1
|
Lv W, Hu S, Yang F, Lin D, Zou H, Zhang W, Yang Q, Li L, Chen X, Wu Y. Heme oxygenase-1: potential therapeutic targets for periodontitis. PeerJ 2024; 12:e18237. [PMID: 39430558 PMCID: PMC11488498 DOI: 10.7717/peerj.18237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Periodontitis is one of the most prevalent inflammatory disease worldwide, which affects 11% of the global population and is a major cause of tooth loss. Recently, oxidative stress (OS) has been found to be the pivital pathophysiological mechanism of periodontitis, and overactivated OS will lead to inflammation, apoptosis, pyroptosis and alveolar bone resorption. Interestingly, heme oxygenase-1 (HO-1), a rate-limiting enzyme in heme degradation, can exert antioxidant activites through its products-carbon monoxide (CO), Fe2+, biliverdin and bilirubin in the inflammatory microenvironment, thus exhibiting anti-inflammatory, anti-apoptotic, anti-pyroptosis and bone homeostasis-regulating properties. In this review, particular focus is given to the role of HO-1 in periodontitis, including the spatial-temporal expression in periodental tissues and pathophysiological mechanisms of HO-1 in periodontitis, as well as the current therapeutic applications of HO-1 targeted drugs for periodontitis. This review aims to elucidate the potential applications of various HO-1 targeted drug therapy in the management of periodontitis, investigate the influence of diverse functional groups on HO-1 and periodontitis, and pave the way for the development of a new generation of therapeutics that will benefit patients suffering from periodontitis.
Collapse
Affiliation(s)
- Weiwei Lv
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shichen Hu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fei Yang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dong Lin
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Haodong Zou
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wanyan Zhang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qin Yang
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lihua Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaowen Chen
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
2
|
Jiang Y, Gao R, Ying Q, Li X, Dai Y, Song A, Liu H, Hasegawa T, Li M. Eldecalcitol ameliorates diabetic osteoporosis and glucolipid metabolic disorder by promoting Treg cell differentiation through SOCE. Cell Mol Life Sci 2024; 81:423. [PMID: 39367914 PMCID: PMC11456014 DOI: 10.1007/s00018-024-05453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Active vitamin D, known for its role in promoting osteoporosis, has immunomodulatory effects according to the latest evidence. Eldecalcitol (ED-71) is a representative of the third-generation novel active vitamin D analogs, and its specific immunological mechanisms in ameliorating diabetic osteoporosis remain unclear. We herein evaluated the therapeutic effects of ED-71 in the context of type 2 diabetes mellitus (T2DM), delving into its underlying mechanisms. In a T2DM mouse model, ED-71 attenuated bone loss and marrow adiposity. Simultaneously, it rectified imbalanced glucose homeostasis and dyslipidemia, ameliorated pancreatic β-cell damage and hepatic glycolipid metabolism disorder. Subsequently, in mice injected with the Treg cell-depleting agent CD25, we observed that the beneficial effects of ED-71 mentioned earlier were partially contingent on the Treg subsets ratio. Mechanistically, ED-71 promoted the differentiation of CD4+ T cells into Treg subsets, facilitating Ca2+ influx and the expression of ORAI1 and STIM1, pivotal proteins in store-operated Ca2+ entry (SOCE). The SOCE inhibitor, 2-APB, partially attenuated the positive effects of ED-71 observed in the above results. Overall, ED-71 regulates SOCE-mediated Treg cell differentiation, accomplishing the dual purpose of simultaneously ameliorating diabetic osteoporosis and glucolipid metabolic disorders, showcasing its potential in osteoimmunity therapy and interventions for diseases involving SOCE.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Calcium/metabolism
- Cell Differentiation/drug effects
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/complications
- Glycolipids/pharmacology
- Glycolipids/therapeutic use
- Mice, Inbred C57BL
- ORAI1 Protein/metabolism
- Osteoporosis/drug therapy
- Osteoporosis/metabolism
- Osteoporosis/pathology
- Stromal Interaction Molecule 1/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/immunology
- Vitamin D/analogs & derivatives
- Vitamin D/pharmacology
- Vitamin D/therapeutic use
Collapse
Affiliation(s)
- Yujun Jiang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Ruihan Gao
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Qiaohui Ying
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Xiaolin Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Yaling Dai
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Aimei Song
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China.
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan.
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China.
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China.
| |
Collapse
|
3
|
Zhu S, Cui Y, Zhang W, Ji Y, Li L, Luo S, Cui J, Li M. Inflammation Can Be a High-Risk Factor for Mucosal Nonunion of MRONJ by Regulating SIRT1 Signaling When Treated with an Oncologic Dose of Zoledronate. Drug Des Devel Ther 2024; 18:2793-2812. [PMID: 38979400 PMCID: PMC11229984 DOI: 10.2147/dddt.s456811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/24/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Zoledronate (ZA) stands as a highly effective antiresorptive agent known to trigger medication-related osteonecrosis of the jaw (MRONJ). Its clinical dosages primarily encompass those used for oncologic and osteoporosis treatments. While inflammation is recognized as a potential disruptor of mucosal healing processes associated with ZA, prior research has overlooked the influence of varying ZA dosages on tissue adaptability. Therefore, a deeper understanding of the specific mechanisms by which inflammation exacerbates ZA-induced MRONJ, particularly when inflammation acts as a risk factor, remains crucial. Methods Cell proliferation and migration of human oral keratinocytes (HOK) was analyzed after treatment with different doses of ZA and/or lipopolysaccharide (LPS) to assess their possible effect on mucosal healing of extraction wounds. Mouse periodontitis models were established using LPS, and histological changes in extraction wounds were observed after the administration of oncologic dose ZA. Hematoxylin and eosin (HE) staining and immunofluorescence were used to evaluate mucosal healing. Results In vitro, LPS did not exacerbate the effects of osteoporosis therapeutic dose of ZA on the proliferation and migration of HOK cells, while aggravated these with the oncologic dose of ZA treatment by inducing mitochondrial dysfunction and oxidative stress via regulating SIRT1 expression. Furthermore, SIRT1 overexpression can alleviate this process. In vivo, local injection of LPS increased the nonunion of mucous membranes in MRONJ and decreased the expression of SIRT1, PGC-1α, and MnSOD. Conclusion Inflammation aggravates oncologic dose of ZA-induced mitochondrial dysfunction and oxidative stress via a SIRT1-dependent pathway, enhancing the risk of impaired mucosal healing in MRONJ. Our study implies that inflammation becomes a critical risk factor for MRONJ development at higher ZA concentrations. Elucidating the mechanisms of inflammation as a risk factor for mucosal non-healing in MRONJ could inform the development of SIRT1-targeted therapies.
Collapse
Affiliation(s)
- Siqi Zhu
- School of Stomatology, Jinzhou Medical University, Jinzhou, People's Republic of China
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Yajun Cui
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Weidong Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Yu Ji
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Lingshuang Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| | - Shenglei Luo
- Department of Oral and Maxillofacial Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jing Cui
- Department of Oral and Maxillofacial Surgery, Jinan Stomatological Hospital, Jinan, People's Republic of China
- Central Laboratory, Jinan Key Laboratory of oral tissue regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, People's Republic of China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, People's Republic of China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
4
|
Xin X, Liu J, Liu X, Xin Y, Hou Y, Xiang X, Deng Y, Yang B, Yu W. Melatonin-Derived Carbon Dots with Free Radical Scavenging Property for Effective Periodontitis Treatment via the Nrf2/HO-1 Pathway. ACS NANO 2024; 18:8307-8324. [PMID: 38437643 DOI: 10.1021/acsnano.3c12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Periodontitis is a chronic inflammatory disease closely associated with reactive oxygen species (ROS) involvement. Eliminating ROS to control the periodontal microenvironment and alleviate the inflammatory response could potentially serve as an efficacious therapy for periodontitis. Melatonin (MT), renowned for its potent antioxidant and anti-inflammatory characteristics, is frequently employed as an ROS scavenger in inflammatory diseases. However, the therapeutic efficacy of MT remains unsatisfactory due to the low water solubility and poor bioavailability. Carbon dots have emerged as a promising and innovative nanomaterial with facile synthesis, environmental friendliness, and low cost. In this study, melatonin-derived carbon dots (MT-CDs) were successfully synthesized via the hydrothermal method. The MT-CDs have good water solubility and biocompatibility and feature excellent ROS-scavenging capacity without additional modification. The in vitro experiments proved that MT-CDs efficiently regulated intracellular ROS, which maintained mitochondrial homeostasis and suppressed the production of inflammatory mediators. Furthermore, findings from the mouse model of periodontitis indicated that MT-CDs significantly inhibited the deterioration of alveolar bone and reduced osteoclast activation and inflammation, thereby contributing to the regeneration of damaged tissue. In terms of the mechanism, MT-CDs may scavenge ROS, thereby preventing cellular damage and the production of inflammatory factors by regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. The findings will offer a vital understanding of the advancement of secure and effective ROS-scavenging platforms for more biomedical applications.
Collapse
Affiliation(s)
- Xirui Xin
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Junjun Liu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, P. R. China
| | - Xinchan Liu
- VIP Integrated Department of Stomatological Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yu Xin
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yubo Hou
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xingchen Xiang
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yu Deng
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Weixian Yu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
5
|
Wu Q, Yan L, Wu X, Chen Y, Ye L, Lv Y, Su Y. Experimental periodontitis induced hypoadiponectinemia by IRE1α-mediated endoplasmic reticulum stress in adipocytes. BMC Oral Health 2023; 23:1032. [PMID: 38129878 PMCID: PMC10740306 DOI: 10.1186/s12903-023-03758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUD Hypoadiponectinemia is the important cause of insulin resistance. Recent studies have shown that periodontitis is associated with hypoadiponectinemia. The purpose of this study was to investigate the effect of periodontitis-induced endoplasmic reticulum stress (ERS) in visceral adipocytes on hypoadiponectinemia. METHODS Rat periodontitis models were established by local ligation with silk around the bilateral maxillary second molars. Porphyromonas gingivalis-lipopolysaccharid (P.g-LPS) was also used to stimulate the visceral adipocytes in vitro. The protein expression levels of glucose regulated protein 78 (GRP78), inositol-requiring protein 1α (IRE1α), protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and adiponectin were detected. IRE1α lentiviruses were transfected into visceral adipocytes in vitro, and an IRE1α inhibitor (KIRA6) was injected in epididymal adipose tissue of rats to detect and verify the effect of ERS on adiponectin expression in visceral adipocytes in vivo. RESULTS Hypoadiponectinemia was observed in periodontitis rat, and the expression levels of ERS key proteins GRP78 and the phosphorylation levels of IRE1α (p-IRE1α)/IRE1α in visceral adipocytes were increased, while the expression levels of adiponectin protein were decreased. After KIRA6 injection into epididymal adipose tissue of rats with periodontitis, adiponectin levels in visceral adipocytes increased, and serum adiponectin levels recovered to a certain extent. The protein expression levels of GRP78 and p-IRE1α/IRE1α were increased and adiponectin protein expression was decreased in P.g-LPS-induced visceral adipocytes. Overexpression of IRE1α further inhibited adiponectin expression in P.g-LPS-stimulated visceral adipocytes, and conversely, IRE1α inhibition restored adiponectin expression. CONCLUSIONS Our findings suggest that periodontitis induces ERS in visceral adipocytes leading to hypoadiponectinemia. IRE1α is a key protein regulating adiponectin expression in visceral adipocytes.
Collapse
Affiliation(s)
- Qianqi Wu
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Li Yan
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Xiao Wu
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Yiyan Chen
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Leilei Ye
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yingtao Lv
- Department of Implantology and Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China.
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Poser M, Sing KEA, Ebert T, Ziebolz D, Schmalz G. The rosetta stone of successful ageing: does oral health have a role? Biogerontology 2023; 24:867-888. [PMID: 37421489 PMCID: PMC10615965 DOI: 10.1007/s10522-023-10047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Ageing is an inevitable aspect of life and thus successful ageing is an important focus of recent scientific efforts. The biological process of ageing is mediated through the interaction of genes with environmental factors, increasing the body's susceptibility to insults. Elucidating this process will increase our ability to prevent and treat age-related disease and consequently extend life expectancy. Notably, centenarians offer a unique perspective on the phenomenon of ageing. Current research highlights several age-associated alterations on the genetic, epigenetic and proteomic level. Consequently, nutrient sensing and mitochondrial function are altered, resulting in inflammation and exhaustion of regenerative ability.Oral health, an important contributor to overall health, remains underexplored in the context of extreme longevity. Good masticatory function ensures sufficient nutrient uptake, reducing morbidity and mortality in old age. The relationship between periodontal disease and systemic inflammatory pathologies is well established. Diabetes, rheumatoid arthritis and cardiovascular disease are among the most significant disease burdens influenced by inflammatory oral health conditions. Evidence suggests that the interaction is bi-directional, impacting progression, severity and mortality. Current models of ageing and longevity neglect an important factor in overall health and well-being, a gap that this review intends to illustrate and inspire avenues for future research.
Collapse
Affiliation(s)
- Maximilian Poser
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany.
| | - Katie E A Sing
- Department of Medicine, Royal Devon and Exeter Hospital, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - Thomas Ebert
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103, Leipzig, Germany
| |
Collapse
|
7
|
He W, Fu Y, Yao S, Huang L. Programmed cell death of periodontal ligament cells. J Cell Physiol 2023; 238:1768-1787. [PMID: 37566596 DOI: 10.1002/jcp.31091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
The periodontal ligament is a crucial tissue that provides support to the periodontium. Situated between the alveolar bone and the tooth root, it consists primarily of fibroblasts, cementoblasts, osteoblasts, osteoclasts, periodontal ligament stem cells (PDLSCs), and epithelial cell rests of Malassez. Fibroblasts, cementoblasts, osteoblasts, and osteoclasts are functionally differentiated cells, whereas PDLSCs are undifferentiated mesenchymal stem cells. The dynamic development of these cells is intricately linked to periodontal changes and homeostasis. Notably, the regulation of programmed cell death facilitates the clearance of necrotic tissue and plays a pivotal role in immune response. However, it also potentially contributes to the loss of periodontal supporting tissues and root resorption. These findings have significant implications for understanding the occurrence and progression of periodontitis, as well as the mechanisms underlying orthodontic root resorption. Further, the regulation of periodontal ligament cell (PDLC) death is influenced by both systemic and local factors. This comprehensive review focuses on recent studies reporting the mechanisms of PDLC death and related factors.
Collapse
Affiliation(s)
- Wei He
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yu Fu
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Song Yao
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lan Huang
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
8
|
Fragoulis A, Tohidnezhad M, Kubo Y, Wruck CJ, Craveiro RB, Bock A, Wolf M, Pufe T, Jahr H, Suhr F. The Contribution of the Nrf2/ARE System to Mechanotransduction in Musculoskeletal and Periodontal Tissues. Int J Mol Sci 2023; 24:ijms24097722. [PMID: 37175428 PMCID: PMC10177782 DOI: 10.3390/ijms24097722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Mechanosensing plays an essential role in maintaining tissue functions. Across the human body, several tissues (i.e., striated muscles, bones, tendons, ligaments, as well as cartilage) require mechanical loading to exert their physiological functions. Contrary, mechanical unloading triggers pathological remodeling of these tissues and, consequently, human body dysfunctions. At the cellular level, both mechanical loading and unloading regulate a wide spectrum of cellular pathways. Among those, pathways regulated by oxidants such as reactive oxygen species (ROS) represent an essential node critically controlling tissue organization and function. Hence, a sensitive balance between the generation and elimination of oxidants keeps them within a physiological range. Here, the Nuclear Factor-E2-related factor 2/Antioxidant response element (Nrf2/ARE) system plays an essential role as it constitutes the major cellular regulation against exogenous and endogenous oxidative stresses. Dysregulations of this system advance, i.a., liver, neurodegenerative, and cancer diseases. Herein, we extend our comprehension of the Nrf2 system to the aforementioned mechanically sensitive tissues to explore its role in their physiology and pathology. We demonstrate the relevance of it for the tissues' functionality and highlight the imperative to further explore the Nrf2 system to understand the physiology and pathology of mechanically sensitive tissues in the context of redox biology.
Collapse
Affiliation(s)
- Athanassios Fragoulis
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogerio Bastos Craveiro
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Bock
- Department of Oral and Maxillofacial Surgery, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - Frank Suhr
- Division of Molecular Exercise Physiology, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326 Kulmbach, Germany
| |
Collapse
|