1
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
2
|
Dawidowicz M, Kot A, Mielcarska S, Psykała K, Kula A, Waniczek D, Świętochowska E. B7H4 Role in Solid Cancers: A Review of the Literature. Cancers (Basel) 2024; 16:2519. [PMID: 39061159 PMCID: PMC11275172 DOI: 10.3390/cancers16142519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Anti-cancer immunotherapies entirely changed the therapeutic approach to oncological patients. However, despite the undeniable success of anti-PD-1, PD-L1, and CTLA-4 antibody treatments, their effectiveness is limited either by certain types of malignancies or by the arising problem of cancer resistance. B7H4 (aliases B7x, B7H4, B7S1, VTCN1) is a member of a B7 immune checkpoint family with a distinct expression pattern from classical immune checkpoint pathways. The growing amount of research results seem to support the thesis that B7H4 might be a very potent therapeutic target. B7H4 was demonstrated to promote tumour progression in immune "cold" tumours by promoting migration, proliferation of tumour cells, and cancer stem cell persistence. B7H4 suppresses T cell effector functions, including inflammatory cytokine production, cytolytic activity, proliferation of T cells, and promoting the polarisation of naïve CD4 T cells into induced Tregs. This review aimed to summarise the available information about B7H4, focusing in particular on clinical implications, immunological mechanisms, potential strategies for malignancy treatment, and ongoing clinical trials.
Collapse
Affiliation(s)
- Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Katarzyna Psykała
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| |
Collapse
|
3
|
Sun C, Zhou Z, Liu F, Li H, Liu Z. Combretastatin A4 phosphate encapsulated in hyaluronic acid nanoparticles is highly cytotoxic to oral squamous cell carcinoma. Arch Med Sci 2024; 20:1022-1028. [PMID: 39050147 PMCID: PMC11264095 DOI: 10.5114/aoms/189535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction To investigate the toxicity of combretastatin A4 phosphate (CA4P) hyaluronic acid (HA) gel nanoparticles (HA-CA4P-NPs) in OSCC (oral squamous cell carcinoma). Methods Toxicity was investigated using fluorescence microscopy, MTT assay, flow cytometry, and OSCC xenograft mouse models. Results Compared with CA4P, HA-CA4P-NPs generated nearly 10 times more fluorescence in OSCC cells. Cytotoxicity assays showed that HACA4P-NPs were more toxic to SCC-4 cells but not to HNECs. Remarkable necrosis was induced in SCC-4 cells after exposure to HA-CA4P-NPs, and related proteins were upregulated. Furthermore, HA-CA4P-NPs significantly reduced the tumour size. Conclusions HA-CA4P-NPs improved drug release and delivery, and increased cytotoxicity to cancer cells.
Collapse
Affiliation(s)
- Chuanxi Sun
- Department of Orthodontics, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi Province, China
| | - Ziqi Zhou
- Department of Orthodontics, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi Province, China
| | - Fangqiang Liu
- Department of Cariology and Endodontics, The Affiliated Stomatological Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Hong Li
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhe Liu
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi Province, China
- Department of General Dentistry, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
4
|
Liu J, Lin WP, Xiao Y, Yang QC, Bushabu Fidele N, Yu HJ, Sun ZJ. VISTA blockade alleviates immunosuppression of MDSCs in oral squamous cell carcinoma. Int Immunopharmacol 2023; 125:111128. [PMID: 37907049 DOI: 10.1016/j.intimp.2023.111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
V-domain Ig suppressor of T-cell activation (VISTA) is a novel immune checkpoint regulator that can inhibit T cell-mediated antitumor immunity. Although the use of anti-VISTA monoclonal antibody has demonstrated encouraging outcomes in the therapy of various malignancies, its specific impact and underlying mechanisms in oral squamous cell carcinoma (OSCC) remain to be explored. In this work, we analyzed human OSCC tissue microarrays, human peripheral blood mononuclear cells, and immunocompetent transgenic mouse models to investigate the relationship between high VISTA expression and markers of myeloid-derived immunosuppressive cells (MDSCs; CD11b, CD33, Arginase-1), tumor-associated macrophages (CD68, CD163, CD206), and T cell function (CD8, PD-L1, Granzyme B). In OSCC, we discovered that VISTA was highly expressed and stably expressed in MDSCs. Furthermore, we established a mouse OSCC orthotopic xenograft tumor model to investigate the impact of VISTA blockade on the tumor microenvironment. We found that VISTA blockade reduces the immunosuppressive microenvironment and delays tumor growth. This is achieved by suppressing the quantity and function of MDSCs while boosting the function of tumor-infiltrating T cells. Our research indicated that VISTA expressed by MDSCs has a crucial function in the progression of OSCC and that VISTA blockade therapy is a promising immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Wen-Ping Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Nyimi Bushabu Fidele
- The National Key Laboratory of Basic Science of Stomatology of Kinshasa University, School of Dental Medicine, University of Kinshasa, Kinshasa B.P. 834 KIN XI, Democratic Republic of Congo
| | - Hai-Jun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
5
|
Hao RC, Li ZL, Wang FY, Tang J, Li PL, Yin BF, Li XT, Han MY, Mao N, Liu B, Ding L, Zhu H. Single-cell transcriptomic analysis identifies a highly replicating Cd168 + skeletal stem/progenitor cell population in mouse long bones. J Genet Genomics 2023; 50:702-712. [PMID: 37075860 DOI: 10.1016/j.jgg.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/21/2023]
Abstract
Skeletal stem/progenitor cells (SSPCs) are tissue-specific stem/progenitor cells localized within skeletons and contribute to bone development, homeostasis, and regeneration. However, the heterogeneity of SSPC populations in mouse long bones and their respective regenerative capacity remain to be further clarified. In this study, we perform integrated analysis using single-cell RNA sequencing (scRNA-seq) datasets of mouse hindlimb buds, postnatal long bones, and fractured long bones. Our analyses reveal the heterogeneity of osteochondrogenic lineage cells and recapitulate the developmental trajectories during mouse long bone growth. In addition, we identify a novel Cd168+ SSPC population with highly replicating capacity and osteochondrogenic potential in embryonic and postnatal long bones. Moreover, the Cd168+ SSPCs can contribute to newly formed skeletal tissues during fracture healing. Furthermore, the results of multicolor immunofluorescence show that Cd168+ SSPCs reside in the superficial zone of articular cartilage as well as in growth plates of postnatal mouse long bones. In summary, we identify a novel Cd168+ SSPC population with regenerative potential in mouse long bones, which adds to the knowledge of the tissue-specific stem cells in skeletons.
Collapse
Affiliation(s)
- Rui-Cong Hao
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhi-Ling Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fei-Yan Wang
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jie Tang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pei-Lin Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo-Feng Yin
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Tong Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Meng-Yue Han
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ning Mao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Li Ding
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Air Force Medical Center, PLA, Beijing 100142, China.
| | - Heng Zhu
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
6
|
Shan G, Minchao K, Jizhao W, Rui Z, Guangjian Z, Jin Z, Meihe L. Resveratrol Improves the Cytotoxic Effect of CD8+T Cells in the Tumor Microenvironment by Regulating HMMR/Ferroptosis in Lung Squamous Cell Carcinoma. J Pharm Biomed Anal 2023; 229:115346. [PMID: 37001272 DOI: 10.1016/j.jpba.2023.115346] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis, an iron-dependent cell death process, is a potential therapeutic strategy for Lung squamous cell carcinoma (LUSC). Resveratrol (RES) is an anti-tumor polyphenol. However, whether and how RES treats LUSC is not yet known. This study aimed to investigate the effect of RES on LUSC and to explore its potential mechanism. This study used a combination of proteomics, bioinformatics, clinical samples, and cell experiments to study the interaction between HMMR and the ferroptosis signaling pathway and investigate the role of RES in regulating tumor immune microenvironment and anti-tumor by cytotoxic CD8 +T cells in LUSC. Ferroptosis signaling pathway and HMMR were involved in the LUSC tumor immune microenvironment and correlated with worse prognosis of LUSC patients. RES+H520 cells induced a higher level of ferroptosis and MDA, mainly by reducing the expression of GPX4 and SLC7A11, inducing the expression of ACSL4 and TFRC. HMMR, GSH, and SOD contents were lower observed than in H520 cells. When HMMR was expressed, SLC7A11 was also highly expressed in LUSC, and there was an interaction between HMMR expression and SLC7A11. In addition, RES increased the TNF-α, IFN-γ, IL-12, and IL-2 expression and increased the cytotoxic effects of CD8 +T cells expressions in LUSC. Resveratrol regulates SLC7A11-HMMR interaction, activates ferroptosis, enhances the cytotoxic effect of CD8 +T cells, and regulates the tumor immune microenvironment. Based on the pathogenesis of LUSC and the clinical efficacy of RES, this study explored the influence of RES on LUSC, clarified its biological effects, and further provided cell biological basis for the clinical application of RES, which could guide clinical combination and personalized medicine, improve the response rate of immunotherapy and benefit more patients with LUSC.
Collapse
Affiliation(s)
- Gao Shan
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Institute of Organ Transplantation, Health Science Center of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Kang Minchao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Wang Jizhao
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Zhao Rui
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Zhang Guangjian
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Zheng Jin
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, 710061, China; Institute of Organ Transplantation, Health Science Center of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Li Meihe
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, 710061, China; Institute of Organ Transplantation, Health Science Center of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
7
|
The clinical and prognostic significance of CMTM6/PD-L1 in oncology. Clin Transl Oncol 2022; 24:1478-1491. [PMID: 35278198 DOI: 10.1007/s12094-022-02811-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
The recent discovery of CMTM6 and to a lesser extent CMTM4, two members of the chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family, as master positive regulators of PD-L1 expression, the primary ligand of programmed cell death 1 (PD-1), on tumor and immune cells has opened new horizons for investigating the role of CMTM6/CMTM4 in different aspects of oncology including their clinical and prognostic values in different cancer types. The absence of a specific review article addressing the available results about the clinical and prognostic roles of CMTM6 alone and/or in combination with PD-L1 in cancer has encouraged us to write this paper.
Collapse
|
8
|
CMTM6, a potential immunotherapy target. J Cancer Res Clin Oncol 2021; 148:47-56. [PMID: 34783871 DOI: 10.1007/s00432-021-03835-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 10/19/2022]
Abstract
The CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6), which binds to the programmed death ligand 1 (PD-L1) and stabilizes the expression of PD-L1 on the cell surface, has been recently discovered as a novel regulator of PD-L1 expression in cancer. PD-L1 is an immune checkpoint inhibitory molecule that can mediate the immune escape of tumor cells in various tumors and has been studied intensively in recent years. In 2017, two articles simultaneously reported that CMTM6 can stabilize the expression of PD-L1 on the plasma membrane and prevent PD-L1 from being degraded by lysosomes; therefore, CMTM6 may play an important role in tumor cell immune escape and immunosuppression. At present, there are few studies on the relationship between the expression of CMTM6 and PD-L1 in different tumors and diseases. These studies together suggested that CMTM6 may be a potential novel immunotherapy target. In this review, we briefly describe the latest research progresses of CMTM6 in various cancers and other diseases.
Collapse
|
9
|
RHAMM Is a Multifunctional Protein That Regulates Cancer Progression. Int J Mol Sci 2021; 22:ijms221910313. [PMID: 34638654 PMCID: PMC8508827 DOI: 10.3390/ijms221910313] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023] Open
Abstract
The functional complexity of higher organisms is not easily accounted for by the size of their genomes. Rather, complexity appears to be generated by transcriptional, translational, and post-translational mechanisms and tissue organization that produces a context-dependent response of cells to specific stimuli. One property of gene products that likely increases the ability of cells to respond to stimuli with complexity is the multifunctionality of expressed proteins. Receptor for hyaluronan-mediated motility (RHAMM) is an example of a multifunctional protein that controls differential responses of cells in response-to-injury contexts. Here, we trace its evolution into a sensor-transducer of tissue injury signals in higher organisms through the detection of hyaluronan (HA) that accumulates in injured microenvironments. Our goal is to highlight the domain and isoform structures that generate RHAMM's function complexity and model approaches for targeting its key functions to control cancer progression.
Collapse
|