1
|
Morkunas E, Vaitkeviciute E, Inciuraite R, Kupcinskas J, Link A, Skieceviciene J, Alunni-Fabbroni M, Schütte K, Malfertheiner P, Varkalaite G, Ricke J. miRNome Profiling Analysis Reveals Novel Hepatocellular Carcinoma Diagnostic, Prognostic and Treatment-Related Candidate Biomarkers: Post hoc Analysis of SORAMIC Trial. Dig Dis 2024; 42:336-348. [PMID: 38657585 DOI: 10.1159/000538757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Early diagnosis of hepatocellular carcinoma (HCC) as well as evaluation of prognosis and prediction of treatment efficacy remains challenging due to the missing specific non-invasive biomarkers. The aim of this study was to identify disease-specific microRNA (miRNA) patterns for diagnosis, prediction of prognosis, and treatment response in patients with HCC. METHODS The study population included 42 HCC patients from SORAMIC clinical trial: 22 patients received sorafenib monotherapy, 20 patients underwent 90Y radioembolization in combination with sorafenib. 20 individuals were included in the control group. HCC patients underwent collection of plasma samples before and 7-9 weeks after the beginning of the treatment. Isolation of circulating miRNAs, preparation of small RNA sequencing libraries and next-generation sequencing were performed. Association analysis for novel diagnostic, prognostic, and treatment-related candidate biomarkers was performed. RESULTS A total of 42 differentially expressed (16 up-regulated and 26 down-regulated) miRNAs were identified comparing baseline and control group plasma samples. hsa-miR-215-5p and hsa-miR-192-5p were down-regulated, while hsa-miR-483-5p and hsa-miR-23b-3p were up-regulated comparing baseline and 7-9 weeks post-sorafenib monotherapy samples. hsa-miR-215-5p was the sole down-regulated miRNA in the same combination therapy comparison. hsa-miR-183-5p, hsa-miR-28-3p, and hsa-miR-1246 were found to be significantly up-regulated comparing non-responders versus responders to sorafenib. High hsa-miR-215-5p expression was significantly associated with worse HCC patients' prognosis. CONCLUSIONS Systematic miRNA profiling of highly characterized samples from SORAMIC study revealed a subset of potential miRNA biomarkers for HCC diagnosis and prognosis of sorafenib-treated patients' survival.
Collapse
Affiliation(s)
- Egidijus Morkunas
- Institute for Digestive Research and Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Evelina Vaitkeviciute
- Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ruta Inciuraite
- Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Institute for Digestive Research and Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Kerstin Schütte
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken Marienhospital, Osnabrück, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Peter Malfertheiner
- Department of Internal Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Greta Varkalaite
- Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Wu L, Xie Y, Ni B, Jin P, Li B, Cai M, Wang B, Wu C, Liang Y, Wang X. Revealing splenectomy-driven microRNA hsa-7b-5p's role in pancreatic cancer progression. iScience 2024; 27:109045. [PMID: 38361622 PMCID: PMC10864800 DOI: 10.1016/j.isci.2024.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/04/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Splenectomy often accompanies distal pancreatectomy for pancreatic cancer. However, debates persist on splenic function loss impact. Prior studies in mice revealed splenectomy promotes pancreatic cancer growth by altering CD4/Foxp3 and CD8/Foxp3 ratios. The effect on other immune cells remains unclear. Clinical observations indicate splenectomy induces immunosuppression, heightening recurrence and metastasis risk. Here, we established an orthotopic pancreatic cancer model with splenectomy and observed a significant increase in tumor burden. Flow cytometry revealed elevated MDSCs, CD8+PD-1high+ T cells, and reduced CD4+ T cells, CD8+ T cells, and natural killer cells in tumors. Bulk sequencing identified increased MicroRNA (miRNA) hsa-7b-5p post-splenectomy, correlating with staging and immunosuppression. Similar results were obtained in vivo by constructing a KPC-miRNA hsa-7b-5p-sh cell line. These findings suggest that splenectomy enhances the expression of miRNA hsa-7b-5p, inhibits the tumor immune microenvironment, and promotes pancreatic cancer growth.
Collapse
Affiliation(s)
- Liangliang Wu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Ni
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Peng Jin
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Bin Li
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Mingzhi Cai
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Baogui Wang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Chengyan Wu
- Department of Bioinformation, Beijing University of Technology, Beijing 100124, China
| | - Yuexiang Liang
- Department of Gastrointestinal Oncology, The First Affiliated Hospital of Hainan Medical University, Longhua Road, Longhua District, Haikou 570102, China
| | - Xiaona Wang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
3
|
Tian K, Zheng L, Yuan T, Chen X, Chen Q, Xue X, Huang S, He W, Jin M, Zhang Y. The circRNA hsa-circ-0013561 regulates head and neck squamous cell carcinoma development via the miR-7-5p/PDK3 axis. Cancer Cell Int 2024; 24:91. [PMID: 38429830 PMCID: PMC10908021 DOI: 10.1186/s12935-024-03256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) belong to a class of covalently closed single stranded RNAs that have been implicated in cancer progression. Former investigations showed that hsa-circ-0013561 is abnormally expressed in head and neck squamous cell carcinoma (HNSCC). Nevertheless, the role of hsa-circ-0013561 during the progress of HNSCC still unclear. METHODS Present study applied FISH and qRT-PCR to examine hsa-circ-0013561 expression in HNSCC cells and tissue samples. Dual-luciferase reporter assay was employed to identify downstream targets of hsa-circ-0013561. Transwell migration, 5-ethynyl-2'-deoxyuridine incorporation, CCK8 and colony formation assays were utilized to test cell migration and proliferation. A mouse tumor xenograft model was utilized to determine the hsa-circ-0013561 roles in HNSCC progression and metastasis in vivo. RESULTS We found that hsa-circ-0013561 was upregulated in HNSCC tissue samples. hsa-circ-0013561 downregulation inhibited HNSCC cell proliferation and migration to promote apoptosis and G1 cell cycle arrest. The dual-luciferase reporter assay revealed that miR-7-5p and PDK3 are hsa-circ-0013561 downstream targets. PDK3 overexpression or miR-7-5p suppression reversed the hsa-circ-0013561-induced silencing effects on HNSCC cell proliferation and migration. PDK3 overexpression reversed miR-7-5p-induced effects on HNSCC cell proliferation and migration. CONCLUSION The findings suggest that hsa-circ-0013561 downregulation inhibits HNSCC metastasis and progression through PDK3 expression and miR-7-5p binding modulation.
Collapse
Affiliation(s)
- Kaisai Tian
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Liying Zheng
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Tailei Yuan
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, China
| | - Xiaoping Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Qun Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Xiaocheng Xue
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Shuixian Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Weining He
- Caolu Community Health Service Center, Pudong New Area, Shanghai, 201209, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Yi Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China.
| |
Collapse
|
4
|
Ma Q, Ye S, Liu H, Zhao Y, Mao Y, Zhang W. HMGA2 promotes cancer metastasis by regulating epithelial-mesenchymal transition. Front Oncol 2024; 14:1320887. [PMID: 38361784 PMCID: PMC10867147 DOI: 10.3389/fonc.2024.1320887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex physiological process that transforms polarized epithelial cells into moving mesenchymal cells. Dysfunction of EMT promotes the invasion and metastasis of cancer. The architectural transcription factor high mobility group AT-hook 2 (HMGA2) is highly overexpressed in various types of cancer (e.g., colorectal cancer, liver cancer, breast cancer, uterine leiomyomas) and significantly correlated with poor survival rates. Evidence indicated that HMGA2 overexpression markedly decreased the expression of epithelial marker E-cadherin (CDH1) and increased that of vimentin (VIM), Snail, N-cadherin (CDH2), and zinc finger E-box binding homeobox 1 (ZEB1) by targeting the transforming growth factor beta/SMAD (TGFβ/SMAD), mitogen-activated protein kinase (MAPK), and WNT/beta-catenin (WNT/β-catenin) signaling pathways. Furthermore, a new class of non-coding RNAs (miRNAs, circular RNAs, and long non-coding RNAs) plays an essential role in the process of HMGA2-induced metastasis and invasion of cancer by accelerating the EMT process. In this review, we discuss alterations in the expression of HMGA2 in various types of cancer. Furthermore, we highlight the role of HMGA2-induced EMT in promoting tumor growth, migration, and invasion. More importantly, we discuss extensively the mechanism through which HMGA2 regulates the EMT process and invasion in most cancers, including signaling pathways and the interacting RNA signaling axis. Thus, the elucidation of molecular mechanisms that underlie the effects of HMGA2 on cancer invasion and patient survival by mediating EMT may offer new therapeutic methods for preventing cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Sisi Ye
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yu Zhao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yan Mao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhang
- Emergency Department of West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Li L, Zhang X, Lin Y, Ren X, Xie T, Lin J, Wu S, Ye Q. Let-7b-5p inhibits breast cancer cell growth and metastasis via repression of hexokinase 2-mediated aerobic glycolysis. Cell Death Discov 2023; 9:114. [PMID: 37019900 PMCID: PMC10076263 DOI: 10.1038/s41420-023-01412-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Hexokinase 2 (HK2), a critical rate-limiting enzyme in the glycolytic pathway catalyzing hexose phosphorylation, is overexpressed in multiple human cancers and associated with poor clinicopathological features. Drugs targeting aerobic glycolysis regulators, including HK2, are in development. However, the physiological significance of HK2 inhibitors and mechanisms of HK2 inhibition in cancer cells remain largely unclear. Herein, we show that microRNA-let-7b-5p (let-7b-5p) represses HK2 expression by targeting its 3'-untranslated region. By suppressing HK2-mediated aerobic glycolysis, let-7b-5p restrains breast tumor growth and metastasis both in vitro and in vivo. In patients with breast cancer, let-7b-5p expression is significantly downregulated and is negatively correlated with HK2 expression. Our findings indicate that the let-7b-5p/HK2 axis plays a key role in aerobic glycolysis as well as breast tumor proliferation and metastasis, and targeting this axis is a potential therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Ling Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiujuan Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yanni Lin
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Xinxin Ren
- The second hospital of Shanxi Medical University, Taiyuan, 030001, China
- Department of Clinical Laboratory, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Tian Xie
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jing Lin
- Department of Clinical Laboratory, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Shumeng Wu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Qinong Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, 100850, China.
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
6
|
Wang T, Zhang Y, Wu J, Feng H, Wang R, Yuan H. Association of genetic variants of CircCHST15 with oral squamous cell carcinoma in the Chinese Han population. Head Neck 2023; 45:806-815. [PMID: 36608057 DOI: 10.1002/hed.27293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/22/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common cancer in the oral cavity. The relationship between the genetic susceptibility of circCHST15 and OSCC remains unclear. METHODS Genetic variants of circCHST15 were screened using a genotyping analysis from 1044 patients with OSCC and 3199 healthy participants. The circCHST15 expression was detected in 32 pairs of OSCC tissues. The circular RNA quantitative trait locus analysis and the reporter gene assay were performed for verification. RESULTS The circCHST15 expression was upregulated in OSCC (Wilcoxon p < 1e-3). The genotyping analysis screened out 61 loci in circCHST15 associated with the risk of OSCC. After adjustment and annotation, rs28707473 (A > C, odds ratio = 1.21, 95% CI: 1.076-1.361, p = 1.453e-3) was selected. This genetic variation could elevate the circCHST15 expression level possibly by altering the structure of circular RNAs and affecting transcription factor binding. CONCLUSIONS The results of this study suggested that genetic variants of circCHST15 may contribute to OSCC susceptibility.
Collapse
Affiliation(s)
- Tianxiao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yehao Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jia Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hongjie Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
7
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|