1
|
Donohue JG, Piiroinen PT, Kane A. Predicted short-term mesoscavenger release gives way to apex-scavenger dominance. J Anim Ecol 2024. [PMID: 39300743 DOI: 10.1111/1365-2656.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Vultures play a crucial role in scavenging communities as apex scavengers. Scavenging communities in turn are a key component of terrestrial ecosystems, ensuring that dead biomass is removed quickly and efficiently. Anthropogenic disturbances, particularly mass poisonings, have caused crashes in vulture populations in Africa and Asia. We ask if vultures can re-establish themselves in a scavenging community from a point of near extirpation. To allow for maximum knowledge transfer across ecosystems, we focus on an ecosystem that is otherwise considered pristine. We chose Kruger National Park (KNP), a well-documented African scavenging community, as our focal ecosystem and parameterised a mathematical model of scavenging-community dynamics using field data from the park. We predicted the upper limit of vulture population size in an ecosystem like KNP. We then analysed vultures' path to recovery, using this empirically parameterised scavenging-community model. We used perturbation methods to determine how parameter values that may be specific to KNP influence our predictions. Comparisons of predicted vulture carrying capacity with recent population estimates suggest that the cumulative effect of human activities on vulture abundance is larger than previously believed. Our analysis shows that vulture populations can reach their carrying capacity approximately five decades after a poisoning event that would almost extirpate the population. Over shorter time scales, we predict a decade of enhanced mammal abundance (i.e. mesoscavenger release) before the mammals are excluded from the scavenging community. In our study system, jackals and hyenas are the mammalian groups predicted to benefit from the absence of vultures. However, neither group removes biomass as efficiently as vultures and animal carcasses are predicted to accumulate in the ecosystem while the vulture population recovers. In our framework, the carrying capacity for vulture populations is determined by carcass availability. As evidence for an alternative regulating factor is lacking, we conclude that present-day vulture population densities are orders of magnitude below their upper limits. Our results therefore suggest that with a recovery plan in place, the long-term prospects for vulture species and the associated ecosystems are positive.
Collapse
Affiliation(s)
- J G Donohue
- MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
| | - P T Piiroinen
- Division of Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - A Kane
- UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Honiball T, Davis RS, Ntlokwana L, Venter JA. Lion lords and sharing hyaenas: Carnivore guild dynamics around elephant carcasses. Ecol Evol 2024; 14:e11373. [PMID: 38711489 PMCID: PMC11070635 DOI: 10.1002/ece3.11373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Megaherbivore carcasses represent sporadic but energetically rewarding resources for carnivores, offering a unique opportunity to study coexistence dynamics between facultative scavengers. South African fenced protected areas, such as Madikwe Game Reserve (Madikwe hereafter), host viable populations of large carnivores and high densities of elephants, Loxodonta africana. However, high carnivore densities can lead to potentially fatal interspecific encounters and increased competition, particularly around high-quality trophic resources. This study explores the temporal partitioning and co-detection strategies of carnivores at six elephant carcasses in Madikwe, aiming to understand how the increased carrion biomass available at elephant carcasses influences coexistence dynamics. Camera traps were deployed to monitor carcasses during two periods (2019 and 2020), revealing occurrences of six carnivore species. Carnivores, particularly black-backed jackals, Lupulella mesomelas, (hereafter jackal), lions, Panthera leo, and spotted hyaenas, Crocuta crocuta, comprised 56.7% of carcass observations, highlighting their pivotal roles in scavenging dynamics. Pairwise co-detection analysis demonstrated consistent association and shared peak activity periods between jackals and spotted hyaenas, indicating potential resource sharing. However, the minimal co-detection rates between lions and other carnivores highlight their resource domination. There was some evidence of temporal partitioning between carnivores, with most species exhibiting earlier peaks in nocturnal activity to avoid temporal overlap with lions. This study emphasises the importance of elephant carcasses in the diet of multiple species and coexistence techniques utilised to exploit this ephemeral resource. As fenced protected areas become crucial for conserving intact carnivore guilds globally, further research into carnivore behavioural adaptations at carcasses is recommended to shed light on their coexistence strategies.
Collapse
Affiliation(s)
- Terry‐Lee Honiball
- Department of Conservation Management, Natural Resource Science and Management Cluster, Faculty of ScienceNelson Mandela UniversityGeorgeSouth Africa
| | - Robert S. Davis
- Department of Conservation Management, Natural Resource Science and Management Cluster, Faculty of ScienceNelson Mandela UniversityGeorgeSouth Africa
| | - Liyabona Ntlokwana
- Department of Conservation Management, Natural Resource Science and Management Cluster, Faculty of ScienceNelson Mandela UniversityGeorgeSouth Africa
| | - Jan A. Venter
- Department of Conservation Management, Natural Resource Science and Management Cluster, Faculty of ScienceNelson Mandela UniversityGeorgeSouth Africa
| |
Collapse
|
3
|
Montgomery TM, Lehmann KDS, Gregg S, Keyser K, McTigue LE, Beehner JC, Holekamp KE. Determinants of hyena participation in risky collective action. Proc Biol Sci 2023; 290:20231390. [PMID: 38018101 PMCID: PMC10685128 DOI: 10.1098/rspb.2023.1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Collective action problems arise when cooperating individuals suffer costs of cooperation, while the benefits of cooperation are received by both cooperators and defectors. We address this problem using data from spotted hyenas fighting with lions. Lions are much larger and kill many hyenas, so these fights require cooperative mobbing by hyenas for them to succeed. We identify factors that predict when hyena groups engage in cooperative fights with lions, which individuals choose to participate and how the benefits of victory are distributed among cooperators and non-cooperators. We find that cooperative mobbing is better predicted by lower costs (no male lions, more hyenas) than higher benefits (need for food). Individual participation is facilitated by social factors, both over the long term (close kin, social bond strength) and the short term (greeting interactions prior to cooperation). Finally, we find some direct benefits of participation: after cooperation, participants were more likely to feed at contested carcasses than non-participants. Overall, these results are consistent with the hypothesis that, when animals face dangerous cooperative dilemmas, selection favours flexible strategies that are sensitive to dynamic factors emerging over multiple time scales.
Collapse
Affiliation(s)
- Tracy M. Montgomery
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Mara Hyena Project, PO Box 164-00502, Karen, Nairobi, Kenya
- Department for the Ecology of Animal Societies, Max Planck Institute for Animal Behavior, Bücklestraße 5a, 78467 Konstanz, Germany
- Center for the Advanced Study of Collective Behavior, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Kenna D. S. Lehmann
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Human Biology Program, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Mara Hyena Project, PO Box 164-00502, Karen, Nairobi, Kenya
| | - Samantha Gregg
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
| | - Kathleen Keyser
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
| | - Leah E. McTigue
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Rocky Mountain Research Station, Colorado State University, 240 W Prospect St, Fort Collins, CO 80525, USA
| | - Jacinta C. Beehner
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA
- Department of Anthropology, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109, USA
| | - Kay E. Holekamp
- Department of Integrative Biology and Program in Ecology, Evolution, and behavior, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA
- Mara Hyena Project, PO Box 164-00502, Karen, Nairobi, Kenya
| |
Collapse
|
4
|
Hansen MJ, Kurvers RHJM, Licht M, Häge J, Pacher K, Dhellemmes F, Trillmich F, Elorriaga-Verplancken FR, Krause J. California sea lions interfere with striped marlin hunting behaviour in multi-species predator aggregations. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220103. [PMID: 37066648 PMCID: PMC10107233 DOI: 10.1098/rstb.2022.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/10/2023] [Indexed: 04/18/2023] Open
Abstract
The open ocean offers a suite of ecological conditions promoting the occurrence of multi-species predator aggregations. These mixed predator aggregations typically hunt large groups of relatively small and highly cohesive prey. However, the mechanisms and functions of these mixed predator aggregations are largely unknown. Even basic knowledge of whether the predator species' interactions are mutualistic, commensal or parasitic is typically missing. Moreover, recordings of attack and capture rates of marine multi-species predator aggregations, which are critical in understanding how and why these interactions have evolved, are almost completely non-existent owing to logistical challenges. Using underwater video, we quantified the attack and capture rates of two high-trophic level marine predators, California sea lions (Zalophus californianus) and striped marlin (Kajikia audax) attacking schools of fishes in the Southern California Current System, offshore the Baja California Peninsula. Recording over 5000 individual attacks across 13 fish schools, which varied in species, size and predator composition, we found that sea lions kleptoparasitized striped marlin hunts and reduced the frequency of marlin attacks and captures via interference competition. We discuss our results in the context of the phenotypic differences between the predator species and implications for a better understanding of multi-species predator aggregations. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Collapse
Affiliation(s)
- M. J. Hansen
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - R. H. J. M. Kurvers
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - M. Licht
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - J. Häge
- Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - K. Pacher
- Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - F. Dhellemmes
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - F. Trillmich
- Faculty of Biology, Animal Behaviour, University of Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany
| | - F. R. Elorriaga-Verplancken
- Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), La Paz, Baja CA Sur, 23096, Mexico
| | - J. Krause
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
- Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
5
|
Competitive interactions with dominant carnivores affect carrion acquisition of striped hyena in a semi-arid landscape of Rajasthan, India. MAMMAL RES 2022. [DOI: 10.1007/s13364-022-00663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Hansen MJ, Krause S, Dhellemmes F, Pacher K, Kurvers RHJM, Domenici P, Krause J. Mechanisms of prey division in striped marlin, a marine group hunting predator. Commun Biol 2022; 5:1161. [PMID: 36316537 PMCID: PMC9622829 DOI: 10.1038/s42003-022-03951-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Many terrestrial group-hunters cooperate to kill prey but then compete for their share with dominance being a strong predictor of prey division. In contrast, little is known about prey division in group-hunting marine predators that predominately attack small, evasive prey (e.g. fish schools). We identified individual striped marlin (Kajikia audax) hunting in groups. Groups surrounded prey but individuals took turns attacking. We found that competition for prey access led to an unequal division of prey among the predators, with 50% of the most frequently attacking marlin capturing 70–80% of the fish. Neither aggression, body size nor variation in hunting efficiency explained this skewed prey division. We did find that newly arrived groups of marlin gained on average more access to the prey. This raises the possibility that newly arrived marlin were hungrier and more motivated to feed. However, this result does not necessarily explain the unequal prey division among the predators because the skew in prey captures was found at the level of these groups. Dynamic prey division is probably widespread but under-reported in marine group-hunters and the inability of individuals to monopolize prey until satiation likely reduces the importance of social hierarchies for prey division. Striped marlin use a dynamic prey division method when hunting as a group, taking turns to feed but without doing so equally.
Collapse
Affiliation(s)
- M. J. Hansen
- grid.419247.d0000 0001 2108 8097Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - S. Krause
- grid.4562.50000 0001 0057 2672Department of Electrical Engineering and Computer Science, Lübeck University of Applied Sciences, 23562 Lübeck, Germany
| | - F. Dhellemmes
- grid.419247.d0000 0001 2108 8097Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - K. Pacher
- grid.7468.d0000 0001 2248 7639Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - R. H. J. M. Kurvers
- grid.419247.d0000 0001 2108 8097Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany ,grid.419526.d0000 0000 9859 7917Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - P. Domenici
- grid.5326.20000 0001 1940 4177IBF-CNR, Consiglio Nazionale delle Ricerche, Area di Ricerca San Cataldo, Via G. Moruzzi N°1, 56124 Pisa, Italy ,IAS-CNR, Località Sa Mardini, 09170 Torregrande, Oristano Italy
| | - J. Krause
- grid.419247.d0000 0001 2108 8097Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany ,grid.6734.60000 0001 2292 8254Cluster of Excellence “Science of Intelligence,” Technical University of Berlin, Marchstr. 23, 10587 Berlin, Germany ,grid.7468.d0000 0001 2248 7639Present Address: Faculty of Life Science, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
7
|
Patterson JR, DeVault TL, Beasley JC. Integrating terrestrial scavenging ecology into contemporary wildlife conservation and management. Ecol Evol 2022; 12:e9122. [PMID: 35866022 PMCID: PMC9289120 DOI: 10.1002/ece3.9122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Scavenging plays a vital role in maintaining ecosystem health and contributing to ecological functions; however, research in this sub-discipline of ecology is underutilized in developing and implementing wildlife conservation and management strategies. We provide an examination of the literature and recommend priorities for research where improved understanding of scavenging dynamics can facilitate the development and refinement of applied wildlife conservation and management strategies. Due to the application of scavenging research broadly within ecology, scavenging studies should be implemented for informing management decisions. In particular, a more direct link should be established between scavenging dynamics and applied management programs related to informing pharmaceutical delivery and population control through bait uptake for scavenging species, prevention of unintentional poisoning of nontarget scavenging species, the epidemiological role that scavenging species play in disease dynamics, estimating wildlife mortalities, nutrient transfer facilitated by scavenging activity, and conservation of imperiled facultative scavenging species. This commentary is intended to provide information on the paucity of data in scavenging research and present recommendations for further studies that can inform decisions in wildlife conservation and management. Additionally, we provide a framework for decision-making when determining how to apply scavenging ecology research for management practices and policies. Due to the implications that scavenging species have on ecosystem health, and their overall global decline as a result of anthropic activities, it is imperative to advance studies in the field of scavenging ecology that can inform applied conservation and management programs.
Collapse
Affiliation(s)
- Jessica R. Patterson
- Savannah River Ecology Lab, Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Travis L. DeVault
- Savannah River Ecology Lab, Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAikenSouth CarolinaUSA
| | - James C. Beasley
- Savannah River Ecology Lab, Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAikenSouth CarolinaUSA
| |
Collapse
|
8
|
Temporal resource partitioning mediates vertebrate coexistence at carcasses: the role of competitive and facilitative interactions. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Comparing scavenging in marine and terrestrial ecosystems: a case study with fish and gull carcasses in a small Mediterranean island. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Jones AK, Blockley SP, Schreve DC, Carbone C. Environmental factors influencing spotted hyena and lion population biomass across Africa. Ecol Evol 2021; 11:17219-17237. [PMID: 34938504 PMCID: PMC8668751 DOI: 10.1002/ece3.8359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
The spotted hyena (Crocuta crocuta Erxleben) and the lion (Panthera leo Linnaeus) are two of the most abundant and charismatic large mammalian carnivores in Africa and yet both are experiencing declining populations and significant pressures from environmental change. However, with few exceptions, most studies have focused on influences upon spotted hyena and lion populations within individual sites, rather than synthesizing data from multiple locations. This has impeded the identification of over-arching trends behind the changing biomass of these large predators. Using partial least squares regression models, influences upon population biomass were therefore investigated, focusing upon prey biomass, temperature, precipitation, and vegetation cover. Additionally, as both species are in competition with one other for food, the influence of competition and evidence of environmental partitioning were assessed. Our results indicate that spotted hyena biomass is more strongly influenced by environmental conditions than lion, with larger hyena populations in areas with warmer winters, cooler summers, less drought, and more semi-open vegetation cover. Competition was found to have a negligible influence upon spotted hyena and lion populations, and environmental partitioning is suggested, with spotted hyena population biomass greater in areas with more semi-open vegetation cover. Moreover, spotted hyena is most heavily influenced by the availability of medium-sized prey biomass, whereas lion is influenced more by large size prey biomass. Given the influences identified upon spotted hyena populations in particular, the results of this study could be used to highlight populations potentially at greatest risk of decline, such as in areas with warming summers and increasingly arid conditions.
Collapse
Affiliation(s)
- Angharad K. Jones
- Department of GeographyRoyal Holloway University of LondonEghamUK
- Institute of ZoologyZoological Society of LondonLondonUK
- Creswell Heritage TrustCreswell Crags Museum and Heritage CentreWorksopUK
| | | | | | - Chris Carbone
- Institute of ZoologyZoological Society of LondonLondonUK
| |
Collapse
|
11
|
Temporal partitioning and spatiotemporal avoidance among large carnivores in a human-impacted African landscape. PLoS One 2021; 16:e0256876. [PMID: 34506529 PMCID: PMC8432863 DOI: 10.1371/journal.pone.0256876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Africa is home to some of the world’s most functionally diverse guilds of large carnivores. However, they are increasingly under threat from anthropogenic pressures that may exacerbate already intense intra-guild competition. Understanding the coexistence mechanisms employed by these species in human-impacted landscapes could help shed light on some of the more subtle ways in which humans may impact wildlife populations, and inform multi-species conservation planning. We used camera trap data from Tanzania’s Ruaha-Rungwa landscape to explore temporal and spatiotemporal associations between members of an intact East African large carnivore guild, and determine how these varied across gradients of anthropogenic impact and protection. All large carnivores except African wild dog (Lycaon pictus) exhibited predominantly nocturnal road-travel behaviour. Leopard (Panthera pardus) appeared to employ minor temporal avoidance of lion (Panthera leo) in all sites except those where human impacts were highest, suggesting that leopard may have been freed up from avoidance of lion in areas where the dominant competitor was less abundant, or that the need for leopard to avoid humans outweighed the need to avoid sympatric competitors. Lion appeared to modify their activity patterns to avoid humans in the most impacted areas. We also found evidence of avoidance and attraction among large carnivores: lion and spotted hyaena (Crocuta crocuta) followed leopard; leopard avoided lion; spotted hyaena followed lion; and lion avoided spotted hyaena. Our findings suggest that large carnivores in Ruaha-Rungwa employ fine-scale partitioning mechanisms to facilitate coexistence with both sympatric species and humans, and that growing human pressures may interfere with these behaviours.
Collapse
|
12
|
Tobajas J, Descalzo E, Ferreras P, Mateo R, Margalida A. Effects on carrion consumption in a mammalian scavenger community when dominant species are excluded. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractCarrion is a valuable resource exploited not only by obligate scavengers but also by a wide variety of facultative scavengers. These species provide several important ecosystem services which can suffer if the scavenger community composition is altered, thus reducing the ecosystem provided. We studied the response of the Mediterranean facultative scavenger community to the exclusion of larger scavenger species (red fox Vulpes vulpes, European badger Meles meles, and wild boar Sus scrofa) using an exclusion fence permeable to small scavenger species (mainly Egyptian mongoose Herpestes ichneumon, common genet Genetta genetta, and stone marten Martes foina). The exclusion of dominant facultative scavengers led to a significant reduction in the amount of carrion consumed and an increase in carrion available for smaller species and decomposers, over a longer period of time. Although carrion consumption by the non-excluded species increased inside the exclusion area relative to the control area, it was insufficient to compensate for the carrion not eaten by the dominant scavengers. Of the small scavenger species, only the Egyptian mongoose significantly increased its carrion consumption in the exclusion area, and was the main beneficiary of the exclusion of dominant facultative scavengers. Therefore, altering the facultative scavenger community in Mediterranean woodlands can reduce the efficiency of small carcass removal and benefit other opportunistic species, such as the Egyptian mongoose, by increasing the carrion available to them. This interaction could have substantial implications for disease transmission, nutrient cycling, and ecosystem function.
Collapse
|
13
|
Mellard JP, Hamel S, Henden J, Ims RA, Stien A, Yoccoz N. Effect of scavenging on predation in a food web. Ecol Evol 2021; 11:6742-6765. [PMID: 34141254 PMCID: PMC8207452 DOI: 10.1002/ece3.7525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 11/06/2022] Open
Abstract
Scavenging can have important consequences for food web dynamics, for example, it may support additional consumer species and affect predation on live prey. Still, few food web models include scavenging. We develop a dynamic model that includes two facultative scavenger species, which we refer to as the predator or scavenger species according to their natural scavenging propensity, as well as live prey, and a carrion pool to show ramifications of scavenging for predation in simple food webs. Our modeling suggests that the presence of scavengers can both increase and decrease predator kill rates and overall predation in model food webs and the impact varies (in magnitude and direction) with context. In particular, we explore the impact of the amount of dynamics (exploitative competition) allowed in the predator, scavenger, and prey populations as well as the direction and magnitude of interference competition between predators and scavengers. One fundamental prediction is that scavengers most likely increase predator kill rates, especially if there are exploitative feedback effects on the prey or carrion resources like is normally observed in natural systems. Scavengers only have minimal effects on predator kill rate when predator, scavenger, and prey abundances are kept constant by management. In such controlled systems, interference competition can greatly affect the interactions in contrast to more natural systems, with an increase in interference competition leading to a decrease in predator kill rate. Our study adds to studies that show that the presence of predators affects scavenger behavior, vital rates, and food web structure, by showing that scavengers impact predator kill rates through multiple mechanisms, and therefore indicating that scavenging and predation patterns are tightly intertwined. We provide a road map to the different theoretical outcomes and their support from different empirical studies on vertebrate guilds to provide guidance in wildlife management.
Collapse
Affiliation(s)
- Jarad P. Mellard
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Sandra Hamel
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
- Département de biologieUniversité LavalQuébecCanada
| | - John‐André Henden
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Rolf A. Ims
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Audun Stien
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Nigel Yoccoz
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
14
|
Abstract
Many large predators are also facultative scavengers that may compete with and depredate other species at carcasses. Yet, the ecological impacts of facultative scavenging by large predators, or their "scavenging effects," still receive relatively little attention in comparison to their predation effects. To address this knowledge gap, we comprehensively examine the roles played by, and impacts of, facultative scavengers, with a focus on large canids: the African wild dog (Lycaon pictus), dhole (Cuon alpinus), dingo (Canis dingo), Ethiopian wolf (Canis simensis), gray wolf (Canis lupus), maned wolf (Chrysocyon brachyurus), and red wolf (Canis rufus). Specifically, after defining facultative scavenging as use or usurpation of a carcass that a consumer has not killed, we (1) provide a conceptual overview of the community interactions around carcasses that can be initiated by facultative scavengers, (2) review the extent of scavenging by and the evidence for scavenging effects of large canids, (3) discuss external factors that may diminish or enhance the effects of large canids as scavengers, and (4) identify aspects of this phenomenon that require additional research attention as a guide for future work.
Collapse
Affiliation(s)
- Aaron J Wirsing
- School of Environment and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Thomas M Newsome
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Dynamic interactions between apex predators reveal contrasting seasonal attraction patterns. Oecologia 2021; 195:51-63. [PMID: 33507398 DOI: 10.1007/s00442-020-04802-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/07/2020] [Indexed: 10/22/2022]
Abstract
Apex predators play important roles in ecosystem functioning and, where they coexist, intraguild interactions can have profound effects on trophic relationships. Interactions between predators range from intraguild predation and competition to facilitation through scavenging opportunities. Despite the increased availability of fine-scale GPS data, the determinants and outcomes of encounters between apex predators remain understudied. We used simultaneous GPS data from collared spotted hyaenas (Crocuta crocuta) and African lions (Panthera leo) in Hwange National Park, Zimbabwe, to determine the environmental conditions of the encounters between the two species, which species provoked the encounter, and which species dominated the encounter. Our results show that encounters between hyaenas and lions are mostly resource-related (over a carcass or around waterholes). In the wet season, encounters mainly occur at a carcass, with lions being dominant over its access. In the dry season, encounters mainly occur in the absence of a carcass and near waterholes. Movements of hyaenas and lions before, during, and after these dry-season encounters suggest two interference scenarios: a passive interference scenario whereby both predators would be attracted to waterholes but lions would leave a waterhole used by hyaenas because of prey disturbance, and an active interference scenario whereby hyaenas would actively chase lions from waterhole areas, which are prime hunting grounds. This study highlights the seasonal dynamics of predator interactions and illustrates how the relative importance of negative interactions (interference competition during the dry season) and positive interactions (scavenging opportunities during the wet season) shifts over the course of the year.
Collapse
|
16
|
The Role of Carrion in the Landscapes of Fear and Disgust: A Review and Prospects. DIVERSITY 2021. [DOI: 10.3390/d13010028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Animal behavior is greatly shaped by the ‘landscape of fear’, induced by predation risk, and the equivalent ‘landscape of disgust’, induced by parasitism or infection risk. However, the role that carrion may play in these landscapes of peril has been largely overlooked. Here, we aim to emphasize that animal carcasses likely represent ubiquitous hotspots for both predation and infection risk, thus being an outstanding paradigm of how predation and parasitism pressures can concur in space and time. By conducting a literature review, we highlight the manifold inter- and intra-specific interactions linked to carrion via predation and parasitism risks, which may affect not only scavengers, but also non-scavengers. However, we identified major knowledge gaps, as reviewed articles were highly biased towards fear, terrestrial environments, vertebrates, and behavioral responses. Based on the reviewed literature, we provide a conceptual framework on the main fear- and disgust-based interaction pathways associated with carrion resources. This framework may be used to formulate predictions about how the landscape of fear and disgust around carcasses might influence animals’ individual behavior and ecological processes, from population to ecosystem functioning. We encourage ecologists, evolutionary biologists, epidemiologists, forensic scientists, and conservation biologists to explore the promising research avenues associated with the scary and disgusting facets of carrion. Acknowledging the multiple trophic and non-trophic interactions among dead and live animals, including both herbivores and carnivores, will notably improve our understanding of the overlapping pressures that shape the landscape of fear and disgust.
Collapse
|