 36251494 DOI: 10.1111/odi.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/04/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE microRNA-450b (miR-450b) plays an important role in cancer progression; however, its function in oral squamous cell carcinoma (OSCC) remains largely unknown. This study aimed to investigate the action mechanisms of miR-450b in OSCC. MATERIALS AND METHODS OSCC animal model was established via continuous induction with single-drug 7, 12-dimethylbenzo[a]anthracene (DMBA). Animal tissue samples were pathologically typed using haematoxylin-eosin (HE) staining. The Cancer Genome Atlas (TCGA) database was used to predict miR-450b and SERPINB2 expression in head and neck squamous cell carcinoma (HNSCC). qRT-PCR and Western blotting were used to detect gene and protein expression in OSCC tissue and cells, respectively. OSCC cell proliferation, growth, migration and invasion were detected using CCK-8, colony formation, transwell migration and matrigel invasion assays, respectively. Bioinformatic tools were used to predict miR-450b target genes. Dual-luciferase reporter assay was used to verify targeting between miR-450b and SERPINB2. Finally, small interfering RNA (siRNA) was used to reduce SERPINB2 expression to detect its effect on tumourigenesis. RESULTS Four stages of OSCC carcinogenesis (normal oral epithelium, simple epithelial hyperplasia, dysplasia and OSCC) were identified. miR-450b was found to be overexpressed in OSCC animal samples, HNSCC samples and human OSCC cells. Upregulation of miR-450b significantly promoted OSCC cell proliferation, colony formation, migration and invasion, while its downregulation had the opposite effect. SERPINB2 was found to be a miR-450b target gene, and its expression was negatively correlated with miR-450b expression. Altering SERPINB2 expression effectively inhibited OSCC cell invasion, metastasis and epithelial-mesenchymal transition (EMT). CONCLUSIONS miR-450b plays a key role in OSCC tumourigenesis by regulating OSCC cell migration, invasion and EMT via SERPINB2.
Collapse
Affiliation(s)
- Xiaotang Wang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaocui Nie
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi, China
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoqiang Xu
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiping Gao
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Binhong Wang
- School of Mental Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junting Yang
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi, China
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Du Y, Li H, Wang Y, He Y, Li G. DLX1 acts as a novel prognostic biomarker involved in immune cell infiltration and tumor progression in lung adenocarcinoma. PeerJ 2024; 12:e16823. [PMID: 38317839 PMCID: PMC10840498 DOI: 10.7717/peerj.16823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background The biological function of distal-less homeobox 1 (DLX1) in lung adenocarcinoma (LUAD) remains unclear, despite a growing body of evidence that DLX1 is involved in the initiation and progression of various tumors. Methods This study explored and confirmed the prognostic and immunologic roles of DLX1 in LUAD via bioinformatic analysis and cellular functional validation. MethSurv was used to analyze the DNA methylation levels of DLX1 and the prognostic value of CpG islands. DLX1 mutation rates and prognoses between patients with and without the mutated DLX1 gene were analyzed by cBioPortal. Finally, cellular functional assays were used to investigate the effect of DLX1 on LUAD cells. Results Our results showed that DLX1 mRNA expression was significantly upregulated in LUAD. High DLX1 expression or promoter methylation was associated with worse prognosis, which confirmed DLX1 as an independent prognostic factor in LUAD. The level of multiple immune cell infiltration was significantly associated with DLX1 expression. Genes in the high DLX1 expression group were mainly enriched in cell cycle checkpoint, DNA replication, DNA repair, Fceri-mediated MAPK activation, TP53 activity regulation, and MET activation of PTK2-regulated signaling pathways. Cellular functional assays showed that the knockdown of DLX1 inhibited the proliferation, migration, and invasion of LUAD cells. Conclusion Our study identified DLX1 as a potential diagnostic and prognostic biomarker, and a promising therapeutic target in LUAD.
Collapse
Affiliation(s)
- Yu Du
- School of Clinical Oncology, Kunming Medical University, Kunming, China
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Heng Li
- School of Clinical Oncology, Kunming Medical University, Kunming, China
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Wang
- School of Clinical Oncology, Kunming Medical University, Kunming, China
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunyan He
- School of Clinical Oncology, Kunming Medical University, Kunming, China
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Gaofeng Li
- School of Clinical Oncology, Kunming Medical University, Kunming, China
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 2023; 15:44. [PMID: 37736748 PMCID: PMC10517027 DOI: 10.1038/s41368-023-00249-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Collapse
Affiliation(s)
- Yunhan Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
4
|
Chen YC, Li DB, Wang DL, Peng H. Comprehensive analysis of distal-less homeobox family gene expression in colon cancer. World J Gastrointest Oncol 2023; 15:1019-1035. [PMID: 37389108 PMCID: PMC10302991 DOI: 10.4251/wjgo.v15.i6.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND The distal-less homeobox (DLX) gene family plays an important role in the development of several tumors. However, the expression pattern, prognostic and diagnostic value, possible regulatory mechanisms, and the relationship between DLX family genes and immune infiltration in colon cancer have not been systematically reported.
AIM We aimed to comprehensively analyze the biological role of the DLX gene family in the pathogenesis of colon cancer.
METHODS Colon cancer tissue and normal colon tissue samples were collected from the Cancer Genome Atlas and Gene Expression Omnibus databases. Wilcoxon rank sum test and t-test were used to assess DLX gene family expression between colon cancer tissue and unpaired normal colon tissue. cBioPortal was used to analyze DLX gene family variants. R software was used to analyze DLX gene expression in colon cancer and the relationship between DLX gene family expression and clinical features and correlation heat map. The survival package and Cox regression module were used to assess the prognostic value of the DLX gene family. The pROC package was used to analyze the diagnostic value of the DLX gene family. R software was used to analyze the possible regulatory mechanisms of DLX gene family members and related genes. The GSVA package was used to analyze the relationship between the DLX gene family and immune infiltration. The ggplot2, the survminer package, and the clusterProfiler package were used for visualization.
RESULTS DLX1/2/3/4/5 were significantly aberrantly expressed in colon cancer patients. The expression of DLX genes were associated with M stage, pathologic stage, primary therapy outcome, residual tumor, lymphatic invasion, T stage, N stage, age, perineural invasion, and history of colon polyps. DLX5 was independently correlated with the prognosis of colon cancer in multivariate analysis. DLX1/2/3/4/5/6 were involved in the development and progression of colon cancer by participating in immune infiltration and associated pathways, including the Hippo signaling pathway, the Wnt signaling pathway, several signaling pathways regulating the pluripotency of stem cells, and Staphylococcus aureus infection.
CONCLUSION The results of this study suggest a possible role for the DLX gene family as potential diagnostic or prognostic biomarkers and therapeutic targets in colon cancer.
Collapse
Affiliation(s)
- Yong-Cheng Chen
- Department of General Surgery (Endoscopic Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| | - Dong-Bing Li
- Department of Medicine, ChosenMed Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Dong-Liang Wang
- Department of Medicine, ChosenMed Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Hui Peng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
- Department of General Surgery (Anorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
5
|
Yu W, Ma L, Li X. DANCR promotes glioma cell autophagy and proliferation via the miR‑33b/DLX6/ATG7 axis. Oncol Rep 2023; 49:39. [PMID: 36601767 PMCID: PMC9846190 DOI: 10.3892/or.2023.8476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) are common in the human body. Misregulated lncRNA expression can cause a variety of diseases in the human body. The present study aimed to investigate the effect of lncRNA differentiation antagonizing non‑protein‑coding RNA (DANCR) on glioma proliferation and autophagy through the microRNA (miR)‑33b/distal‑less homeobox 6 (DLX6)/autophagy‑related 7 (ATG7) axis. Reverse transcription‑quantitative PCR was used to detect DANCR and miR‑33b expression. Cell Counting Kit‑8 assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. Transmission electron microscopy was used to determine the autophagy level by observing intracellular autophagosomes. A western blot assay was used to detect protein expression levels and determine the level of autophagy in different cells. The binding sites of miR‑33b and DANCR or DLX6 were detected using a dual‑luciferase reporter assay. A chromatin immunoprecipitation assay confirmed DLX6 as a transcript of ATG7. In vivo tumorigenesis of glioma cells was validated in nude mice. DANCR and DLX6 were highly expressed in glioma cells, while miR‑33b showed low expression in glioma cells. DANCR reduced the targeted binding of miR‑33b to DLX6 by sponging miR‑33b. The result verified that DANCR could promote ATG7 protein expression through miR‑33b/DLX6, promote intracellular autophagy and proliferation and reduce apoptosis. The present study identified the role of the DANCR/miR‑33b/DLX6/ATG7 axis in regulating autophagy, proliferation, and apoptosis in glioma cells, providing new ideas for glioma treatment.
Collapse
Affiliation(s)
- Wei Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China,Liaoning Clinical Medical Research in Nervous Disease, Shenyang, Liaoning 110004, P.R. China,Key Laboratory of Neuro-Oncology in Liaoning, Shenyang, Liaoning 110004, P.R. China
| | - Li Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China,Liaoning Clinical Medical Research in Nervous Disease, Shenyang, Liaoning 110004, P.R. China,Key Laboratory of Neuro-Oncology in Liaoning, Shenyang, Liaoning 110004, P.R. China
| | - Xinxing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China,Liaoning Clinical Medical Research in Nervous Disease, Shenyang, Liaoning 110004, P.R. China,Key Laboratory of Neuro-Oncology in Liaoning, Shenyang, Liaoning 110004, P.R. China,Correspondence to: Professor Xinxing Li, Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping, Shenyang, Liaoning 110004, P.R. China, E-mail:
| |
Collapse
|
6
|
Wang Y, Song W, Zhou S, Chang S, Chang J, Tian J, Zhang L, Li J, Che G. The genomic and transcriptome characteristics of lung adenocarcinoma patients with previous breast cancer. BMC Cancer 2022; 22:618. [PMID: 35668376 PMCID: PMC9171992 DOI: 10.1186/s12885-022-09727-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023] Open
Abstract
Background Breast cancer and lung cancer are the top two malignancies in the female population and the number of patients with breast cancer and subsequent primary lung cancer has increased significantly in recent years. However, the unique molecular characteristics of this group of patients remains unclear. Purpose To identify the genomic and transcriptome characteristics of primary lung adenocarcinoma patients with previous breast cancer by comparison with single primary lung adenocarcinoma (SPLA) patients. Methods The tumor and normal pulmonary tissue specimens of ten primary pulmonary adenocarcinoma patients with previous breast cancer (multiple primary cancer, MPC) and ten SPLA patients were prospectively collected. The whole exome sequencing (WES) and RNA sequencing (RNA-seq) were performed to analyze the gene mutation and expression differences between MPC and SPC patients. Results The results of WES indicated that the mutations of TRIM73, DLX6 and CNGB1 only existed in MPC patients. The results of RNA-seq manifested the occurrence of second primary lung adenocarcinoma in breast cancer patients was closely associated with cytokine-cytokine receptor action, autophagy, PI3L-Akt, cAMP and calcium ion signaling pathways. Besides, the expression levels of FGF10 and VEGFA genes were significantly increased in MPC patients. Conclusion The occurrence of second primary lung adenocarcinoma may be related to the cytokine-cytokine receptor action, autophagy, PI3L-Akt, cAMP and calcium ion signaling pathways. Furthermore, the mutations of TRIM73, DLX6 and CNGB1 and high expression of FGF10 and VEGFA might play an important role in the development of lung adenocarcinoma in breast cancer patients. However, more in-depth investigations are needed to verify above findings. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09727-6.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, China
| | - Wenpeng Song
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, China
| | - Sicheng Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, China
| | - Shuai Chang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, China
| | - Junke Chang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, China
| | - Jie Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, China
| | - Liming Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, China
| | - Jue Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Guoxuexiang No. 37, Chengdu, 610041, China.
| |
Collapse
|
7
|
Comprehensive 3D epigenomic maps define limbal stem/progenitor cell function and identity. Nat Commun 2022; 13:1293. [PMID: 35277509 PMCID: PMC8917218 DOI: 10.1038/s41467-022-28966-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
The insights into how genome topology couples with epigenetic states to govern the function and identity of the corneal epithelium are poorly understood. Here, we generate a high-resolution Hi-C interaction map of human limbal stem/progenitor cells (LSCs) and show that chromatin multi-hierarchical organisation is coupled to gene expression. By integrating Hi-C, epigenome and transcriptome data, we characterize the comprehensive 3D epigenomic landscapes of LSCs. We find that super-silencers mediate gene repression associated with corneal development, differentiation and disease via chromatin looping and/or proximity. Super-enhancer (SE) interaction analysis identified a set of SE interactive hubs that contribute to LSC-specific gene activation. These active and inactive element-anchored loop networks occur within the cohesin-occupied CTCF-CTCF loops. We further reveal a coordinated regulatory network of core transcription factors based on SE-promoter interactions. Our results provide detailed insights into the genome organization principle for epigenetic regulation of gene expression in stratified epithelia. Genome topology provides a structural basis for epigenome-mediated transcriptional regulation in eukaryotes. Here the authors characterized the 3D genome of stratified squamous epithelia. They generated a Hi-C map of human limbal stem/progenitor cells (LSCs) and integrated these data with epigenomics, transcription factor binding maps, and transcriptome data.
Collapse
|