1
|
Wos G, Palomar G, Marszałek M, Sniegula S. Comparative Transcriptomic Reveals Greater Similarities in Response to Temperature Than to Invasive Alien Predator in the Damselfly Ischnura elegans Across Different Geographic Scales. Evol Appl 2024; 17:e70002. [PMID: 39247089 PMCID: PMC11377989 DOI: 10.1111/eva.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
The impact of global changes on populations may not be necessarily uniform across a species' range. Here, we aim at comparing the phenotypic and transcriptomic response to warming and an invasive predator cue in populations across different geographic scales in the damselfly Ischnura elegans. We collected adult females in two ponds in southern Poland (central latitude) and two ponds in southern Sweden (high latitude). We raised their larvae in growth chambers and exposed them to combination of temperature and a predator cue released by the crayfish Orconectes limosus. When larvae reached the prefinal larval stage, they were phenotyped for traits related to growth and size and collected for a gene expression analysis. High-latitude populations exhibited greater phenotypic and transcriptomic variation than central-latitude populations. Across latitudes and ponds, temperature generally increased growth rate and the predator cue decreased mass, but the effects of temperature were also pond-specific. Comparison of the transcriptomic profiles revealed a greater overlap in the response to temperature across latitudes and ponds, especially for pathway-related oxidative stress and sugar and lipid metabolism. The transcriptomic response to a predator cue and to the interaction temperature × predator cue was more pond-specific and overlapped only for few genes and pathways related to cuticle, development and signal transduction. We demonstrated that central- and high-latitude populations may partially respond through similar mechanisms to warming and, to a lower extent to a predator cue and to the interaction temperature × predator cue. For the predator cue and the interaction, the large fraction of ponds-specific genes suggests local adaptation. We show that high-latitude populations were generally more plastic at the phenotypic and transcriptomic level and may be more capable to cope with environmental changes than their central-latitude counterparts.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| | - Gemma Palomar
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences Complutense University of Madrid Madrid Spain
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| |
Collapse
|
2
|
Stahl L, Johansson F. Effects of temperature and resource level on interspecific interactions in two species of Odonata larvae. Ecol Evol 2024; 14:e11502. [PMID: 38873022 PMCID: PMC11170025 DOI: 10.1002/ece3.11502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Identifying how temperature and food resources affect interactions between species is important for understanding how climate change will shape community structure in the future. Here, we tested how temperature and resource density affect survival and growth in the larval stage of two coexisting odonates: the damselfly Lestes sponsa and the dragonfly Sympetrum vulgatum. We performed a laboratory experiment at two temperatures (21 and 24°C) with two resource densities. We estimated the timing of egg hatching of individual egg clutches and thereafter the larval growth rate-, survival- and size-mediated priority effects under interspecific conditions. Eggs of both species hatched slightly faster at 24°C, and S. vulgatum eggs started hatching approximately 1 day earlier than L. sponsa eggs. However, this earlier hatching did not result in a size-mediated priority effect, that is, a higher predation on the later hatching L. sponsa. Nevertheless, L. sponsa larvae were significantly larger than S. vulgatum at hatching. Growth rate and survival were significantly higher: (1) at 24°C compared with 21°C, (2) at high compared with low-resource density and (3) in L. sponsa compared with S. vulgatum. Several significant interaction effects between resource density and temperature and between temperature and species were found. At high temperature, L. sponsa had a higher growth rate than S. vulgatum, but no difference in growth rate between species was found at low temperature. Additionally, a high-resource density resulted in a higher growth rate in both species, but only under high temperature. There was a negative relationship between growth rate and survival in both species, suggesting that the higher growth rate of larvae was to some degree driven by intraguild predation and/or cannibalism. Our results imply that resource levels interact with temperature to affect interactions between the species.
Collapse
Affiliation(s)
- Lisa Stahl
- Department of Ecology and Genetics, Animal Ecology ProgramUppsala UniversityUppsalaSweden
| | - Frank Johansson
- Department of Ecology and Genetics, Animal Ecology ProgramUppsala UniversityUppsalaSweden
| |
Collapse
|
3
|
Wos G, Palomar G, Golab MJ, Marszałek M, Sniegula S. Effects of overwintering on the transcriptome and fitness traits in a damselfly with variable voltinism across two latitudes. Sci Rep 2024; 14:12192. [PMID: 38806592 PMCID: PMC11133422 DOI: 10.1038/s41598-024-63066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Winter diapause consists of cessation of development that allows individuals to survive unfavourable conditions. Winter diapause may bear various costs and questions have been raised about the evolutionary mechanisms maintaining facultative diapause. Here, we explored to what extent a facultative winter diapause affects life-history traits and the transcriptome in the damselfly Ischnura elegans, and whether these effects were latitude-specific. We collected adult females at central and high latitudes and raised their larvae in growth chambers. Larvae were split into a non-diapausing and post-winter (diapausing) cohort, were phenotyped and collected for a gene expression analysis. At the phenotypic level, we found no difference in survival between the two cohorts, and the post-winter cohort was larger and heavier than the non-winter cohort. These effects were mostly independent of the latitude of origin. At the transcriptomic level, wintering affected gene expression with a small fraction of genes significantly overlapping across latitudes, especially those related to morphogenesis. In conclusion, we found clear effects of diapause on the phenotype but little evidence for latitudinal-specific effects of diapause. Our results showed a shared transcriptomic basis underpinning diapause demonstrated, here, at the intraspecific level and supported the idea of evolutionary convergence of the response to diapause across organisms.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Gemma Palomar
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040, Madrid, Spain
| | - Maria J Golab
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
4
|
Zou HX, Rudolf VHW. Bridging theory and experiments of priority effects. Trends Ecol Evol 2023; 38:1203-1216. [PMID: 37633727 DOI: 10.1016/j.tree.2023.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Priority effects play a key role in structuring natural communities, but considerable confusion remains about how they affect different ecological systems. Synthesizing previous studies, we show that this confusion arises because the mechanisms driving priority and the temporal scale at which they operate differ among studies, leading to divergent outcomes in species interactions and biodiversity patterns. We suggest grouping priority effects into two functional categories based on their mechanisms: frequency-dependent priority effects that arise from positive frequency dependence, and trait-dependent priority effects that arise from time-dependent changes in interacting traits. Through easy quantification of these categories from experiments, we can construct community models representing diverse biological mechanisms and interactions with priority effects, therefore better predicting their consequences across ecosystems.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77005, USA.
| | - Volker H W Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77005, USA
| |
Collapse
|
5
|
Nagano K, Hiraiwa MK, Ishiwaka N, Seko Y, Hashimoto K, Uchida T, Sánchez-Bayo F, Hayasaka D. Global warming intensifies the interference competition by a poleward-expanding invader on a native dragonfly species. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230449. [PMID: 38026017 PMCID: PMC10663793 DOI: 10.1098/rsos.230449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Rapid climate warming has boosted biological invasions and the distribution or expansion polewards of many species: this can cause serious impacts on local ecosystems within the invaded areas. Subsequently, native species may be exposed to threats of both interspecific competition with invaders and temperature rises. However, effects of warming on interspecific interactions, especially competition between invader and native species remains unclear. To better understand the combined threats of biological invasions and warming, the effect of temperature on competitive interactions between two dragonfly species, the expanding Trithemis aurora from Southeast Asia and the Japanese native Orthetrum albistylum speciosum were assessed based on their foraging capacity. Although the stand-alone effect of temperature on foraging intake of the native dragonfly was not apparent, its intake significantly decreased with increasing temperatures when the invader T. aurora was present. Such reductions in foraging might lead to displacement of the native species through competition for food resources. This suggests that impacts of invader species against native species are expected to be more severe when interspecific competition is exacerbated by temperature rises.
Collapse
Affiliation(s)
- Koki Nagano
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
| | - Masayoshi K. Hiraiwa
- Faculty of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
| | - Naoto Ishiwaka
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
| | - Yugo Seko
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Koya Hashimoto
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Taizo Uchida
- Faculty of Architecture and Civil Engineering, Kyushu Sangyo University, Higashi-ku, Matsukadai 2-3-1, Fukuoka, Fukuoka 813-8503, Japan
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Daisuke Hayasaka
- Faculty of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
| |
Collapse
|
6
|
Wos G, Palomar G, Marszałek M, Babik W, Sniegula S. The effect of temperature and invasive alien predator on genetic and phenotypic variation in the damselfly Ischnura elegans: cross-latitude comparison. Front Zool 2023; 20:13. [PMID: 37032330 PMCID: PMC10084621 DOI: 10.1186/s12983-023-00494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Understanding and predicting how organisms respond to human-caused environmental changes has become a major concern in conservation biology. Here, we linked gene expression and phenotypic data to identify candidate genes underlying existing phenotypic trait differentiation under individual and combined environmental variables. For this purpose, we used the damselfly Ischnura elegans. Egg clutches from replicated high- (southern Sweden) and central-latitude (southern Poland) populations facing different degrees of seasonal time constraints were collected. Damselfly larvae were exposed to experimental treatments: current and mild warming temperatures crossed with the presence or absence of an invasive alien predator cue released by the spiny-cheek crayfish, Faxonius limosus, which is only present in Poland to date. We measured the following traits: larval development time, body size, mass and growth rate, and used the larvae for gene expression analysis by RNA-seq. Data were analysed using a multivariate approach. RESULTS We showed latitudinal differences in coping with mild warming and predator cues. When exposed to an increased temperature and a predator cue, central-latitude individuals had the shortest development and the fastest growth compared to high-latitude individuals. There was a general effect of predator cues regarding mass and growth rate reduction independent of latitude. Transcriptome analysis revealed that metabolic pathways related to larval anatomy and development tended to be upregulated in response to mild warming but only in fast-growing central-latitude individuals. Metabolic pathways linked to oxidative stress tended to be downregulated in response to a predator cue, especially in central-latitude individuals. CONCLUSION Different phenotypic and transcriptomic responses to environmental factors might be attributed to the variability in I. elegans life history strategies between the two latitudes caused by seasonal time constraints and to its coexistence with the invasive alien predator in nature. By providing insights into how organisms may respond to future anthropogenic changes, our results may be of particular interest in conservation biology.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Gemma Palomar
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland
- Department of Genetics, Physiology, and Microbiology, Complutense University of Madrid, C/Jose Antonio Novais 12, 28040, Madrid, Spain
| | - Marzena Marszałek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
7
|
Raczyński M, Stoks R, Johansson F, Bartoń K, Sniegula S. Phenological Shifts in a Warming World Affect Physiology and Life History in a Damselfly. INSECTS 2022; 13:622. [PMID: 35886798 PMCID: PMC9318786 DOI: 10.3390/insects13070622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/02/2022]
Abstract
Under climate warming, temperate ectotherms are expected to hatch earlier and grow faster, increase the number of generations per season, i.e., voltinism. Here, we studied, under laboratory conditions, the impact of artificial warming and manipulated hatching dates on life history (voltinism, age and mass at emergence and growth rate) and physiological traits (phenoloxidase (PO) activity at emergence, as an indicator of investment in immune function) and larval survival rate in high-latitude populations of the damselfly Ischnura elegans. Larvae were divided into four groups based on crossing two treatments: early versus late hatching dates and warmer versus control rearing temperature. Damselflies were reared in groups over the course of one (univoltine) or two (semivoltine) growth seasons, depending on the voltinism. Warming temperature did not affect survival rate. However, warming increased the number of univoltine larvae compared to semivoltine larvae. There was no effect of hatching phenology on voltinism. Early hatched larvae reared under warming had elevated PO activity, regardless of their voltinism, indicating increased investment in immune function against pathogens. Increased PO activity was not associated with effects on age or mass at emergence or growth rate. Instead, life history traits were mainly affected by temperature and voltinism. Warming decreased development time and increased growth rate in univoltine females, yet decreased growth rate in univoltine males. This indicates a stronger direct impact of warming and voltinism compared to impacts of hatching phenology on life history traits. The results strengthen the evidence that phenological shifts in a warming world may affect physiology and life history in freshwater insects.
Collapse
Affiliation(s)
- Mateusz Raczyński
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland;
| | - Robby Stoks
- Department of Biology, Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, 3000 Leuven, Belgium;
| | - Frank Johansson
- Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
| | - Kamil Bartoń
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland;
| | - Szymon Sniegula
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland;
| |
Collapse
|
8
|
Golab MJ, Sniegula S, Brodin T. Cross-Latitude Behavioural Axis in an Adult Damselfly Calopteryx splendens (Harris, 1780). INSECTS 2022; 13:insects13040342. [PMID: 35447784 PMCID: PMC9027559 DOI: 10.3390/insects13040342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Animals adapt to the environment they live in. If the environment changes, animals usually adapt behaviourally as a first response. By studying behavioural profiles across long distances, we can detect environmental change reflected in shifts in behavioural profiles. This study examined variation in three behavioural axes: activity, courtship and boldness, and the association between these behaviours, i.e., behavioural syndromes, across three damselfly populations along a latitudinal gradient (i.e., climatic gradient). Our study organism was the temperate damselfly Calopteryx splendens. We predicted that behavioural expressions would gradually increase from southern to northern regions. This is because northern animals should compensate behaviourally for a brief and cold breeding season (i.e., time constraint). Activity was the only behaviour feature positively associated with latitudinal gradient. Courtship effort was highest in the central region, whereas boldness values were highest in the north but did not differ between central and south. In the southern region, an activity–boldness and a courtship—boldness syndrome were present, and in the northern region, only an activity–boldness syndrome was found. Our results confirm that environmental variability in biotic and abiotic factors across studied latitudes generates regional differences in behavioural profiles, which do not always follow latitudinal gradient. Abstract Behavioural variation is important for evolutionary and ecological processes, but can also be useful when predicting consequences of climate change and effects on species ranges. Latitudinal differences in behaviour have received relatively limited research interest when compared to morphological, life history and physiological traits. This study examined differences in expression of three behavioural axes: activity, courtship and boldness, and their correlations, along a European latitudinal gradient spanning ca. 1500 km. The study organism was the temperate damselfly Calopteryx splendens (Harris). We predicted that the expression of both behavioural traits and behavioural syndromes would be positively correlated to latitude, with the lowest values in the southern populations, followed by central and the highest in the north, because animals usually compensate behaviourally for increasing time constraints and declining environmental conditions. We found that behavioural expression varied along the latitudinal cline, although not always in the predicted direction. Activity was the only behaviour that followed our prediction and gradually increased northward. Whereas no south-to-north gradient was seen in any of the behavioural syndromes. The results, particularly for activity, suggest that climatic differences across latitudes change behavioural profiles. However, for other traits such as courtship and boldness, local factors might invoke stronger selection pressures, disrupting the predicted latitudinal pattern.
Collapse
Affiliation(s)
- Maria J. Golab
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland
- Correspondence: (M.J.G.); (S.S.); Tel.: +48-12370561 (M.J.G.); +48-123703522 (S.S.)
| | - Szymon Sniegula
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland
- Correspondence: (M.J.G.); (S.S.); Tel.: +48-12370561 (M.J.G.); +48-123703522 (S.S.)
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90187 Umeå, Sweden;
| |
Collapse
|