1
|
Constant T, Dobson FS, Habold C, Giroud S. Evolutionary trade-offs in dormancy phenology. eLife 2024; 12:RP89644. [PMID: 38669069 PMCID: PMC11052570 DOI: 10.7554/elife.89644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the 'life-history' hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.
Collapse
Affiliation(s)
- Théo Constant
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de StrasbourgStrasbourgFrance
| | - F Stephen Dobson
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de StrasbourgStrasbourgFrance
- Department of Biological Sciences, Auburn UniversityAuburnUnited States
| | - Caroline Habold
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de StrasbourgStrasbourgFrance
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine ViennaViennaAustria
- Energetic Lab, Department of Biology, Northern Michigan UniversityMarquetteUnited States
| |
Collapse
|
2
|
Roe AD, Wardlaw AA, Butterson S, Marshall KE. Diapause survival requires a temperature-sensitive preparatory period. CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100073. [PMID: 38371385 PMCID: PMC10869763 DOI: 10.1016/j.cris.2024.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Diapause is a form of internally-controlled dormancy that allows insects to avoid stressful conditions and periods of low food availability. Eastern spruce budworm (Choristoneura fumiferana Clemens), like many cold-adapted insects, enter diapause well in advance of winter conditions, thus exposing them to elevated temperatures during fall that can deplete energy stores and impact post-diapause survival. We explored the impact of fall conditions on C. fumiferana by manipulating the length of the fall period and exposure temperatures during the diapause initiation phase of second instar larvae in a factorial design. We exposed second instar larvae to four fall temperatures (10, 15, 20, and 25°C) and five exposure times (1, 2, 4, 6, and 10 weeks) prior to standardized diapause conditions. We measured metabolites (glycogen, glycerol, and protein) prior to and during diapause for a subset of individuals. We also measured post-diapause survival by quantifying emergence following diapause conditions for a subset of individuals. We found that long, warm fall conditions depleted glycogen content and lowered post-diapause survival. We also found that short, cool conditions impacted post-diapause survival, although glycogen content remained high. Our results showed that fall conditions have substantial fitness consequences to overwintering insects. Optimal fall conditions struck a balance between exposure time and temperature. Our findings point to a potentially adaptive reason for early diapause onset: that an undescribed, but temperature-sensitive process is occurring in C. fumiferana larvae during the diapause initiation period that is essential for overwintering survival and successful post-diapause emergence.
Collapse
Affiliation(s)
- Amanda D. Roe
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON P6A 2E5
| | - Ashlyn A. Wardlaw
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON P6A 2E5
| | - Skye Butterson
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4
| | - Katie E. Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4
| |
Collapse
|
3
|
Boyles JG, Brack V, Marshall KE, Brack D. Shifts in population density centers of a hibernating mammal driven by conflicting effects of climate change and disease. GLOBAL CHANGE BIOLOGY 2024; 30:e17035. [PMID: 37987538 DOI: 10.1111/gcb.17035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Populations wax and wane over time in response to an organism's interactions with abiotic and biotic forces. Numerous studies demonstrate that fluctuations in local populations can lead to shifts in relative population densities across the geographic range of a species over time. Fewer studies attempt to disentangle the causes of such shifts. Over four decades (1983-2022), we monitored populations of hibernating Indiana bats (Myotis sodalis) in two areas separated by ~110 km. The number of bats hibernating in the northern area increased from 1983 to 2011, while populations in the southern area remained relatively constant. We used simulation models and long-term weather data to demonstrate the duration of time bats must rely on stored fat during hibernation has decreased in both areas over that period, but at a faster rate in the northern area. Likewise, increasing autumn and spring temperatures shortened the periods of sporadic prey (flying insect) availability at the beginning and end of hibernation. Climate change thus increased the viability of northern hibernacula for an increasing number of bats by decreasing energetic costs of hibernation. Then in 2011, white-nose syndrome (WNS), a disease of hibernating bats that increases energetic costs of hibernation, was detected in the area. From 2011 to 2022, the population rapidly decreased in the northern area and increased in the southern area, completely reversing the northerly shift in population densities associated with climate change. Energy balance during hibernation is the singular link explaining the northerly shift under a changing climate and the southerly shift in response to a novel disease. Continued population persistence suggests that bats may mitigate many impacts of WNS by hibernating farther south, where insects are available longer each year.
Collapse
Affiliation(s)
- Justin G Boyles
- School of Biological Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Virgil Brack
- Environmental Solutions & Innovations, Inc., Cincinnati, Ohio, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Darwin Brack
- Environmental Solutions & Innovations, Inc., Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Jego L, Li R, Roudine S, Ma CS, Le Lann C, Ma G, van Baaren J. Parasitoid ecology along geographic gradients: lessons for climate change studies. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101036. [PMID: 37061184 DOI: 10.1016/j.cois.2023.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023]
Abstract
One method to study the impact of climate change on host-parasitoid relationships is to compare populations along geographical gradients in latitude, altitude, or longitude. Indeed, temperatures, which vary along geographic gradients, directly shape the life traits of parasitoids and indirectly shift their populations through trophic interactions with hosts and plants. We explored the pros and cons of using these comparisons along gradients. We highlighted that the longitudinal gradients, although understudied, are well correlated to winter warming and summer heat waves and we draw attention to the impact of the increase in extreme events, which will probably be the determining parameters of the effect of climate change on host-parasitoid relationships.
Collapse
Affiliation(s)
- Lena Jego
- UMR-CNRS 6553 ECOBIO, Université de Rennes, Campus de Beaulieu, Avenue du Gal Leclerc, 35042 Rennes cedex, France
| | - Ruining Li
- UMR-CNRS 6553 ECOBIO, Université de Rennes, Campus de Beaulieu, Avenue du Gal Leclerc, 35042 Rennes cedex, France; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China; School of Life Science, Institutes of Life Science and Green Development, Hebei University, 071002 Baoding, China
| | - Sacha Roudine
- UMR-CNRS 6553 ECOBIO, Université de Rennes, Campus de Beaulieu, Avenue du Gal Leclerc, 35042 Rennes cedex, France
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China; School of Life Science, Institutes of Life Science and Green Development, Hebei University, 071002 Baoding, China
| | - Cécile Le Lann
- UMR-CNRS 6553 ECOBIO, Université de Rennes, Campus de Beaulieu, Avenue du Gal Leclerc, 35042 Rennes cedex, France
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
| | - Joan van Baaren
- UMR-CNRS 6553 ECOBIO, Université de Rennes, Campus de Beaulieu, Avenue du Gal Leclerc, 35042 Rennes cedex, France.
| |
Collapse
|