1
|
Narr CF, Binger S, Sedlacek E, Anderson B, Shoemaker G, Stanley A, Stokoski M, Hall E. Evaluating host diet effects on microparasites by measuring the stoichiometry of infrapopulations one cell at a time. Ecol Evol 2024; 14:e11645. [PMID: 39026962 PMCID: PMC11255380 DOI: 10.1002/ece3.11645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024] Open
Abstract
Progress in the field of ecological stoichiometry has demonstrated that the outcome of ecological interactions can often be predicted a priori based on the nutrient ratios (e.g., carbon: nitrogen: phosphorus, C:N:P) of interacting organisms. However, the challenges of accurately measuring the nutrient content of active parasites within hosts has limited our ability to rigorously apply ecological stoichiometry to host-parasite systems. Traditional nutrient analyses require high parasite biomasses, often preventing individual-level analyses. This prevents researchers from estimating variation in the nutrient content of individual parasites within a single host infrapopulation, a critical factor that could define how the ecology of the parasite affects the host-parasite interaction. Here, we explain how energy dispersive technology, a technique currently used to measure the elemental content of free-living microbes, can be adapted for parasitic microbial infrapopulations. We demonstrate the power of accurately quantifying the biomass stoichiometry of individual microbial parasites sampled directly from individual hosts. Using this approach, we show that the stoichiometric composition of two microbial parasites capable of infecting the same host are stoichiometrically distinct and respond to host diet quality differently. We also demonstrate that characteristics of the stoichiometric trait distributions of these infrapopulations were important predictors of host fecundity, a proxy for virulence in this system, and better predictors of parasite load than the mean parasite stoichiometry or our parasite and diet treatments alone. EDS provides a rigorous tool for applying ecological stoichiometry to host-parasite systems and enables researchers to explore the nutritional physiology of host-parasite interactions at a scale that is more relevant to the ecology and evolution of the system than traditional nutrient analyses. Here we demonstrate that this level of resolution provides useful insights into the diet-dependent physiology of microbial parasites and their hosts. We anticipate that this improved level of resolution has the potential to elucidate a range of eco-evo interactions in host-parasite systems that were previously unobservable.
Collapse
Affiliation(s)
- Charlotte F. Narr
- School of Biological SciencesSouthern Illinois University in CarbondaleCarbondaleIllinoisUSA
| | - Scott Binger
- School of Biological SciencesSouthern Illinois University in CarbondaleCarbondaleIllinoisUSA
| | - Erin Sedlacek
- School of Biological SciencesSouthern Illinois University in CarbondaleCarbondaleIllinoisUSA
| | - Bianca Anderson
- Environmental Sciences and SustainabilityFort CollinsColoradoUSA
| | - Grace Shoemaker
- Environmental Sciences and SustainabilityFort CollinsColoradoUSA
| | - Adrienne Stanley
- School of Biological SciencesSouthern Illinois University in CarbondaleCarbondaleIllinoisUSA
| | - Madison Stokoski
- School of Biological SciencesSouthern Illinois University in CarbondaleCarbondaleIllinoisUSA
| | - Ed Hall
- Environmental Sciences and SustainabilityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
2
|
Stanley A, Valentine S, Narr CF. Divvying up the pie: Tissue nutrient content is related to its parasite load. Ecol Evol 2024; 14:e11122. [PMID: 38774141 PMCID: PMC11106516 DOI: 10.1002/ece3.11122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 05/24/2024] Open
Abstract
The nutrient content of host resources can influence the abundance of parasites within an ecosystem, but linking specific nutrients in a host to the abundance of different parasite taxa remains a challenge. Here, we work to forge this link by quantifying the relationship between the nutrient content of specific infection sites and the abundance of multiple parasite taxa within the digestive tract of largemouth bass (Micropterus salmoides) collected from the Mississippi River. To generate a mechanistic understanding of these relationships, we tested four basic predictions: (1) the nutrient content of different host tissues (infection sites) varies within and across hosts, (2) the nutrient content of parasite genera differs from that of their host tissue(s), (3) the nutrient content of parasite genera differ from one another and (4) the nutrient content of host tissues is related to the nutrient content and abundance of parasite genera. We found support for each of these predictions. We found stoichiometric differences between the digestive tissues we examined. We also found that across hosts, intestine and pyloric caeca C:N ratios increased and %N decreased with fish condition factor. Both of the actively feeding parasitic genera we measured had lower C:N ratios compared to both their host tissue and other encysted/non-reproductive genera, suggesting the potential for N limitation of these parasites in the intestines or pyloric caeca of hosts. Consistent with this possibility, we found that the total number of actively feeding parasitic worms in the pyloric caeca increased with that tissue's N:P ratio (but was not related to host condition factor). Our results suggest that parasites encounter significant variation in nutrient content within and across hosts and that this variation may influence the abundance of actively feeding parasites. This work highlights the need for additional empirical comparisons of parasite stoichiometry across tissues and individual hosts.
Collapse
Affiliation(s)
- Adrienne Stanley
- School of Biological SciencesSouthern Illinois UniversityCarbondaleILUSA
| | - Shaley Valentine
- Illinois River Biological StationIllinois Natural History SurveyHavanaILUSA
| | - Charlotte F. Narr
- School of Biological SciencesSouthern Illinois UniversityCarbondaleILUSA
| |
Collapse
|
3
|
Grunberg RL, Braat M, Bolnick DI. Elemental content of a host-parasite relationship in the threespine stickleback. Oecologia 2024; 204:427-437. [PMID: 37358647 DOI: 10.1007/s00442-023-05405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Parasite infections are ubiquitous and their effects on hosts could play a role in ecosystem processes. Ecological stoichiometry provides a framework to study linkages between consumers and their resource, such as parasites and their host, and ecosystem process; however, the stoichiometric traits of host-parasite associations are rarely quantified. Specifically, it is unclear whether parasites' elemental ratios closely resemble those of their host or if infection is related to host stoichiometry, especially in vertebrate hosts. To answer such questions, we measured the elemental content (%C, %N, and %P) and molar ratios (C:N, C:P, and N:P) of parasitized and unparasitized Gasterosteus aculeatus (three-spined stickleback) and their cestode parasite, Schistocephalus solidus. Host and parasite elemental content were distinct from each other, and parasites were generally higher in %C and lower in %N and %P. Parasite infections were related to host C:N, with infected hosts being lower in C:N. Parasite elemental content was independent of their host, but parasite body mass and parasite density were important drivers of parasite stoichiometry. Overall, these potential effects of parasite infections on host stoichiometry along with parasites' distinct elemental compositions suggest parasites may further contribute to differences in how individual hosts store and recycle nutrients.
Collapse
Affiliation(s)
- Rita L Grunberg
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
| | - Megan Braat
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
4
|
Penuelas J, Sardans J. Human-driven global nutrient imbalances increase risks to health. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:246-251. [PMID: 38435356 PMCID: PMC10902514 DOI: 10.1016/j.eehl.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 03/05/2024]
Abstract
Human-induced inputs of nitrogen (N) and phosphorus (P) into the biosphere have reached unprecedented levels, particularly N, leading to an escalating global anthropogenic N:P ratio. This ratio has emerged as a significant driver of environmental change, impacting organisms, ecosystems, and global food security. However, the implications of this ratio for human health have been largely overlooked and remain uncertain. This article aims to fill this knowledge gap by exploring the potential effects of N:P ratios on both non-infectious and infectious diseases. Preliminary data emphasize the importance of investigating the influence of N:P ratios on human health, suggesting a potential role in the rise of non-infectious diseases, such as cancer, as well as the proliferation of infectious diseases, including Zika and malaria. These findings highlight the urgent need for increased attention from the scientific community and policymakers regarding the complex impacts of the human-induced biospheric N:P ratio. It is crucial to investigate and understand the underlying mechanisms and drivers behind these effects. Furthermore, there is significant potential for improving human health through the manipulation of N:P ratios and the availability of N and P. This applies not only to medical treatments but also to innovative fertilizer management strategies. These avenues present promising opportunities to address the challenges associated with human health in an ever-changing world.
Collapse
Affiliation(s)
- Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Grunberg RL, Anderson DM. Host Energetics Explain Variation in Parasite Productivity across Hosts and Ecosystems. Am Nat 2021; 199:266-276. [DOI: 10.1086/717430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rita L. Grunberg
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901
| | - David M. Anderson
- Department of Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
6
|
Krasnov BR, Vinarski MV, Korallo-Vinarskaya NP, Shenbrot GI, Khokhlova IS. Spatial and temporal variation of compositional, functional, and phylogenetic diversity in ectoparasite infracommunities harboured by small mammals. Parasitology 2021; 148:685-695. [PMID: 33583440 PMCID: PMC11010129 DOI: 10.1017/s0031182021000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/06/2022]
Abstract
We studied patterns of compositional, functional, and phylogenetic α- and β-diversity in flea and gamasid mite infracommunities of small Siberian mammals, taking into account host-associated (species) and environmental (biome or sampling period) factors. We asked: (a) How do these factors and their interactions affect infracommunity diversity? (b) Does infracommunity composition, in terms of species, traits, and phylogenetic lineages, deviate from random? (c) Are species, traits, and phylogenetic lineages in infracommunities clustered or overdispersed?, and (d) Do patterns of diversity differ between the three diversity facets and/or the two ectoparasite taxa? We found that the α-diversity of infracommunities was strongly affected by host species, biome, and sampling period. The highest proportion of infracommunity diversity in both taxa was associated with the interaction between either host species and biome or host species and sampling period. Infracommunities of both taxa within, as well as between, host species, biomes, and sampling periods were characterized by the clustering of species, traits and lineages. The patterns of the effects of host species, biome, and sampling period on infracommunity diversity were congruent among the three diversity facets in both fleas and mites. We conclude that the assembly patterns in ectoparasite infracommunities mirror those characteristics of component and compound communities.
Collapse
Affiliation(s)
- Boris R. Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000Midreshet Ben-Gurion, Israel
| | - Maxim V. Vinarski
- Laboratory of Macroecology and Biogeography of Invertebrates, Saint-Petersburg State University, 7/9 University Emb., 199034Saint-Petersburg, Russian Federation
- Omsk State University, 11 Neftezavodskaya str., 644053Omsk, Russian Federation
| | - Natalia P. Korallo-Vinarskaya
- Laboratory of Arthropod-Borne Viral Infections, Omsk Research Institute of Natural Foci Infections, Mira str. 7, 644080Omsk, Russian Federation
- Omsk State Pedagogical University, 14 Tukhachevskogo Emb., 644099 Omsk, Russian Federation
| | - Georgy I. Shenbrot
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000Midreshet Ben-Gurion, Israel
| | - Irina S. Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000Midreshet Ben-Gurion, Israel
| |
Collapse
|
7
|
Du B, Yuan J, Ji H, Yin S, Kang H, Liu C. Body Size Plasticity of Weevil Larvae (Curculio davidi) (Coleoptera: Curculionidae) and Its Stoichiometric Relationship With Different Hosts. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:2. [PMID: 33394047 PMCID: PMC7780276 DOI: 10.1093/jisesa/ieaa139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Indexed: 04/29/2023]
Abstract
Parasites obtain energy and nutrients from the host, and their body size is also usually limited by host size. However, the regulatory mechanisms that control the plasticity of parasite body sizes and the stoichiometric relationships with their hosts remain unclear. Here we investigated the concentrations of 14 elements (C, H, O, N, P, S, K, Na, Ca, Mg, Al, Fe, Mn, and Zn) in the acorns of three oak species (Quercus spp.), in their endoparasitic weevil (Curculio davidi Fairmaire) (Coleoptera: Curculionidae) larvae and in the larval feces, and the weight of weevil larvae within different hosts in a warm-temperate zone of China. Our results showed that the three acorn species exhibited significant differences in C, H, O, P, K, Mg, and Mn concentrations. However, in the weevil larvae, only P, Mn, and C:P ratio revealed significant differences. Weevil larvae preferentially absorbed and retained N, Zn, Na, and P, whereas Mn, K, Ca, and O were passively absorbed and transported. The weevil larvae weight was associated with acorn stoichiometry, and positively correlated with acorn size. Weevil larvae P decreased, but Mn and C:P increased with their weight, implying highly variable in somatic stoichiometry are coupled with the plasticity of body size. Interestingly, weevil larvae weight was negatively correlated with acorn infection rate, indicating small-size parasitic insects might have higher fitness level in parasite-host systems than larger-size ones. Our results suggest that variation in P, Mn, and C:P in parasites may play critical roles in shaping their body size and in improving their fitness.
Collapse
Affiliation(s)
- Baoming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, State Forestry Administration, Minhang, Shanghai, China
| | - Jun Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, China
| | - Huawei Ji
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, State Forestry Administration, Minhang, Shanghai, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, State Forestry Administration, Minhang, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Minhang, Shanghai, China
| | - Hongzhang Kang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, State Forestry Administration, Minhang, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Minhang, Shanghai, China
| | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, China
- Shanghai Urban Forest Ecosystem Research Station, State Forestry Administration, Minhang, Shanghai, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Minhang, Shanghai, China
| |
Collapse
|
8
|
Sánchez Barranco V, Van der Meer MTJ, Kagami M, Van den Wyngaert S, Van de Waal DB, Van Donk E, Gsell AS. Trophic position, elemental ratios and nitrogen transfer in a planktonic host-parasite-consumer food chain including a fungal parasite. Oecologia 2020; 194:541-554. [PMID: 32803339 PMCID: PMC7683484 DOI: 10.1007/s00442-020-04721-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/23/2020] [Indexed: 11/24/2022]
Abstract
Parasitism is arguably the most commonly occurring consumer strategy. However, only a few food web studies assess how well stable isotopes reflect the trophic position of parasitic consumers and results are variable. Even fewer studies have measured the nutrient transfer by parasitic consumers, hindering an assessment of their role in nutrient transfer through food webs. Here we used a food chain consisting of a diatom as host, a chytrid as its parasitic consumer and a rotifer as the predatory consumer of the chytrid, to assess the trophic position of all three food-chain components using their natural 13C and 15N isotope signatures, and to measure the nitrogen transfer from the host via the chytrid to the rotifer by tracing 15N of a labelled host up the food chain. Additionally, we measured the carbon to nitrogen (C:N) ratios of all food-chain components. Natural isotope abundance results showed no clear 15N enrichment in the chytrid or rotifer relative to the primary producer. However, estimates of nitrogen transfer indicated that about 14% of host nitrogen was transferred per day from host to chytrid during infection epidemics and that some of this nitrogen was also transferred onward to the rotifer. Moreover, C:N ratios decreased with trophic level, suggesting that the chytrid provided a high-quality food source to the rotifer. In conclusion, our results support the “mycoloop”. The mycooloop proposes that chytrid infections allow the transfer of nutrients bound in large, inedible phytoplankton to zooplankton through the production of edible transmission spores, thereby rerouting nutrients back into the food web.
Collapse
Affiliation(s)
- Virginia Sánchez Barranco
- Copernicus Institute of Sustainable Development, University of Utrecht, Utrecht, The Netherlands. .,Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | - Marcel T J Van der Meer
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ) and Utrecht University, Utrecht, The Netherlands
| | - Maiko Kagami
- Graduate Schools of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Silke Van den Wyngaert
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ellen Van Donk
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Alena S Gsell
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
9
|
Allgeier JE, Wenger S, Layman CA. Taxonomic identity best explains variation in body nutrient stoichiometry in a diverse marine animal community. Sci Rep 2020; 10:13718. [PMID: 32792497 PMCID: PMC7426267 DOI: 10.1038/s41598-020-67881-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/02/2020] [Indexed: 11/24/2022] Open
Abstract
Animal-mediated nutrient dynamics are critical processes in ecosystems. Previous research has found animal-mediated nutrient supply (excretion) to be highly predictable based on allometric scaling, but similar efforts to find universal predictive relationships for an organism’s body nutrient content have been inconclusive. We use a large dataset from a diverse tropical marine community to test three frameworks for predicting body nutrient content. We show that body nutrient content does not follow allometric scaling laws and that it is not well explained by trophic status. Instead, we find strong support for taxonomic identity (particularly at the family level) as a predictor of body nutrient content, indicating that evolutionary history plays a crucial role in determining an organism’s composition. We further find that nutrients are “stoichiometrically linked” (e.g., %C predicts %N), but that the direction of these relationships does not always conform to expectations, especially for invertebrates. Our findings demonstrate that taxonomic identity, not trophic status or body size, is the best baseline from which to predict organismal body nutrient content.
Collapse
Affiliation(s)
- Jacob E Allgeier
- Department of Ecology, and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Seth Wenger
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Craig A Layman
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
10
|
Paseka RE, Bratt AR, MacNeill KL, Burian A, See CR. Elemental Ratios Link Environmental Change and Human Health. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|