1
|
Malod K, Bierman A, Karsten M, Manrakhan A, Weldon CW, Terblanche JS. Evidence for transient deleterious thermal acclimation in field recapture rates of an invasive tropical species, Bactrocera dorsalis (Diptera: Tephritidae). INSECT SCIENCE 2024. [PMID: 39126165 DOI: 10.1111/1744-7917.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Knowing how environmental conditions affect performance traits in pest insects is important to improve pest management strategies. It can be informative for monitoring, but also for control programs where insects are mass-reared, and field-released. Here, we investigated how adult thermal acclimation in sterile Bactrocera dorsalis affects dispersal and recapture rates in the field using a mark-release-recapture method. We also considered how current abiotic factors may affect recapture rates and interact with thermal history. We found that acclimation at 20 or 30 °C for 4 d prior to release reduced the number of recaptures in comparison with the 25 °C control group, but with no differences between groups in the willingness to disperse upon release. However, the deleterious effects of acclimation were only detectable in the first week following release, whereafter only the recent abiotic conditions explained recapture rates. In addition, we found that recent field conditions contributed more than thermal history to explain patterns of recaptures. The two most important variables affecting the number of recaptures were the maximum temperature and the average relative humidity experienced in the 24 h preceding trapping. Our results add to the handful of studies that have considered the effect of thermal acclimation on insect field performance, but notably lend support to the deleterious acclimation hypothesis among the various hypotheses that have been proposed. Finally, this study shows that there are specific abiotic conditions (cold/hot and dry) in which recaptures will be reduced, which may therefore bias estimates of wild population size.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Anandi Bierman
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Aruna Manrakhan
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
- Citrus Research International, Mbombela, South Africa
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Li J, Jiang H, Xie M, Song C, He C, Bian H, Sheng L. Functional characteristics and habitat suitability of threatened birds in northeastern China. Ecol Evol 2024; 14:e11550. [PMID: 38932959 PMCID: PMC11199129 DOI: 10.1002/ece3.11550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/08/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Northeast China, rich in natural resources and diverse biodiversity, boasts a unique habitat for threatened bird species due to its remote location and perennial cold climate. An analysis assessed the adaptability of these species using data on their geographic distribution and functional traits collected through database queries. The results revealed that threatened bird species share similar functional traits and a stronger phylogenetic signal (Blomberg mean K = 0.39) compared to common species. The Biomod2 model analyzed potentially suitable ranges and environmental drivers under current and future climate scenarios, showing a pattern of larger suitable areas in southern regions and smaller suitable areas in the north. The most critically threatened species faced greater geographical constraints (0.989), with mean annual temperature being a key influence. Altitude and water system distribution were also key factors impacting the distribution of other threatened bird species. Simulated projections under different climate scenarios (RCP 45 and 85) indicated varying degrees of expansion in the suitable range for these species. This research sheds light on the functional traits and distribution of threatened bird species in Northeast China, providing a scientific foundation for future conservation and management efforts.
Collapse
Affiliation(s)
- Jianwei Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
| | - Haibo Jiang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
| | - Mingjun Xie
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
| | - Chuantao Song
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
| | - Hongfeng Bian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of EnvironmentNortheast Normal UniversityChangchunChina
| |
Collapse
|
3
|
Cao HQ, Chen JC, Tang MQ, Chen M, Hoffmann AA, Wei SJ. Plasticity of cold and heat stress tolerance induced by hardening and acclimation in the melon thrips. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104619. [PMID: 38301801 DOI: 10.1016/j.jinsphys.2024.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Extreme temperatures threaten species under climate change and can limit range expansions. Many species cope with changing environments through plastic changes. This study tested phenotypic changes in heat and cold tolerance under hardening and acclimation in the melon thrips, Thrips palmi Karny (Thysanoptera: Thripidae), an agricultural pest of many vegetables. We first measured the critical thermal maximum (CTmax) of the species by the knockdown time under static temperatures and found support for an injury accumulation model of heat stress. The inferred knockdown time at 39 °C was 82.22 min. Rapid heat hardening for 1 h at 35 °C slightly increased CTmax by 1.04 min but decreased it following exposure to 31 °C by 3.46 min and 39 °C by 6.78 min. Heat acclimation for 2 and 4 days significantly increased CTmax at 35 °C by 1.83, and 6.83 min, respectively. Rapid cold hardening at 0 °C and 4 °C for 2 h, and cold acclimation at 10 °C for 3 days also significantly increased cold tolerance by 6.09, 5.82, and 2.00 min, respectively, while cold hardening at 8 °C for 2 h and acclimation at 4 °C and 10 °C for 5 days did not change cold stress tolerance. Mortality at 4 °C for 3 and 5 days reached 24.07 % and 43.22 % respectively. Our study showed plasticity for heat and cold stress tolerance in T. palmi, but the thermal and temporal space for heat stress induction is narrower than for cold stress induction.
Collapse
Affiliation(s)
- Hua-Qian Cao
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing 100083, China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng-Qing Tang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Min Chen
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing 100083, China.
| | - Ary A Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
4
|
Ivimey-Cook ER, Piani C, Hung WT, Berg EC. Genetic background and thermal regime influence adaptation to novel environment in the seed beetle, Callosobruchus maculatus. J Evol Biol 2024; 37:1-13. [PMID: 38285665 DOI: 10.1093/jeb/voad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/16/2023] [Accepted: 11/24/2023] [Indexed: 01/31/2024]
Abstract
Climate change is associated with the increase in both the mean and variability of thermal conditions. Therefore, the use of more realistic fluctuating thermal regimes is the most appropriate laboratory method for predicting population responses to thermal heterogeneity. However, the long- and short-term implications of evolving under such conditions are not well understood. Here, we examined differences in key life-history traits among populations of seed beetles (Callosobruchus maculatus) that evolved under either constant control conditions or in an environment with fluctuating daily temperatures. Specifically, individuals from two distinct genetic backgrounds were kept for 19 generations at one of two temperatures, a constant temperature (T = 29 °C) or a fluctuating daily cycle (Tmean = 33 °C, Tmax = 40 °C, and Tmin = 26 °C), and were assayed either in their evolved environment or in the other environment. We found that beetles that evolved in fluctuating environments but were then switched to constant 29 °C conditions had far greater lifetime reproductive success compared with beetles that were kept in their evolved environments. This increase in reproductive success suggests that beetles raised in fluctuating environments may have evolved greater thermal breadth than control condition beetles. In addition, the degree of sexual dimorphism in body size and development varied as a function of genetic background, evolved thermal environment, and current temperature conditions. These results not only highlight the value of incorporating diel fluctuations into climate research but also suggest that populations that experience variability in temperature may be better able to respond to both short- and long-term changes in environmental conditions.
Collapse
Affiliation(s)
- Edward R Ivimey-Cook
- School of Biological Sciences, One Health & Veterinary Medicine, University of Glasgow, Scotland, United Kingdom
| | - Claudio Piani
- Department of Computer Science, Mathematics, and Environmental Science, The American University of Paris, Paris, France
| | - Wei-Tse Hung
- Department of Computer Science, Mathematics, and Environmental Science, The American University of Paris, Paris, France
| | - Elena C Berg
- Department of Computer Science, Mathematics, and Environmental Science, The American University of Paris, Paris, France
| |
Collapse
|
5
|
Gilmour KM, Daley MA, Egginton S, Kelber A, McHenry MJ, Patek SN, Sane SP, Schulte PM, Terblanche JS, Wright PA, Franklin CE. Through the looking glass: attempting to predict future opportunities and challenges in experimental biology. J Exp Biol 2023; 226:jeb246921. [PMID: 38059428 DOI: 10.1242/jeb.246921] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
To celebrate its centenary year, Journal of Experimental Biology (JEB) commissioned a collection of articles examining the past, present and future of experimental biology. This Commentary closes the collection by considering the important research opportunities and challenges that await us in the future. We expect that researchers will harness the power of technological advances, such as '-omics' and gene editing, to probe resistance and resilience to environmental change as well as other organismal responses. The capacity to handle large data sets will allow high-resolution data to be collected for individual animals and to understand population, species and community responses. The availability of large data sets will also place greater emphasis on approaches such as modeling and simulations. Finally, the increasing sophistication of biologgers will allow more comprehensive data to be collected for individual animals in the wild. Collectively, these approaches will provide an unprecedented understanding of 'how animals work' as well as keys to safeguarding animals at a time when anthropogenic activities are degrading the natural environment.
Collapse
Affiliation(s)
| | - Monica A Daley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Almut Kelber
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - Matthew J McHenry
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Sheila N Patek
- Biology Department, Duke University, Durham, NC 27708, USA
| | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, Karnataka 560065, India
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John S Terblanche
- Center for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Craig E Franklin
- School of the Environment, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| |
Collapse
|
6
|
de Jong M, van Rensburg AJ, Whiteford S, Yung CJ, Beaumont M, Jiggins C, Bridle J. Rapid evolution of novel biotic interactions in the UK Brown Argus butterfly uses genomic variation from across its geographical range. Mol Ecol 2023; 32:5742-5756. [PMID: 37800849 DOI: 10.1111/mec.17138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
Understanding the rate and extent to which populations can adapt to novel environments at their ecological margins is fundamental to predicting the persistence of biological communities during ongoing and rapid global change. Recent range expansion in response to climate change in the UK butterfly Aricia agestis is associated with the evolution of novel interactions with a larval food plant, and the loss of its ability to use an ancestral host species. Using ddRAD analysis of 61,210 variable SNPs from 261 females from throughout the UK range of this species, we identify genomic regions at multiple chromosomes that are associated with evolutionary responses, and their association with demographic history and ecological variation. Gene flow appears widespread throughout the range, despite the apparently fragmented nature of the habitats used by this species. Patterns of haplotype variation between selected and neutral genomic regions suggest that evolution associated with climate adaptation is polygenic, resulting from the independent spread of alleles throughout the established range of this species, rather than the colonization of pre-adapted genotypes from coastal populations. These data suggest that rapid responses to climate change do not depend on the availability of pre-adapted genotypes. Instead, the evolution of novel forms of biotic interaction in A. agestis has occurred during range expansion, through the assembly of novel genotypes from alleles from multiple localities.
Collapse
Affiliation(s)
- Maaike de Jong
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Alexandra Jansen van Rensburg
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Samuel Whiteford
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Carl J Yung
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark Beaumont
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Chris Jiggins
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
7
|
Walter GM, Clark J, Terranova D, Cozzolino S, Cristaudo A, Hiscock SJ, Bridle J. Hidden genetic variation in plasticity provides the potential for rapid adaptation to novel environments. THE NEW PHYTOLOGIST 2023; 239:374-387. [PMID: 36651081 DOI: 10.1111/nph.18744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/02/2023] [Indexed: 06/02/2023]
Abstract
Rapid environmental change is forcing populations into environments where plasticity will no longer maintain fitness. When populations are exposed to novel environments, evolutionary theory predicts that genetic variation in fitness will increase and should be associated with genetic differences in plasticity. If true, then genetic variation in plasticity can increase adaptive potential in novel environments, and population persistence via evolutionary rescue is more likely. To test whether genetic variation in fitness increases in novel environments and is associated with plasticity, we transplanted 8149 clones of 314 genotypes of a Sicilian daisy (Senecio chrysanthemifolius) within and outside its native range, and quantified genetic variation in fitness, and plasticity in leaf traits and gene expression. Although mean fitness declined by 87% in the novel environment, genetic variance in fitness increased threefold and was correlated with plasticity in leaf traits. High fitness genotypes showed greater plasticity in gene expression, but lower plasticity in most leaf traits. Interestingly, genotypes with the highest fitness in the novel environment had the lowest fitness at the native site. These results suggest that standing genetic variation in plasticity could help populations to persist and adapt to novel environments, despite remaining hidden in native environments.
Collapse
Affiliation(s)
- Greg M Walter
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - James Clark
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Delia Terranova
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, 95128, Italy
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Antonia Cristaudo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, 95128, Italy
| | - Simon J Hiscock
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| |
Collapse
|
8
|
Hoffmann AA, Bridle J. Plasticity and the costs of incorrect responses. Trends Ecol Evol 2023; 38:219-220. [PMID: 36528412 DOI: 10.1016/j.tree.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Ary A Hoffmann
- Pest and Environmental Research Group, Bio21 Institute, University of Melbourne, Melbourne, Vic 3010, Australia.
| | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Bridle J, Hoffmann A. Understanding the biology of species' ranges: when and how does evolution change the rules of ecological engagement? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210027. [PMID: 35184590 PMCID: PMC8859517 DOI: 10.1098/rstb.2021.0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Understanding processes that limit species' ranges has been a core issue in ecology and evolutionary biology for many decades, and has become increasingly important given the need to predict the responses of biological communities to rapid environmental change. However, we still have a poor understanding of evolution at range limits and its capacity to change the ecological 'rules of engagement' that define these communities, as well as the time frame over which this occurs. Here we link papers in the current volume to some key concepts involved in the interactions between evolutionary and ecological processes at species' margins. In particular, we separate hypotheses about species' margins that focus on hard evolutionary limits, which determine how genotypes interact with their environment, from those concerned with soft evolutionary limits, which determine where and when local adaptation can persist in space and time. We show how theoretical models and empirical studies highlight conditions under which gene flow can expand local limits as well as contain them. In doing so, we emphasize the complex interplay between selection, demography and population structure throughout a species' geographical and ecological range that determines its persistence in biological communities. However, despite some impressively detailed studies on range limits, particularly in invertebrates and plants, few generalizations have emerged that can predict evolutionary responses at ecological margins. We outline some directions for future work such as considering the impact of structural genetic variants and metapopulation structure on limits, and the interaction between range limits and the evolution of mating systems and non-random dispersal. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ary Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Stewart JE, Maclean IMD, Trujillo G, Bridle J, Wilson RJ. Climate-driven variation in biotic interactions provides a narrow and variable window of opportunity for an insect herbivore at its ecological margin. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210021. [PMID: 35184597 PMCID: PMC8859521 DOI: 10.1098/rstb.2021.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Climate-driven geographic range shifts have been associated with transitions between dietary specialism and generalism at range margins. The mechanisms underpinning these often transient niche breadth modifications are poorly known, but utilization of novel resources likely depends on phenological synchrony between the consumer and resource. We use a climate-driven range and host shift by the butterfly Aricia agestis to test how climate-driven changes in host phenology and condition affect phenological synchrony, and consider implications for host use. Our data suggest that the perennial plant that was the primary host before range expansion is a more reliable resource than the annual Geraniaceae upon which the butterfly has become specialized in newly colonized parts of its range. In particular, climate-driven phenological variation in the novel host Geranium dissectum generates a narrow and variable 'window of opportunity' for larval productivity in summer. Therefore, although climatic change may allow species to shift hosts and colonise novel environments, specialization on phenologically limited hosts may not persist at ecological margins as climate change continues. We highlight the potential role for phenological (a)synchrony in determining lability of consumer-resource associations at range margins and the importance of considering causes of synchrony in biotic interactions when predicting range shifts. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- James E. Stewart
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4PS, UK
| | - Ilya M. D. Maclean
- Environment & Sustainability Institute, University of Exeter, Penryn Campus, Exeter TR10 9FE, UK
| | - Gara Trujillo
- International Institute for Industrial Environmental Economics (IIIEE), Lund University, P.O. Box 196, 22100 Lund, Sweden
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Robert J. Wilson
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4PS, UK
- Environment & Sustainability Institute, University of Exeter, Penryn Campus, Exeter TR10 9FE, UK
- Departmento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, Madrid E28006, Spain
| |
Collapse
|
11
|
Rodrigues LR, Zwoinska MK, Axel W Wiberg R, Snook RR. The genetic basis and adult reproductive consequences of developmental thermal plasticity. J Anim Ecol 2022; 91:1119-1134. [PMID: 35060127 PMCID: PMC9373847 DOI: 10.1111/1365-2656.13664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Increasing temperature and thermal variability generate profound selection on populations. Given the fast rate of environmental change, understanding the role of plasticity and genetic adaptation in response to increasing temperatures is critical. This may be especially true for thermal effects on reproductive traits in which thermal fertility limits at high temperatures may be lower than for survival traits. Consequences of changing environments during development on adult phenotypes may be particularly problematic for core traits such as reproduction that begin early in development. Here we examine the consequences of developmental thermal plasticity on subsequent adult reproductive traits and its genetic basis. We used a panel of Drosophila melanogaster (the Drosophila Genetic Reference Panel; DGRP) in which male fertility performance was previously defined as either showing relatively little (status = ‘high’‐performing lines) or substantial (‘low’‐performing lines) decline when exposed to increasing developmental temperatures. We used a thermal reaction norm approach to quantify variation in the consequences of developmental thermal plasticity on multiple adult reproductive traits, including sex‐specific responses, and to identify candidate genes underlying such variation. Developmental thermal stress impacted the means and thermal reaction norms of all reproductive traits except offspring sex ratio. Mating success declined as temperature increased with no difference between high and low lines, whereas increasing temperature resulted in declines for both male and female fertility and productivity but depended on line status. Fertility and offspring number were positively correlated within and between the sexes across lines, but males were more affected than females. We identified 933 SNPs with significant evolved genetic differentiation between high and low lines. In all, 54 of these lie within genomic windows of overall high differentiation, have significant effects of genotype on the male thermal reaction norm for productivity and are associated with 16 genes enriched for phenotypes affecting reproduction, stress responses and autophagy in Drosophila and other organisms. Our results illustrate considerable plasticity in male thermal limits on several reproductive traits following development at high temperature, and we identify differentiated loci with relevant phenotypic effects that may contribute to this population variation. While our work is on a single population, phenotypic results align with an increasing number of studies demonstrating the potential for stronger selection of thermal stress on reproductive traits, particularly in males. Such large fitness costs may have both short‐ and long‐term consequences for the evolution of populations in response to a warming world.
Collapse
Affiliation(s)
| | | | | | - Rhonda R Snook
- Department of Zoology Stockholm University Stockholm Sweden
| |
Collapse
|