1
|
Xu W, Huang X, Yuan J, Wang Y, Wu M, Ni H, Dong L. The potential for synthesized invasive plant biochar with hydroxyapatite to mitigate allelopathy of Solidago canadensis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2833. [PMID: 36864716 DOI: 10.1002/eap.2833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/06/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Few studies tried to explore the mitigation effect and underlying mechanisms of biochar and their complex for negative allelopathy from invasive plants, which may provide a new way in the invasive plant management. Herein, an invasive plant (Solidago canadensis)-derived biochar (IBC) and its composite with hydroxyapatite (HAP/IBC) were synthesized by high temperature pyrolysis, and characterized by scanning electron microscopy, energy dispersion spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Then, both the batch adsorption and pot experiments were conducted to compare the removal effects of kaempferol-3-O-β-D-glucoside (C21 H20 O11 , kaempf), an allelochemical from S. canadensis, on IBC and HAP/IBC, respectively. HAP/IBC showed a stronger affinity for kaempf than IBC due to its higher specific surface area, more functional groups (P-O, P-O-P, PO4 3- ), stronger crystallization [Ca3 (PO4 )2 ]. The maximum kaempf adsorption capacity on HAP/IBC was six times higher than on IBC (10.482 mg/g > 1.709 mg/g) via π-π interactions, functional groups, and metal complexation. The kaempf adsorption process could be fitted best by both pseudo-second-order kinetic and Langmuir isotherm models. Furthermore, HAP/IBC addition into soils could enhance and even recover the germination rate and/or seedling growth of tomato inhibited by negative allelopathy from the invasive S. canadensis. These results indicate that the composite of HAP/IBC could more effectively mitigate the allelopathy from S. canadensis than IBC, which may be a potential efficient approach to control the invasive plant and improve invaded soils.
Collapse
Affiliation(s)
- Wenna Xu
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| | - Xueyi Huang
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| | - Jiajie Yuan
- Shaoxing Customs, Hangzhou Customs District, Shaoxing, People's Republic of China
| | - Yanhong Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Mengmin Wu
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| | - Hongtai Ni
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| | - Lijia Dong
- School of Life Science, Shaoxing University, Shaoxing, People's Republic of China
| |
Collapse
|
2
|
Feng D, Cheng J, Yang X, Tian Z, Liu Y, Zhang Y, Qiang S. Polyploidization-enhanced effective clonal reproduction endows the successful invasion of Solidago canadensis. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2738. [PMID: 36100575 DOI: 10.1002/eap.2738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Clonality and ploidy levels are positively associated with plant invasiveness. However, there is still no consensus on whether polyploidization can promote the invasion of alien plants by enhancing clonality. Our recent long-term community succession study found that the more vigorous clone of introduced polyploid Solidago canadensis succeeded into mono-dominant community, which seems to be a positive correlationship between polyploidization and clonal reproduction. However, the formation process of clonal ramet and how polyploidization improves the clonal reproduction of S. canadensis remains unknown. Here, we compared clonal growth ability among diploids and polyploids of S. canadensis from native and introduced ranges in a common garden. Results showed that the rhizomes of S. canadensis originated from axillary buds of dense nodes at the basal stem of seedling and then produced into clonal ramets from the rhizomes. Diploids had denser nodes and more buds, developed more rhizomes per unit mass and produced more clonal propagules at the early growth stage compared with polyploids. However, the number of juvenile and secondary rhizomes, as well as the diameter and length of rhizomes in polyploid populations was significantly higher or greater than those of diploids, and those clonal traits in introduced polyploids were significantly higher than in native polyploids. Moreover, a phalanx growth form was observed in native and introduced diploid populations, which allocated about 3% and 5% of the total biomass to rhizomes, respectively, resulting in short and weak rhizomes. However, native and introduced polyploids allocated about 35% and 40%, respectively, of the total biomass to rhizomes, resulting in long and strong rhizomes, which were guerrilla growth forms. This study firstly shows that polyploidization enhanced the effective clonal reproduction of S. canadensis through pre-adaptation and rapid post-adaptation evolution, and consequently contributed to its successful invasion.
Collapse
Affiliation(s)
- Dongyan Feng
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiliang Cheng
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xianghong Yang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhongsai Tian
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yujing Liu
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Sheng Qiang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Zhang Y, Tian Z, Shi J, Yu R, Zhang S, Qiang S. Tissue-Specific Transcriptomes in the Secondary Cell Wall Provide an Understanding of Stem Growth Enhancement in Solidago canadensis during Invasion. BIOLOGY 2023; 12:1347. [PMID: 37887057 PMCID: PMC10604605 DOI: 10.3390/biology12101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
Invasive plants generally present a significant enhancement in aboveground vegetative growth, which is mainly caused by variation in secondary cell wall (SCW) deposition and vascular tissue development. However, the coordination of the transcriptional regulators of SCW biosynthesis is complex, and a comprehensive regulation map has not yet been clarified at a transcriptional level to explain the invasive mechanism of S. canadensis. Here, RNA sequencing was performed in the phloem and xylem of two typical native (US01) and invasive (CN25) S. canadensis populations with different stem morphologies. A total of 296.14 million high-quality clean reads were generated; 438,605 transcripts and 156,968 unigenes were assembled; and 66,648 and 19,510 differential expression genes (DEGs) were identified in the phloem and xylem, respectively. Bioinformatics analysis indicated that the SCW transcriptional network was dramatically altered during the successful invasion of S.canadensis. Based on a comprehensive analysis of SCW deposition gene expression profiles, we revealed that the invasive population is dedicated to synthesizing cellulose and reducing lignification, leading to an SCW with high cellulose content and low lignin content. A hypothesis thus has been proposed to explain the enhanced stem growth of S. canadensis through the modification of the SCW composition.
Collapse
Affiliation(s)
| | | | | | | | | | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (Y.Z.); (Z.T.); (J.S.); (R.Y.); (S.Z.)
| |
Collapse
|
4
|
Tian Z, Cheng J, Xu J, Feng D, Zhong J, Yuan X, Zhang Z, Zhang Y, Mao Z, Qiang S. Cytogeography of Naturalized Solidago canadensis Populations in Europe. PLANTS (BASEL, SWITZERLAND) 2023; 12:1113. [PMID: 36903973 PMCID: PMC10005290 DOI: 10.3390/plants12051113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Autopolyploidization has driven the successful invasion of Solidago canadensis in East Asia. However, it was believed that only diploid S. canadensis invaded Europe, whereas polyploids never did. Here, molecular identification, ploidy level, and morphological traits of ten S. canadensis populations collected in Europe were compared with previously identified S. canadensis populations from other continents and S. altissima populations. Furthermore, the ploidy-driven geographical differentiation pattern of S. canadensis in different continents was investigated. All ten European populations were identified as S. canadensis with five diploid and five hexaploid populations. Significant differences in morphological traits existed among diploids and polyploids (tetraploids and hexaploids), rather than between polyploids from different introduced ranges and between S. altissima and polyploidy S. canadensis. The invasive hexaploids and diploids had few differences in latitudinal distributions in Europe, which was similar to the native range but different from a distinct climate-niche differentiation in Asia. This may be attributed to the bigger difference in climate between Asia and Europe and North America. The morphological and molecular evidences proved the invasion of polyploid S. canadensis in Europe and suggest that S. altissima may be merged into a complex of S. canadensis species. Our study may be concluded that geographical and ecological niche differentiation of an invasive plant driven by ploidy depends on the degree of difference in the environmental factors between the introduced and native range, which provides new insight into the invasive mechanism.
Collapse
|
5
|
Eckberg JN, Hubbard A, Schwarz ET, Smith ET, Sanders NJ. The dominant plant species
Solidago canadensis
structures multiple trophic levels in an old‐field ecosystem. Ecosphere 2023. [DOI: 10.1002/ecs2.4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Julia N. Eckberg
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
| | - Akane Hubbard
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
| | - Eva T. Schwarz
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
| | - Elliott T. Smith
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
| | - Nathan J. Sanders
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
6
|
Zhang Y, Cao F, Qiang S. Capitulum Development and Gametophyte Ontogeny: Histological Insight into the Reproductive Process of a Hexaploidy Population of Solidago canadensis in China. PLANTS 2022; 11:plants11152073. [PMID: 35956551 PMCID: PMC9370182 DOI: 10.3390/plants11152073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
Abstract
Solidago canadensis L., native to North America, has become a troublesome invasive plant worldwide due to its strong sexual reproductive capacity. Although there have been studies on some stages of sexual reproduction, there has been no systematic description of the process. In this study, we observed capitulum development, the occurrence of megasporogenesis and microsporogenesis, and embryo development using a scanning electron microscope. The results showed that there was a close relationship between the length of the capitulum bud and the stage in the reproductive process. Capitulum development appeared when the length of the capitate inflorescence was less than 1.73 ± 0.08 mm. The meiosis of microspores occurred when the length of the capitate inflorescence ranged from 2.20 ± 0.07 mm to 3.50 ± 0.10 mm, and mature pollen grains and embryo sacs formed when the length of the capitate inflorescence was greater than 5.15 ± 0.14 mm. Based on the available information, a reproductive calendar showing the key reproductive events from capitulum development to seed formation has been prepared. These processes may be related to its inherent temperature adaptation and non-synchronization of flowering, which may avoid embryo abortion during embryo development and consequently as a key step for its successful invasion in China. These results open up new horizons for effective prevention and control of spread in the future.
Collapse
|
7
|
Wu M, Liu H, Li B, Zhu T. Integrated analysis of mRNA-seq and miRNA-seq reveals the advantage of polyploid Solidago canadensis in sexual reproduction. BMC PLANT BIOLOGY 2021; 21:462. [PMID: 34635057 PMCID: PMC8504063 DOI: 10.1186/s12870-021-03240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The invasion of Solidago canadensis probably related to polyploidy, which may promotes its potential of sexual reproductive. S. canadensis as an invasive species which rapidly widespread through yield huge numbers of seed, but the mechanism remains unknown. To better understand the advantages of sexual reproduction in hexaploid S. canadensis, transcriptome and small RNA sequencing of diploid and hexaploid cytotypes in flower bud and fruit development stages were performed in this study. RESULTS The transcriptome analysis showed that in the flower bud stage, 29 DEGs were MADS-box related genes with 14 up-regulated and 15 down-regulated in hexaploid S. canadensis; 12 SPL genes were detected differentially expressed with 5 up-regulated and 7 down-regulated. In the fruit development stage, 26 MADS-box related genes with 20 up-regulated and 6 down-regulated in hexaploid S. canadensis; 5 SPL genes were all up-regulated; 28 seed storage protein related genes with 18 were up-regulated and 10 down-regulated. The weighted gene co-expression network analysis (WGCNA) identified 19 modules which consisted of co-expressed DEGs with functions such as sexual reproduction, secondary metabolism and transcription factors. Furthermore, we discovered 326 miRNAs with 67 known miRNAs and 259 novel miRNAs. Some of miRNAs, such as miR156, miR156a and miR156f, which target the sexual reproduction related genes. CONCLUSION Our study provides a global view of the advantages of sexual reproduction in hexaploid S. canadensis based on the molecular mechanisms, which may promote hexaploid S. canadensis owing higher yield and fruit quality in the process of sexual reproduction and higher germination rate of seeds, and finally conductive to diffusion, faster propagation process and enhanced invasiveness.
Collapse
Affiliation(s)
- Miao Wu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467041, Henan, China.
| | - Huiyuan Liu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467041, Henan, China
| | - Bingbing Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467041, Henan, China
| | - Tao Zhu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467041, Henan, China
| |
Collapse
|
8
|
Yang X, Cheng J, Yao B, Lu H, Zhang Y, Xu J, Song X, Sowndhararajan K, Qiang S. Polyploidy‐promoted phenolic metabolism confers the increased competitive ability of
Solidago canadensis. OIKOS 2021. [DOI: 10.1111/oik.08280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xianghong Yang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural Univ. Nanjing China
| | - Jiliang Cheng
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural Univ. Nanjing China
| | - Beibei Yao
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural Univ. Nanjing China
| | - Huan Lu
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural Univ. Nanjing China
| | - Yu Zhang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural Univ. Nanjing China
| | - Jingxuan Xu
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural Univ. Nanjing China
| | - Xiaoling Song
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural Univ. Nanjing China
| | | | - Sheng Qiang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural Univ. Nanjing China
| |
Collapse
|
9
|
Cheng J, Li J, Zhang Z, Lu H, Chen G, Yao B, Dong Y, Ma L, Yuan X, Xu J, Zhang Y, Dai W, Yang X, Xue L, Zhang Y, Zhang C, Mauricio R, Peng G, Hu S, Valverde BE, Song X, Li Y, Stift M, Qiang S. Autopolyploidy‐driven range expansion of a temperate‐originated plant to pan‐tropic under global change. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiliang Cheng
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Jun Li
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Zheng Zhang
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Huan Lu
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Guoqi Chen
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Beibei Yao
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Yingxue Dong
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Ling Ma
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Xiaoxiao Yuan
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Jingxuan Xu
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Ying Zhang
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Weimin Dai
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Xianghong Yang
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Lifang Xue
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Yu Zhang
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Chaobin Zhang
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Rodney Mauricio
- Department of Genetics University of Georgia Athens Georgia30602USA
| | - Gary Peng
- Agriculture and Agri‐Food Canada 107 Science Place Saskatoon SaskatchewanS7N 0X2Canada
| | - Shuijin Hu
- Department of Entomology and Plant Pathology North Carolina State University Raleigh North Carolina27695USA
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing210095China
| | - Bernal E. Valverde
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
- College of Life Sciences University of Copenhagen Taastrup Denmark
| | - Xiaoling Song
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| | - Yi Li
- Department of Plant Science and Landscape Architecture College of Agriculture and Natural Resources University of Connecticut Storrs Connecticut06269USA
| | - Marc Stift
- Ecology Department of Biology University of Konstanz Konstanz78457Germany
| | - Sheng Qiang
- Weed Research Laboratory Nanjing Agricultural University Nanjing210095China
| |
Collapse
|
10
|
Zhang Y, Xu L, Chen S, Qiang S. Transcription-mediated tissue-specific lignification of vascular bundle causes trade-offs between growth and defence capacity during invasion of Solidago canadensis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110638. [PMID: 33218618 DOI: 10.1016/j.plantsci.2020.110638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Allocation of more resources to growth but less to defense causing growth vigor of invasive alien plant populations contributes to successful invasion. However, few studies has addressed to relationship between vascular development variation and this mechanism. In this study, a common garden experimentwas established to compare the growth and vascular bundle development between native and introduced populations of Solidago canadensis, which is a wide-distributed invasive species in China. Our results suggested that the rapid growth of introduced populations could be explained by the well-developed and highly lignified xylem; while native populations present more developed and highly lignified phloem, which contributed more resistance to the infection of Sclerotiun rofsii compared with introduced populations. This difference was resulted from tissue-specific tradeoff distribution of lignification related gene expression between xylem and phloem, which is regulated by upstream MYB transcription factors. Our study gives a novel insight of mechanism that explain invasion success: lignin-related gene transcription-mediated tissue-specific lignification of vascular bundle contributes tradeoffs in resource allocation between growth and defence capacity during successful invasion of S. canadensis.
Collapse
Affiliation(s)
- Yu Zhang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingjun Xu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Lu H, Xue L, Cheng J, Yang X, Xie H, Song X, Qiang S. Polyploidization-driven differentiation of freezing tolerance in Solidago canadensis. PLANT, CELL & ENVIRONMENT 2020; 43:1394-1403. [PMID: 32092164 DOI: 10.1111/pce.13745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Solidago canadensis, originating from the temperate region of North America, has expanded southward to subtropical regions through polyploidization. Here we investigated whether freezing tolerance of S. canadensis was weakened during expansion. Measurement of the temperature causing 50% ruptured cells (LT50 ) in 35 S. canadensis populations revealed ploidy-related differentiation in freezing tolerance. Freezing tolerance was found to decrease with increasing ploidy. The polyploid populations of S. canadensis had lower ScICE1 gene expression levels but more ScICE1 gene copies than the diploids. Furthermore, more DNA methylation sites in the ScICE1 gene promoter were detected in the polyploids than in the diploids. The results suggest that promoter methylation represses the expression of multi-copy ScICE1 genes, leading to weaker freezing tolerance in polyploid S. canadensis compared to the diploids. The study provides empirical evidence that DNA methylation regulates expression of the gene copies and supports polyploidization-driven adaptation to new environments.
Collapse
Affiliation(s)
- Huan Lu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
| | - Lifang Xue
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Jiliang Cheng
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Xianghong Yang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Xie
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Xiaoling Song
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|