1
|
Effects of phylogeny, traits, and seasonality on invertebrate herbivory damage in a meadow community. ACTA OECOLOGICA 2022. [DOI: 10.1016/j.actao.2022.103871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Calf OW, Lortzing T, Weinhold A, Poeschl Y, Peters JL, Huber H, Steppuhn A, van Dam NM. Slug Feeding Triggers Dynamic Metabolomic and Transcriptomic Responses Leading to Induced Resistance in Solanum dulcamara. FRONTIERS IN PLANT SCIENCE 2020; 11:803. [PMID: 32625224 PMCID: PMC7314995 DOI: 10.3389/fpls.2020.00803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 05/22/2023]
Abstract
Induced plant responses to insect herbivores are well studied, but we know very little about responses to gastropod feeding. We aim to identify the temporal dynamics of signaling- and defense-related plant responses after slug feeding in relation to induced resistance. We exposed Solanum dulcamara plants to feeding by the gray field slug (GFS; Deroceras reticulatum) for different periods and tested disks of local and systemic leaves in preference assays. Induced responses were analyzed using metabolomics and transcriptomics. GFS feeding induced local and systemic responses. Slug feeding for 72 h more strongly affected the plant metabolome than 24 h feeding. It increased the levels of a glycoalkaloid (solasonine), phenolamides, anthocyanins, and trypsin protease inhibitors as well as polyphenol oxidase activity. Phytohormone and transcriptome analyses revealed that jasmonic acid, abscisic acid and salicylic acid signaling were activated. GFS feeding upregulated more genes than that it downregulated. The response directly after feeding was more than five times higher than after an additional 24 h without feeding. Our research showed that GFS, like most chewing insects, triggers anti-herbivore defenses by activating defense signaling pathways, resulting in increased resistance to further slug feeding. Slug herbivory may therefore impact other herbivores in the community.
Collapse
Affiliation(s)
- Onno W. Calf
- Department of Molecular Interaction Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Tobias Lortzing
- Department of Molecular Ecology, Institute of Biology, Free University of Berlin, Berlin, Germany
- Department of Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller University of Jena, Jena, Germany
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Janny L. Peters
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Heidrun Huber
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Anke Steppuhn
- Department of Molecular Ecology, Institute of Biology, Free University of Berlin, Berlin, Germany
- Department of Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Nicole M. van Dam
- Department of Molecular Interaction Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller University of Jena, Jena, Germany
| |
Collapse
|
3
|
Calf OW, Huber H, Peters JL, Weinhold A, van Dam NM. Glycoalkaloid composition explains variation in slug resistance in Solanum dulcamara. Oecologia 2018; 187:495-506. [PMID: 29383505 PMCID: PMC5997107 DOI: 10.1007/s00442-018-4064-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/08/2018] [Indexed: 12/01/2022]
Abstract
In natural environments, plants have to deal with a wide range of different herbivores whose communities vary in time and space. It is believed that the chemical diversity within plant species has mainly arisen from selection pressures exerted by herbivores. So far, the effects of chemical diversity on plant resistance have mostly been assessed for arthropod herbivores. However, also gastropods, such as slugs, can cause extensive damage to plants. Here we investigate to what extent individual Solanum dulcamara plants differ in their resistance to slug herbivory and whether this variation can be explained by differences in secondary metabolites. We performed a series of preference assays using the grey field slug (Deroceras reticulatum) and S. dulcamara accessions from eight geographically distinct populations from the Netherlands. Significant and consistent variation in slug preference was found for individual accessions within and among populations. Metabolomic analyses showed that variation in steroidal glycoalkaloids (GAs) correlated with slug preference; accessions with high GA levels were consistently less damaged by slugs. One, strongly preferred, accession with particularly low GA levels contained high levels of structurally related steroidal compounds. These were conjugated with uronic acid instead of the glycoside moieties common for Solanum GAs. Our results illustrate how intraspecific variation in steroidal glycoside profiles affects resistance to slug feeding. This suggests that also slugs should be considered as important drivers in the co-evolution between plants and herbivores.
Collapse
Affiliation(s)
- Onno W Calf
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Heidrun Huber
- Experimental Plant Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Janny L Peters
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany
| |
Collapse
|
4
|
Interactions count: plant origin, herbivory and disturbance jointly explain seedling recruitment and community structure. Sci Rep 2017; 7:8288. [PMID: 28811574 PMCID: PMC5557803 DOI: 10.1038/s41598-017-08401-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022] Open
Abstract
Herbivory and disturbance are major drivers of biological invasions, but it is unclear how they interact to determine exotic vs. native seedling recruitment and what consequences arise for biodiversity and ecosystem functioning. Previous studies neglected the roles of different, potentially interacting, guilds of generalist herbivores such as rodents and gastropods. We therefore set up a full-factorial rodent exclusion x gastropod exclusion x disturbance x seed-addition experiment in a grassland community in Central Germany and measured early seedling recruitment, as well as species richness, species composition and aboveground biomass. Gastropod herbivory reduced the positive effect of disturbance on seedling recruitment, particularly for exotic species. Rodent herbivory had weak positive effects on seedling recruitment at undisturbed sites, irrespective of species origin. This effect was likely driven by their strong negative effect on productivity. Interactive effects between both herbivore guilds became only evident for species richness and composition. How many species established themselves depended on disturbance, but was independent of species origin. The fewer exotic species that established themselves increased productivity to a stronger extent compared to native species. Our study highlights that joint effects of disturbance, herbivory and species origin shape early recruitment, while they only weakly affect biodiversity and ecosystem functioning.
Collapse
|