1
|
Curveira-Santos G, Marion S, Sutherland C, Beirne C, Herdman EJ, Tattersall ER, Burgar JM, Fisher JT, Burton AC. Disturbance-mediated changes to boreal mammal spatial networks in industrializing landscapes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3004. [PMID: 38925578 DOI: 10.1002/eap.3004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/19/2024] [Accepted: 04/22/2024] [Indexed: 06/28/2024]
Abstract
Compound effects of anthropogenic disturbances on wildlife emerge through a complex network of direct responses and species interactions. Land-use changes driven by energy and forestry industries are known to disrupt predator-prey dynamics in boreal ecosystems, yet how these disturbance effects propagate across mammal communities remains uncertain. Using structural equation modeling, we tested disturbance-mediated pathways governing the spatial structure of multipredator multiprey boreal mammal networks across a landscape-scale disturbance gradient within Canada's Athabasca oil sands region. Linear disturbances had pervasive direct effects, increasing site use for all focal species, except black bears and threatened caribou, in at least one landscape. Conversely, block (polygonal) disturbance effects were negative but less common. Indirect disturbance effects were widespread and mediated by caribou avoidance of wolves, tracking of primary prey by subordinate predators, and intraguild dependencies among predators and large prey. Context-dependent responses to linear disturbances were most common among prey and within the landscape with intermediate disturbance. Our research suggests that industrial disturbances directly affect a suite of boreal mammals by altering forage availability and movement, leading to indirect effects across a range of interacting predators and prey, including the keystone snowshoe hare. The complexity of network-level direct and indirect disturbance effects reinforces calls for increased investment in addressing habitat degradation as the root cause of threatened species declines and broader ecosystem change.
Collapse
Affiliation(s)
- Gonçalo Curveira-Santos
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
- CIBIO Research Center in Biodiversity and Genetic Resources, InBIO Associated Laboratory, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Solène Marion
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
| | - Chris Sutherland
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Christopher Beirne
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
| | | | - Erin R Tattersall
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
| | - Joanna M Burgar
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
- School of Environmental Studies, University of Victoria, Victoria, Canada
| | - Jason T Fisher
- School of Environmental Studies, University of Victoria, Victoria, Canada
| | - A Cole Burton
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Kuang Y, Wang L. Diurnal predators in dim light: the ability of mantids to prey for supper. ENVIRONMENTAL ENTOMOLOGY 2024; 53:347-353. [PMID: 38691060 DOI: 10.1093/ee/nvae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Many insects rely heavily on visual cues in foraging and other life activities. Mantids are insect predators that usually ambush prey. The sophisticated visual system of mantids allows them to spot, track, and strike at prey with high accuracy. Mantids are categorized as diurnal animals in most cases, while our field observations suggested that they were active in foraging both day and night. Therefore, we hypothesize that predation in dim light is possible for mantids, while mantids are unable to capture prey in complete darkness. In this study, we experimentally examined whether different light conditions could affect the predation success and efficiency of mantid nymphs and adults, Hierodula chinensis Werner (Mantodea: Mantidae), through behavioral observations. Individual mantids were placed in individual chambers in complete darkness, simulated moonlight (0.1 lux), or simulated dusk (50 lux) conditions and were allowed to forage for prey items for 10 min. Our observations showed no evidence that H. chinensis could capture any prey in complete deprivation of light. The proportion of nymphs with successful predation in simulated moonlight was 50% higher than that in complete darkness and 45.83% lower than that in simulated dusk. The proportion of adults with successful predation in simulated moonlight was 42.11% higher than that in complete darkness and 57.89% lower than that in simulated dusk. Overall, the results provide new insights into the behavioral ecology of diurnal predators at night, with potential association with moonlight, starlight, and light pollution.
Collapse
Affiliation(s)
- Yuan Kuang
- Guangxi Key Laboratory of Agro-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Leyun Wang
- Guangxi Key Laboratory of Agro-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Gaston MV, Barnas AF, Smith RM, Murray S, Fisher JT. Native prey, not landscape change or novel prey, drive cougar ( Puma concolor) distribution at a boreal forest range edge. Ecol Evol 2024; 14:e11146. [PMID: 38571804 PMCID: PMC10985369 DOI: 10.1002/ece3.11146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Many large carnivores, despite widespread habitat alteration, are rebounding in parts of their former ranges after decades of persecution and exploitation. Cougars (Puma concolor) are apex predator with their remaining northern core range constricted to mountain landscapes and areas of western North America; however, cougar populations have recently started rebounding in several locations across North America, including northward in boreal forest landscapes. A camera-trap survey of multiple landscapes across Alberta, Canada, delineated a range edge; within this region, we deployed an array of 47 camera traps in a random stratified design across a landscape spanning a gradient of anthropogenic development relative to the predicted expansion front. We completed multiple hypotheses in an information-theoretic framework to determine if cougar occurrence is best explained by natural land cover features, anthropogenic development features, or competitor and prey activity. We predicted that anthropogenic development features from resource extraction and invading white-tailed deer (Odocoileus virgianius) explain cougar distribution at this boreal range edge. Counter to our predictions, the relative activity of native prey, predominantly snowshoe hare (Lepus americanus), was the best predictor of cougar occurrence at this range edge. Small-bodied prey items are particularly important for female and sub-adult cougars and may support breeding individuals in the northeast boreal forest. Also, counter to our predictions, there was not a strong relationship detected between cougar occurrence and gray wolf (Canis lupus) activity at this range edge. However, further investigation is recommended as the possibility of cougar expansion into areas of the multi-prey boreal system, where wolves have recently been controlled, could have negative consequences for conservation goals in this region (e.g. the recovery of woodland caribou [Rangifer tarandus caribou]). Our study highlights the need to monitor contemporary distributions to inform conservation management objectives as large carnivores recover across North America.
Collapse
Affiliation(s)
- Millicent V. Gaston
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Andrew F. Barnas
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Rebecca M. Smith
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Sean Murray
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Jason T. Fisher
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| |
Collapse
|
4
|
Darimont CT, Paquet PC. Canada wolf cull subsidy damages caribou habitat. Science 2024; 383:489. [PMID: 38300994 DOI: 10.1126/science.adn7098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Chris T Darimont
- Department of Geography, University of Victoria, Victoria, BC V8W 2Y2, Canada and Raincoast Conservation Foundation, Bella Bella, BC V0T 1Z0, Canada
| | - Paul C Paquet
- Department of Geography, University of Victoria, Victoria, BC V8W 2Y2, Canada and Raincoast Conservation Foundation, Bella Bella, BC V0T 1Z0, Canada
| |
Collapse
|
5
|
Nkosi DV, Bekker JL, Hoffman LC. Basic Hazard Control Plan for Small Wild Ungulates Slaughtered for Meat Production. Foods 2023; 12:foods12071511. [PMID: 37048332 PMCID: PMC10094352 DOI: 10.3390/foods12071511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Animal slaughter plans and related activities must not increase the number of hazards in meat. In their nature, these processes must reduce possible hazards to minimum or acceptable levels. This is a generally accepted concept worldwide; hence, authorities continue to develop regulations that seek to mitigate the scourge of meat hazards for consumer protection. The situation is similar with small wild ungulate meat, in which a hazard analysis plan needs developing to improve meat safety. This investigation follows a narrative review of articles published for a PhD program and other scholarly articles supporting the concept of a basic slaughter plan for small wild ungulate animals in South Africa. The findings of this investigation highlight the need to control hazards within one health concept plan, which should be implemented and propagated by establishing forums that will drive meat safety solutions in these communities. There should be a basic hygiene slaughter plan developed and endorsed by all members of the forum. The outcome must be the control of microbiological, chemical and physical hazards from farm-to-fork, and as part of a system imbedded in game meat policies and regulations.
Collapse
Affiliation(s)
- Davies Veli Nkosi
- Department of Environmental Health, Tshwane University of Technology, Pretoria 0183, South Africa
| | - Johan Leon Bekker
- Department of Environmental Health, Tshwane University of Technology, Pretoria 0183, South Africa
| | - Louwrens Christiaan Hoffman
- Department of Animal Sciences, University of Stellenbosch, Matieland, Stellenbosch 7602, South Africa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Digital Agricultural Building 8115, Office 110, Gatton 4343, Australia
| |
Collapse
|
6
|
Gilbert NA, McGinn KA, Nunes LA, Shipley AA, Bernath-Plaisted J, Clare JDJ, Murphy PW, Keyser SR, Thompson KL, Maresh Nelson SB, Cohen JM, Widick IV, Bartel SL, Orrock JL, Zuckerberg B. Daily activity timing in the Anthropocene. Trends Ecol Evol 2023; 38:324-336. [PMID: 36402653 DOI: 10.1016/j.tree.2022.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Animals are facing novel 'timescapes' in which the stimuli entraining their daily activity patterns no longer match historical conditions due to anthropogenic disturbance. However, the ecological effects (e.g., altered physiology, species interactions) of novel activity timing are virtually unknown. We reviewed 1328 studies and found relatively few focusing on anthropogenic effects on activity timing. We suggest three hypotheses to stimulate future research: (i) activity-timing mismatches determine ecological effects, (ii) duration and timing of timescape modification influence effects, and (iii) consequences of altered activity timing vary biogeographically due to broad-scale variation in factors compressing timescapes. The continued growth of sampling technologies promises to facilitate the study of the consequences of altered activity timing, with emerging applications for biodiversity conservation.
Collapse
Affiliation(s)
- Neil A Gilbert
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kate A McGinn
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laura A Nunes
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amy A Shipley
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Jacy Bernath-Plaisted
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John D J Clare
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Penelope W Murphy
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer R Keyser
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kimberly L Thompson
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; German Centre for Integrative Biodiversity Research (iDiv), 04103 Halle-Jena-Leipzig, Germany
| | - Scott B Maresh Nelson
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeremy M Cohen
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Ivy V Widick
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Savannah L Bartel
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
7
|
Spatiotemporal Patterns of Wolves, and Sympatric Predators and Prey Relative to Human Disturbance in Northwestern Greece. DIVERSITY 2023. [DOI: 10.3390/d15020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In an era of increasing human pressure on nature, understanding the spatiotemporal patterns of wildlife relative to human disturbance can inform conservation efforts, especially for large carnivores. We examined the temporal activity and spatial patterns of wolves and eight sympatric mammals at 71 camera trap stations in Greece. Grey wolves temporally overlapped the most with wild boars (Δ = 0.84) and medium-sized mammals (Δ > 0.75), moderately with brown bears (Δ = 0.70), and least with roe deer (Δ = 0.46). All wild mammals were mainly nocturnal and exhibited low temporal overlap with human disturbance (humans, vehicles, livestock, and dogs; Δ = 0.18–0.36), apart from roe deer, which were more diurnal (Δ = 0.80). Six out of nine species increased their nocturnality at sites of high human disturbance, particularly roe deer and wolves. The detection of wolves was negatively associated with paved roads, the detection of roe deer was negatively associated with human disturbance, and the detection of wild boars was negatively associated with dogs. The detection of bears, boars, and foxes increased closer to settlements. Our study has applied implications for wolf conservation and human–wildlife coexistence.
Collapse
|
8
|
Khan P, Eliuk L, Frey S, Bone C, Fisher JT. Shifts in diel activity of Rocky Mountain mammal communities in response to anthropogenic disturbance and sympatric invasive white-tailed deer. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Osugi S, Baek S, Naganuma T, Tochigi K, Allen ML, Koike S. The effect of decreasing human activity from COVID-19 on the foraging of fallen fruit by omnivores. Ecol Evol 2022; 12:e9657. [PMID: 36582777 PMCID: PMC9790803 DOI: 10.1002/ece3.9657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
In 2020, a lockdown was implemented in many cities around the world to contain the COVID-19 pandemic, resulting in a significant cessation of human activity which have had a variety of impacts on wildlife. But in many cases, due to limited pre-lockdown information, and there are limited studies of how lockdowns have specifically affected behaviors. Foraging behavior is inherently linked to fitness and survival, is particularly affected by changes in temporal activity, and the influence of human disturbance on foraging behavior can be assessed quantitatively based on foraging duration and quantity. The purpose of this study was to determine whether and how the fruit-foraging behaviors of two omnivores, the Japanese badger (Meles anakuma) and the raccoon dog (Nyctereutes procyonoides), were influenced by the decrease of human activity associated with lockdowns. Specifically, by comparing to a previous study in 2019-2020, we attempted to determine (1) whether foraging behavior increases during the daytime? (2) whether the duration of foraging per visit increases? and (3) what factors animals select for in fruiting trees? The results of the initial investigation showed that the foraging behavior of both species in 2019 was almost exclusively restricted to the nighttime. But as opportunities for foraging behavior without human interference increased in 2020 due to the lockdown, both species (but especially raccoon dogs) showed substantial changes in their activity patterns to be more diurnal. The duration of foraging per visit also increased in 2020 for both species, and the selection during foraging for both species shifted from selecting trees that provided greater cover in 2019 to trees with high fruit production in 2020. Our results show how human activity directly affects the foraging behavior of wildlife in an urban landscape.
Collapse
Affiliation(s)
- Shigeru Osugi
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchu, TokyoJapan
| | - Seungyun Baek
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchu, TokyoJapan
| | - Tomoko Naganuma
- Institute of Global Innovation ResearchTokyo University of Agriculture and TechnologyFuchu, TokyoJapan
| | - Kahoko Tochigi
- United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchu, TokyoJapan
| | | | - Shinsuke Koike
- Institute of Global Innovation ResearchTokyo University of Agriculture and TechnologyFuchu, TokyoJapan
| |
Collapse
|
10
|
Burton AC, Beirne C, Sun C, Granados A, Procko M, Chen C, Fennell M, Constantinou A, Colton C, Tjaden‐McClement K, Fisher JT, Burgar J. Behavioral "bycatch" from camera trap surveys yields insights on prey responses to human-mediated predation risk. Ecol Evol 2022; 12:e9108. [PMID: 35866017 PMCID: PMC9288887 DOI: 10.1002/ece3.9108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Human disturbance directly affects animal populations and communities, but indirect effects of disturbance on species behaviors are less well understood. For instance, disturbance may alter predator activity and cause knock-on effects to predator-sensitive foraging in prey. Camera traps provide an emerging opportunity to investigate such disturbance-mediated impacts to animal behaviors across multiple scales. We used camera trap data to test predictions about predator-sensitive behavior in three ungulate species (caribou Rangifer tarandus; white-tailed deer, Odocoileus virginianus; moose, Alces alces) across two western boreal forest landscapes varying in disturbance. We quantified behavior as the number of camera trap photos per detection event and tested its relationship to inferred human-mediated predation risk between a landscape with greater industrial disturbance and predator activity and a "control" landscape with lower human and predator activity. We also assessed the finer-scale influence on behavior of variation in predation risk (relative to habitat variation) across camera sites within the more disturbed landscape. We predicted that animals in areas with greater predation risk (e.g., more wolf activity, less cover) would travel faster past cameras and generate fewer photos per detection event, while animals in areas with less predation risk would linger (rest, forage, investigate), generating more photos per event. Our predictions were supported at the landscape-level, as caribou and moose had more photos per event in the control landscape where disturbance-mediated predation risk was lower. At a finer-scale within the disturbed landscape, no prey species showed a significant behavioral response to wolf activity, but the number of photos per event decreased for white-tailed deer with increasing line of sight (m) along seismic lines (i.e., decreasing visual cover), consistent with a predator-sensitive response. The presence of juveniles was associated with shorter behavioral events for caribou and moose, suggesting greater predator sensitivity for females with calves. Only moose demonstrated a positive behavioral association (i.e., longer events) with vegetation productivity (16-day NDVI), suggesting that for other species bottom-up influences of forage availability were generally weaker than top-down influences from predation risk. Behavioral insights can be gleaned from camera trap surveys and provide complementary information about animal responses to predation risk, and thus about the indirect impacts of human disturbances on predator-prey interactions.
Collapse
Affiliation(s)
- A. Cole Burton
- Wildlife Coexistence Lab, Department of Forest Resources ManagementUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Christopher Beirne
- Wildlife Coexistence Lab, Department of Forest Resources ManagementUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Catherine Sun
- Wildlife Coexistence Lab, Department of Forest Resources ManagementUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Alys Granados
- Wildlife Coexistence Lab, Department of Forest Resources ManagementUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Michael Procko
- Wildlife Coexistence Lab, Department of Forest Resources ManagementUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Cheng Chen
- Wildlife Coexistence Lab, Department of Forest Resources ManagementUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Mitchell Fennell
- Wildlife Coexistence Lab, Department of Forest Resources ManagementUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Alexia Constantinou
- Wildlife Coexistence Lab, Department of Forest Resources ManagementUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Chris Colton
- Wildlife Coexistence Lab, Department of Forest Resources ManagementUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Katie Tjaden‐McClement
- Wildlife Coexistence Lab, Department of Forest Resources ManagementUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jason T. Fisher
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Joanna Burgar
- Wildlife Coexistence Lab, Department of Forest Resources ManagementUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| |
Collapse
|
11
|
Frey S, Tejero D, Baillie‐David K, Burton AC, Fisher JT. Predator control alters wolf interactions with prey and competitor species over the diel cycle. OIKOS 2022. [DOI: 10.1111/oik.08821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Frey
- School of Environmental Studies, Univ. of Victoria Victoria BC Canada
| | - Daniel Tejero
- Univ. de Alcalá de Henares, Alcalá de Henares Madrid Spain
| | | | - A. Cole Burton
- Dept of Forest Resources Management, Univ. of British Columbia Vancouver BC Canada
| | - Jason T. Fisher
- School of Environmental Studies, Univ. of Victoria Victoria BC Canada
| |
Collapse
|