1
|
Hager-Mair FF, Bloch S, Schäffer C. Glycolanguage of the oral microbiota. Mol Oral Microbiol 2024; 39:291-320. [PMID: 38515284 DOI: 10.1111/omi.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
The oral cavity harbors a diverse and dynamic bacterial biofilm community which is pivotal to oral health maintenance and, if turning dysbiotic, can contribute to various diseases. Glycans as unsurpassed carriers of biological information are participating in underlying processes that shape oral health and disease. Bacterial glycoinfrastructure-encompassing compounds as diverse as glycoproteins, lipopolysaccharides (LPSs), cell wall glycopolymers, and exopolysaccharides-is well known to influence bacterial fitness, with direct effects on bacterial physiology, immunogenicity, lifestyle, and interaction and colonization capabilities. Thus, understanding oral bacterias' glycoinfrastructure and encoded glycolanguage is key to elucidating their pathogenicity mechanisms and developing targeted strategies for therapeutic intervention. Driven by their known immunological role, most research in oral glycobiology has been directed onto LPSs, whereas, recently, glycoproteins have been gaining increased interest. This review draws a multifaceted picture of the glycolanguage, with a focus on glycoproteins, manifested in prominent oral bacteria, such as streptococci, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum. We first define the characteristics of the different glycoconjugate classes and then summarize the current status of knowledge of the structural diversity of glycoconjugates produced by oral bacteria, describe governing biosynthetic pathways, and list biological roles of these energetically costly compounds. Additionally, we highlight emerging research on the unraveling impact of oral glycoinfrastructure on dental caries, periodontitis, and systemic conditions. By integrating current knowledge and identifying knowledge gaps, this review underscores the importance of studying the glycolanguage oral bacteria speak to advance our understanding of oral microbiology and develop novel antimicrobials.
Collapse
Affiliation(s)
- Fiona F Hager-Mair
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susanne Bloch
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
2
|
Zuber P, Kreth J. Aspects of oral streptococcal metabolic diversity: Imagining the landscape beneath the fog. Mol Microbiol 2023; 120:508-524. [PMID: 37329112 DOI: 10.1111/mmi.15106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
It is widely acknowledged that the human-associated microbial community influences host physiology, systemic health, disease progression, and even behavior. There is currently an increased interest in the oral microbiome, which occupies the entryway to much of what the human initially encounters from the environment. In addition to the dental pathology that results from a dysbiotic microbiome, microbial activity within the oral cavity exerts significant systemic effects. The composition and activity of the oral microbiome is influenced by (1) host-microbial interactions, (2) the emergence of niche-specific microbial "ecotypes," and (3) numerous microbe-microbe interactions, shaping the underlying microbial metabolic landscape. The oral streptococci are central players in the microbial activity ongoing in the oral cavity, due to their abundance and prevalence in the oral environment and the many interspecies interactions in which they participate. Streptococci are major determinants of a healthy homeostatic oral environment. The metabolic activities of oral Streptococci, particularly the metabolism involved in energy generation and regeneration of oxidative resources vary among the species and are important factors in niche-specific adaptations and intra-microbiome interactions. Here we summarize key differences among streptococcal central metabolic networks and species-specific differences in how the key glycolytic intermediates are utilized.
Collapse
Affiliation(s)
- Peter Zuber
- Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Jens Kreth
- School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Barringer R, Parnell AE, Lafita A, Monzon V, Back CR, Madej M, Potempa J, Nobbs AH, Burston SG, Bateman A, Race PR. Domain shuffling of a highly mutable ligand-binding fold drives adhesin generation across the bacterial kingdom. Proteins 2023; 91:1007-1020. [PMID: 36912614 PMCID: PMC10952558 DOI: 10.1002/prot.26487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Bacterial fibrillar adhesins are specialized extracellular polypeptides that promote the attachment of bacteria to the surfaces of other cells or materials. Adhesin-mediated interactions are critical for the establishment and persistence of stable bacterial populations within diverse environmental niches and are important determinants of virulence. The fibronectin (Fn)-binding fibrillar adhesin CshA, and its paralogue CshB, play important roles in host colonization by the oral commensal and opportunistic pathogen Streptococcus gordonii. As paralogues are often catalysts for functional diversification, we have probed the early stages of structural and functional divergence in Csh proteins by determining the X-ray crystal structure of the CshB adhesive domain NR2 and characterizing its Fn-binding properties in vitro. Despite sharing a common fold, CshB_NR2 displays an ~1.7-fold reduction in Fn-binding affinity relative to CshA_NR2. This correlates with reduced electrostatic charge in the Fn-binding cleft. Complementary bioinformatic studies reveal that homologues of CshA/B_NR2 domains are widely distributed in both Gram-positive and Gram-negative bacteria, where they are found housed within functionally cryptic multi-domain polypeptides. Our findings are consistent with the classification of Csh adhesins and their relatives as members of the recently defined polymer adhesin domain (PAD) family of bacterial proteins.
Collapse
Affiliation(s)
- Rob Barringer
- School of BiochemistryUniversity of Bristol, University WalkBristolBS8 1TDUK
| | - Alice E. Parnell
- School of BiochemistryUniversity of Bristol, University WalkBristolBS8 1TDUK
- BrisSynBio Synthetic Biology Research CentreUniversity of Bristol, Life Sciences BuildingTyndall AvenueBristolBS8 1TQUK
| | - Aleix Lafita
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)Wellcome Genome CampusHinxtonCB10 1SDUK
| | - Vivian Monzon
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)Wellcome Genome CampusHinxtonCB10 1SDUK
| | - Catherine R. Back
- School of BiochemistryUniversity of Bristol, University WalkBristolBS8 1TDUK
- BrisSynBio Synthetic Biology Research CentreUniversity of Bristol, Life Sciences BuildingTyndall AvenueBristolBS8 1TQUK
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and BiotechnologyJagiellonian UniversityKrakowPoland
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentuckyUSA
| | - Angela H. Nobbs
- Bristol Dental School, University of BristolLower Maudlin StreetBristolBS1 2LYUK
| | - Steven G. Burston
- School of BiochemistryUniversity of Bristol, University WalkBristolBS8 1TDUK
| | - Alex Bateman
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)Wellcome Genome CampusHinxtonCB10 1SDUK
| | - Paul R. Race
- School of BiochemistryUniversity of Bristol, University WalkBristolBS8 1TDUK
- BrisSynBio Synthetic Biology Research CentreUniversity of Bristol, Life Sciences BuildingTyndall AvenueBristolBS8 1TQUK
| |
Collapse
|
4
|
Canullo L, Rakic M, Corvino E, Burton M, Krumbeck JA, Chittoor Prem A, Ravidà A, Ignjatović N, Sculean A, Menini M, Pesce P. Effect of argon plasma pre-treatment of healing abutments on peri-implant microbiome and soft tissue integration: a proof-of-concept randomized study. BMC Oral Health 2023; 23:27. [PMID: 36650477 PMCID: PMC9843976 DOI: 10.1186/s12903-023-02729-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Biofilm-free implant surface is ultimate prerequisite for successful soft and bone tissue integration. Objective of the study was to estimate the effects of argon plasma healing abutment pre-treatment (PT) on peri-implant soft-tissue phenotype (PiSP), inflammation, plaque accumulation and the microbiome (PiM) between non-treated (NPT) and treated (PT) abutments following 3-months healing period. The hypothesis was that cell-conductive and antimicrobial properties of PT would yield optimal conditions for soft tissue integration. MATERIAL AND METHODS Two months following second-phase surgery, microbiological and clinical parameters were assessed around thirty-six healing abutments with two types of microtopography, smooth surface (MACHINED) and ultrathin threaded microsurface (ROUGH). A two level randomization schema was used to achieve equal distribution and abutments were randomly divided into rough and machined groups, and then divided into PT and NPT groups. PiM was assessed using next-generation DNA sequencing. RESULTS PiM bacterial composition was highly diverse already two months post-implantation, consisting of key-stone pathogens, early and late colonizers, while the mycobiome was less diverse. PT was associated with lower plaque accumulation and inflammation without significant impact on PiSP, while in NPT clinical parameters were increased and associated with periopathogens. NPT mostly harbored late colonizers, while PT exerted higher abundance of early colonizers suggesting less advanced plaque formation. Interaction analysis in PT demonstrated S. mitis co-occurrence with pro-healthy Rothia dentocariosa and co-exclusion with Parvimonas micra, Porphyromonas endodontalis and Prevotella oris. PiSP parameters were generally similar between the groups, but significant association between PiM and keratinized mucosa width was observed in both groups, with remarkably more expressed diversity in NPT compared to PT. PT resulted in significantly lower BOP and PI around rough and machined abutments, respectively, without specific effect on PiM and PiSP. CONCLUSIONS PT contributed to significantly the less advanced biofilm accumulation and inflammation without specific effects on PiSP.
Collapse
Affiliation(s)
- Luigi Canullo
- grid.5734.50000 0001 0726 5157Department of Periodontology, University of Bern, Bern, Switzerland ,grid.5606.50000 0001 2151 3065Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Mia Rakic
- grid.4795.f0000 0001 2157 7667ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Madrid, Spain
| | - Emilio Corvino
- grid.8404.80000 0004 1757 2304University of Florence, Florence, Italy
| | - Maria Burton
- Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA 92614 USA
| | - Janina A. Krumbeck
- Zymo Research Corporation, 17062 Murphy Ave, Irvine, CA 92614 USA ,Pangea Laboratory, 14762 Bentley Cir., Tustin, CA 92780 USA
| | | | | | - Nenad Ignjatović
- grid.419857.60000 0001 2221 9722Institute of Technical Science of the Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Anton Sculean
- grid.5734.50000 0001 0726 5157Department of Periodontology, University of Bern, Bern, Switzerland
| | - Maria Menini
- grid.5606.50000 0001 2151 3065Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pesce
- grid.5606.50000 0001 2151 3065Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| |
Collapse
|
5
|
Li X, Liu Y, Yang X, Li C, Song Z. The Oral Microbiota: Community Composition, Influencing Factors, Pathogenesis, and Interventions. Front Microbiol 2022; 13:895537. [PMID: 35572634 PMCID: PMC9100676 DOI: 10.3389/fmicb.2022.895537] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The human oral cavity provides a habitat for oral microbial communities. The complexity of its anatomical structure, its connectivity to the outside, and its moist environment contribute to the complexity and ecological site specificity of the microbiome colonized therein. Complex endogenous and exogenous factors affect the occurrence and development of the oral microbiota, and maintain it in a dynamic balance. The dysbiotic state, in which the microbial composition is altered and the microecological balance between host and microorganisms is disturbed, can lead to oral and even systemic diseases. In this review, we discuss the current research on the composition of the oral microbiota, the factors influencing it, and its relationships with common oral diseases. We focus on the specificity of the microbiota at different niches in the oral cavity, the communities of the oral microbiome, the mycobiome, and the virome within oral biofilms, and interventions targeting oral pathogens associated with disease. With these data, we aim to extend our understanding of oral microorganisms and provide new ideas for the clinical management of infectious oral diseases.
Collapse
Affiliation(s)
- Xinyi Li
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Yanmei Liu
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xingyou Yang
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chengwen Li
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- *Correspondence: Chengwen Li,
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Zhangyong Song,
| |
Collapse
|
6
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
7
|
Wu J, Yang Q, Jiang X, Fan Y, Zhang Y, Huang R. Oxyresveratrol promotes biofilm formation, cell attachment and aggregation of Streptococcus gordonii in the presence of sucrose. FEMS Microbiol Lett 2021; 367:5854190. [PMID: 32504487 DOI: 10.1093/femsle/fnaa090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023] Open
Abstract
Streptococcus gordonii is a commensal colonizer of oral cavity that initiates the formation of dental plaque. Oxyresveratrol is a natural purification from plants with antibacterial effects on various oral bacteria including Streptococcus mutans. The aim of this study was to investigate the effects of oxyresveratrol on S. gordonii. The basic viability, biofilm formation and cell aggregation of S. gordonii treated with oxyresveratrol were investigated. Oxyresveratrol dose-dependently inhibited the growth of S. gordonii in the absence of sucrose. However, in the presence of sucrose, it promoted biofilm formation under MIC. Both the biofilm formation and extracellular polysaccharides synthesis reached the maximum level at ½ MIC (250 μg/mL) oxyresveratrol. The gene expressions of abpA, abpB, scaA, gtfG, hsa, cshA, cshB, ccpA, srtA and sspB were upregulated when treated with 62.5 and 125 μg/mL oxyresveratrol. A total eight of the ten genes were significantly upregulated at 250 μg/mL oxyresveratrol except abpB and sspB, which were downregulated at 250 μg/mL without significance. In conclusion, oxyresveratrol has dual-effects on S. gordonii. Considering its specific biofilm suppressive effect on S. mutans, it might be a candidate for bacterial interspecies modulator applied in caries prevention.
Collapse
Affiliation(s)
- Jiayi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiyuan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuheng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Hajishengallis G, Lamont RJ. Polymicrobial communities in periodontal disease: Their quasi-organismal nature and dialogue with the host. Periodontol 2000 2021; 86:210-230. [PMID: 33690950 DOI: 10.1111/prd.12371] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
In health, indigenous polymicrobial communities at mucosal surfaces maintain an ecological balance via both inter-microbial and host-microbial interactions that promote their own and the host's fitness, while preventing invasion by exogenous pathogens. However, genetic and acquired destabilizing factors (including immune deficiencies, immunoregulatory defects, smoking, diet, obesity, diabetes and other systemic diseases, and aging) may disrupt this homeostatic balance, leading to selective outgrowth of species with the potential for destructive inflammation. This process, known as dysbiosis, underlies the development of periodontitis in susceptible hosts. The pathogenic process is not linear but involves a positive-feedback loop between dysbiosis and the host inflammatory response. The dysbiotic community is essentially a quasi-organismal entity, where constituent organisms communicate via sophisticated physical and chemical signals and display functional specialization (eg, accessory pathogens, keystone pathogens, pathobionts), which enables polymicrobial synergy and dictates the community's pathogenic potential or nososymbiocity. In this review, we discuss early and recent studies in support of the polymicrobial synergy and dysbiosis model of periodontal disease pathogenesis. According to this concept, disease is not caused by individual "causative pathogens" but rather by reciprocally reinforced interactions between physically and metabolically integrated polymicrobial communities and a dysregulated host inflammatory response.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000 2021; 86:32-56. [PMID: 33690911 PMCID: PMC9413593 DOI: 10.1111/prd.12361] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Graham P Stafford
- Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Using Lactococcus lactis as Surrogate Organism to Study Group A Streptococcus Surface Proteins. Methods Mol Biol 2021. [PMID: 32430819 DOI: 10.1007/978-1-0716-0467-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The isolation of a single Group A Streptococcus (GAS) virulence determinant in functional investigations is challenging, as GAS employs a multitude of virulence factors. The redundancy between many surface proteins such as adhesins also adds complexity and difficulty. Lactococcus lactis is a non-pathogenic Gram-positive species related to GAS that can be an ideal surrogate organism to circumvent this problem. Genetic manipulation in L. lactis is easy, and the mechanisms for processing and cell wall-anchoring of surface proteins are similar to GAS. Lactococci have been extensively used to express heterologous surface proteins from other bacterial species, and modern molecular cloning tools and protocols have been developed. This chapter describes the workflow of generating recombinant L. lactis strains expressing GAS surface proteins and the validation and quantification of their surface expression.
Collapse
|
11
|
Millones-Gómez PA, Amaranto REB, Torres DJM, Calla-Poma RD, Requena-Mendizabal MF, Alvino-Vales MI, Calla-Poma R. Identification of Proteins Associated with the Formation of Oral Biofilms. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2021. [DOI: 10.1590/pboci.2021.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Manzer HS, Nobbs AH, Doran KS. The Multifaceted Nature of Streptococcal Antigen I/II Proteins in Colonization and Disease Pathogenesis. Front Microbiol 2020; 11:602305. [PMID: 33329493 PMCID: PMC7732690 DOI: 10.3389/fmicb.2020.602305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
Streptococci are Gram-positive bacteria that belong to the natural microbiota of humans and animals. Certain streptococcal species are known as opportunistic pathogens with the potential to cause severe invasive disease. Antigen I/II (AgI/II) family proteins are sortase anchored cell surface adhesins that are nearly ubiquitous across streptococci and contribute to many streptococcal diseases, including dental caries, respiratory tract infections, and meningitis. They appear to be multifunctional adhesins with affinities to various host substrata, acting to mediate attachment to host surfaces and stimulate immune responses from the colonized host. Here we will review the literature including recent work that has demonstrated the multifaceted nature of AgI/II family proteins, focusing on their overlapping and distinct functions and their important contribution to streptococcal colonization and disease.
Collapse
Affiliation(s)
- Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
13
|
Role of coaggregation in the pathogenicity and prolonged colonisation of Vibrio cholerae. Med Microbiol Immunol 2019; 208:793-809. [DOI: 10.1007/s00430-019-00628-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
|
14
|
Mohammed WK, Krasnogor N, Jakubovics NS. Streptococcus gordonii Challisin protease is required for sensing cell--cell contact with Actinomyces oris. FEMS Microbiol Ecol 2019; 94:4935157. [PMID: 29547886 DOI: 10.1093/femsec/fiy043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/13/2018] [Indexed: 11/12/2022] Open
Abstract
The ability of microorganisms to regulate gene expression is thought to be critical for survival and growth during the development of polymicrobial biofilms such as dental plaque. The commensal dental plaque colonizer, Streptococcus gordonii, responds to cell--cell contact (coaggregation) with Actinomyces oris by regulating >20 genes, including those involved in arginine biosynthesis. We hypothesized that an S. gordonii extracellular protease is critical for sensing by providing amino acids that modulate gene expression. S. gordonii coaggregated strongly with A. oris in buffer, saliva or chemically defined medium (CDM). In wild-type S. gordonii, expression of arginine biosynthesis genes argC and argG increased within two hours' growth in CDM in monocultures, but not following coaggregation with A. oris. By contrast, coaggregation of A. oris with an S. gordonii mutant lacking sgc, encoding the extracellular protease Challisin, resulted in increases in argC and argG gene expression that were similar to monocultures. Genetic complementation of sgc restored the ability of S. gordonii to sense coaggregation with A. oris. Coaggregation enabled growth of S. gordonii in low/no arginine and disruption of sgc did not affect this ability. We propose that extracellular bacterial proteases may be key mediators of cell--cell contact sensing by diverse microbial species.
Collapse
Affiliation(s)
- Waleed K Mohammed
- School of Dental Sciences, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, NE2 4BW, UK.,Department of Basic Science, College of Dentistry, University of Anbar, Ramadi, Anbar, Iraq
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) research group, School of Computing, Urban Sciences Building, Newcastle University, 1 Science Square, Newcastle upon Tyne, NE4 5TG, UK
| | - Nicholas S Jakubovics
- School of Dental Sciences, Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, NE2 4BW, UK
| |
Collapse
|
15
|
Nobbs A, Kreth J. Genetics of sanguinis-Group Streptococci in Health and Disease. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0052-2018. [PMID: 30681069 PMCID: PMC11590441 DOI: 10.1128/microbiolspec.gpp3-0052-2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
With the application of increasingly advanced "omics" technologies to the study of our resident oral microbiota, the presence of a defined, health-associated microbial community has been recognized. Within this community, sanguinis-group streptococci, comprising the closely related Streptococcus sanguinis and Streptococcus gordonii, together with Streptococcus parasanguinis, often predominate. Their ubiquitous and abundant nature reflects the evolution of these bacteria as highly effective colonizers of the oral cavity. Through interactions with host tissues and other microbes, and the capacity to readily adapt to prevailing environmental conditions, sanguinis-group streptococci are able to shape accretion of the oral plaque biofilm and promote development of a microbial community that exists in harmony with its host. Nonetheless, upon gaining access to the blood stream, those very same colonization capabilities can confer upon sanguinis-group streptococci the ability to promote systemic disease. This article focuses on the role of sanguinis-group streptococci as the commensurate commensals, highlighting those aspects of their biology that enable the coordination of health-associated biofilm development. This includes the molecular mechanisms, both synergistic and antagonistic, that underpin adhesion to substrata, intercellular communication, and polymicrobial community formation. As our knowledge of these processes advances, so will the opportunities to exploit this understanding for future development of novel strategies to control oral and extraoral disease.
Collapse
Affiliation(s)
- Angela Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
16
|
Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Choo SW, Jakubovics NS. Transcriptional responses of Streptococcus gordonii
and Fusobacterium nucleatum
to coaggregation. Mol Oral Microbiol 2018; 33:450-464. [DOI: 10.1111/omi.12248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Naresh V. R. Mutha
- Institute of Biological Sciences, Faculty of Science; University of Malaya; Kuala Lumpur Malaysia
| | - Waleed K. Mohammed
- School of Dental Sciences; Centre for Oral Health Research, Newcastle University; Newcastle upon Tyne UK
- Department of Basic Science, College of Dentistry; University of Anbar; Anbar Iraq
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing; Newcastle University; Newcastle upon Tyne UK
| | - Geok Y. A. Tan
- Institute of Biological Sciences, Faculty of Science; University of Malaya; Kuala Lumpur Malaysia
| | - Siew W. Choo
- Department of Biological Sciences; Xi’an Jiaotong-Liverpool University, Suzhou Dushu Lake Science and Education Innovation District; Suzhou China
- Suzhou Genome Centre (SGC); Health Technologies University Research Centre (HT-URC), Xi’an Jiaotong-Liverpool University, Suzhou Dushu Lake Science and Education Innovation District; Suzhou China
| | - Nicholas S. Jakubovics
- School of Dental Sciences; Centre for Oral Health Research, Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
17
|
Robinson J, Rostami N, Casement J, Vollmer W, Rickard A, Jakubovics N. ArcR modulates biofilm formation in the dental plaque colonizerStreptococcus gordonii. Mol Oral Microbiol 2018; 33:143-154. [DOI: 10.1111/omi.12207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 01/20/2023]
Affiliation(s)
- J.C. Robinson
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| | - N. Rostami
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| | - J. Casement
- Bioinformatics Support Unit; Newcastle University; Newcastle upon Tyne UK
| | - W. Vollmer
- Centre for Bacterial Cell Biology; Newcastle University; Newcastle upon Tyne UK
| | - A.H. Rickard
- Department of Epidemiology; School of Public Health; University of Michigan; Ann Arbor MI USA
| | - N.S. Jakubovics
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
18
|
Naylor J, Fellermann H, Ding Y, Mohammed WK, Jakubovics NS, Mukherjee J, Biggs CA, Wright PC, Krasnogor N. Simbiotics: A Multiscale Integrative Platform for 3D Modeling of Bacterial Populations. ACS Synth Biol 2017; 6:1194-1210. [PMID: 28475309 DOI: 10.1021/acssynbio.6b00315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Simbiotics is a spatially explicit multiscale modeling platform for the design, simulation and analysis of bacterial populations. Systems ranging from planktonic cells and colonies, to biofilm formation and development may be modeled. Representation of biological systems in Simbiotics is flexible, and user-defined processes may be in a variety of forms depending on desired model abstraction. Simbiotics provides a library of modules such as cell geometries, physical force dynamics, genetic circuits, metabolic pathways, chemical diffusion and cell interactions. Model defined processes are integrated and scheduled for parallel multithread and multi-CPU execution. A virtual lab provides the modeler with analysis modules and some simulated lab equipment, enabling automation of sample interaction and data collection. An extendable and modular framework allows for the platform to be updated as novel models of bacteria are developed, coupled with an intuitive user interface to allow for model definitions with minimal programming experience. Simbiotics can integrate existing standards such as SBML, and process microscopy images to initialize the 3D spatial configuration of bacteria consortia. Two case studies, used to illustrate the platform flexibility, focus on the physical properties of the biosystems modeled. These pilot case studies demonstrate Simbiotics versatility in modeling and analysis of natural systems and as a CAD tool for synthetic biology.
Collapse
Affiliation(s)
- Jonathan Naylor
- Interdisciplinary
Computing and Complex Biosystems (ICOS) research group, School of
Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Harold Fellermann
- Interdisciplinary
Computing and Complex Biosystems (ICOS) research group, School of
Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Yuchun Ding
- Interdisciplinary
Computing and Complex Biosystems (ICOS) research group, School of
Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Waleed K. Mohammed
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, U.K
| | | | - Joy Mukherjee
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, U.K
| | - Catherine A. Biggs
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, U.K
| | - Phillip C. Wright
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Natalio Krasnogor
- Interdisciplinary
Computing and Complex Biosystems (ICOS) research group, School of
Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| |
Collapse
|
19
|
Scoffield JA, Duan D, Zhu F, Wu H. A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation. PLoS Pathog 2017; 13:e1006300. [PMID: 28448633 PMCID: PMC5407764 DOI: 10.1371/journal.ppat.1006300] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/16/2017] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa causes devastating chronic pulmonary infections in cystic fibrosis (CF) patients. Although the CF airway is inhabited by diverse species of microorganisms interlaced within a biofilm, many studies focus on the sole contribution of P. aeruginosa pathogenesis in CF morbidity. More recently, oral commensal streptococci have been identified as cohabitants of the CF lung, but few studies have explored the role these bacteria play within the CF biofilm. We examined the interaction between P. aeruginosa and oral commensal streptococci within a dual species biofilm. Here we report that the CF P. aeruginosa isolate, FRD1, enhances biofilm formation and colonization of Drosophila melanogaster by the oral commensal Streptococcus parasanguinis. Moreover, production of the P. aeruginosa exopolysaccharide, alginate, is required for the promotion of S. parasanguinis biofilm formation and colonization. However, P. aeruginosa is not promoted in the dual species biofilm. Furthermore, we show that the streptococcal adhesin, BapA1, mediates alginate-dependent enhancement of the S. parasanguinis biofilm in vitro, and BapA1 along with another adhesin, Fap1, are required for the in vivo colonization of S. parasanguinis in the presence of FRD1. Taken together, our study highlights a new association between streptococcal adhesins and P. aeruginosa alginate, and reveals a mechanism by which S. parasanguinis potentially colonizes the CF lung and interferes with the pathogenesis of P. aeruginosa.
Collapse
Affiliation(s)
- Jessica A. Scoffield
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dingyu Duan
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- State Key Laboratory of Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Zhu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hui Wu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
20
|
Guo L, Shokeen B, He X, Shi W, Lux R. Streptococcus mutans SpaP binds to RadD of Fusobacterium nucleatum ssp. polymorphum. Mol Oral Microbiol 2017; 32:355-364. [PMID: 27976528 DOI: 10.1111/omi.12177] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adhesin-mediated bacterial interspecies interactions are important elements in oral biofilm formation. They often occur on a species-specific level, which could determine health or disease association of a biofilm community. Among the key players involved in these processes are the ubiquitous fusobacteria that have been recognized for their ability to interact with numerous different binding partners. Fusobacterial interactions with Streptococcus mutans, an important oral cariogenic pathogen, have previously been described but most studies focused on binding to non-mutans streptococci and specific cognate adhesin pairs remain to be identified. Here, we demonstrated differential binding of oral fusobacteria to S. mutans. Screening of existing mutant derivatives indicated SpaP as the major S. mutans adhesin specific for binding to Fusobacterium nucleatum ssp. polymorphum but none of the other oral fusobacteria tested. We inactivated RadD, a known adhesin of F. nucleatum ssp. nucleatum for interaction with a number of gram-positive species, in F. nucleatum ssp. polymorphum and used a Lactococcus lactis heterologous SpaP expression system to demonstrate SpaP interaction with RadD of F. nucleatum ssp. polymorphum. This is a novel function for SpaP, which has mainly been characterized as an adhesin for binding to host proteins including salivary glycoproteins. In conclusion, we describe an additional role for SpaP as adhesin in interspecies adherence with RadD-SpaP as the interacting adhesin pair for binding between S. mutans and F. nucleatum ssp. polymorphum. Furthermore, S. mutans attachment to oral fusobacteria appears to involve species- and subspecies-dependent adhesin interactions.
Collapse
Affiliation(s)
- Lihong Guo
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Bhumika Shokeen
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Xuesong He
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Wenyuan Shi
- School of Dentistry, University of California, Los Angeles, CA, USA
| | - Renate Lux
- School of Dentistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Back CR, Sztukowska MN, Till M, Lamont RJ, Jenkinson HF, Nobbs AH, Race PR. The Streptococcus gordonii Adhesin CshA Protein Binds Host Fibronectin via a Catch-Clamp Mechanism. J Biol Chem 2017; 292:1538-1549. [PMID: 27920201 PMCID: PMC5290933 DOI: 10.1074/jbc.m116.760975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/01/2016] [Indexed: 11/06/2022] Open
Abstract
Adherence of bacteria to biotic or abiotic surfaces is a prerequisite for host colonization and represents an important step in microbial pathogenicity. This attachment is facilitated by bacterial adhesins at the cell surface. Because of their size and often elaborate multidomain architectures, these polypeptides represent challenging targets for detailed structural and functional characterization. The multifunctional fibrillar adhesin CshA, which mediates binding to both host molecules and other microorganisms, is an important determinant of colonization by Streptococcus gordonii, an oral commensal and opportunistic pathogen of animals and humans. CshA binds the high-molecular-weight glycoprotein fibronectin (Fn) via an N-terminal non-repetitive region, and this protein-protein interaction has been proposed to promote S. gordonii colonization at multiple sites within the host. However, the molecular details of how these two proteins interact have yet to be established. Here we present a structural description of the Fn binding N-terminal region of CshA, derived from a combination of X-ray crystallography, small angle X-ray scattering, and complementary biophysical methods. In vitro binding studies support a previously unreported two-state "catch-clamp" mechanism of Fn binding by CshA, in which the disordered N-terminal domain of CshA acts to "catch" Fn, via formation of a rapidly assembled but also readily dissociable pre-complex, enabling its neighboring ligand binding domain to tightly clamp the two polypeptides together. This study presents a new paradigm for target binding by a bacterial adhesin, the identification of which will inform future efforts toward the development of anti-adhesive agents that target S. gordonii and related streptococci.
Collapse
Affiliation(s)
- Catherine R Back
- From the School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom
| | - Maryta N Sztukowska
- the Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky 40202; the Department of Dentistry, University of Information Technology and Management, 35-225 Rzeszow, Poland
| | - Marisa Till
- the School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom; the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Richard J Lamont
- the Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky 40202
| | - Howard F Jenkinson
- From the School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom
| | - Angela H Nobbs
- From the School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom.
| | - Paul R Race
- the School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom; the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom.
| |
Collapse
|
22
|
Stauffacher S, Lussi A, Nietzsche S, Neuhaus KW, Eick S. Bacterial invasion into radicular dentine-an in vitro study. Clin Oral Investig 2016; 21:1743-1752. [PMID: 27722787 DOI: 10.1007/s00784-016-1960-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVES We wanted to investigate differences in invasiveness into radicular dentinal tubules by monocultured and co-cultured bacteria frequently found in infected root canals. METHODS Fifty-one human roots were incubated for 8 weeks with monocultured Streptococcus gordonii ATCC 10558, Streptococcus sanguinis ATCC 10556, and with five capnophiles/anaerobes as well as with capnophiles/anaerobes co-cultured with a streptococcal species. Thereafter, bacterial samples were cultured from the inner, middle, and outer third of the root dentine of longitudinally broken teeth (n = 5). In addition, scanning electron microscopy (SEM) images were obtained. RESULTS Single gram-positive species were able to penetrate into the middle and outer third of the root dentine. Fusobacterium nucleatum ATCC 25586 was not found in any of the dentine specimens. Prevotella intermedia ATCC 25611 and Porphyromonas gingivalis ATCC 33277 were found in the inner and middle third. The bacterial load of streptococci was higher in all thirds in co-cultures compared to single infections. In co-cultures with streptococci, Actinomyces oris ATCC 43146 was found in the outer third in 9/10 samples, whereas P. intermedia ATCC 25611 was not detectable inside dentine. Co-culture with S. sanguinis ATCC 10556 enabled F. nucleatum ATCC 25586 to invade dentine; SEM images showed that F. nucleatum ATCC 25586 had a swollen shape. CONCLUSIONS Invasiveness of bacteria into dentinal tubules is species-specific and may change depending on culturing as a single species or co-culturing with other bacteria. CLINICAL RELEVANCE Oral streptococci may promote or inhibit invasion of capnophiles/anaerobes into radicular dentine.
Collapse
Affiliation(s)
- Simone Stauffacher
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland
| | - Adrian Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland
| | - Sandor Nietzsche
- Center of Electron Microscopy, University Hospital of Jena, Jena, Germany
| | - Klaus W Neuhaus
- Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, CH-3010, Bern, Switzerland.
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Rego S, Heal TJ, Pidwill GR, Till M, Robson A, Lamont RJ, Sessions RB, Jenkinson HF, Race PR, Nobbs AH. Structural and Functional Analysis of Cell Wall-anchored Polypeptide Adhesin BspA in Streptococcus agalactiae. J Biol Chem 2016; 291:15985-6000. [PMID: 27311712 DOI: 10.1074/jbc.m116.726562] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections.
Collapse
Affiliation(s)
- Sara Rego
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom, the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Timothy J Heal
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Grace R Pidwill
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Marisa Till
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom, and
| | - Alice Robson
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Richard J Lamont
- the Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky 40202
| | - Richard B Sessions
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom, and
| | - Howard F Jenkinson
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Paul R Race
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom, and
| | - Angela H Nobbs
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom,
| |
Collapse
|
24
|
Cavalcanti I, Del Bel Cury A, Jenkinson H, Nobbs A. Interactions betweenStreptococcus oralis,Actinomyces oris, andCandida albicansin the development of multispecies oral microbial biofilms on salivary pellicle. Mol Oral Microbiol 2016; 32:60-73. [DOI: 10.1111/omi.12154] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 12/24/2022]
Affiliation(s)
- I.M.G. Cavalcanti
- Department of Prosthodontics and Periodontology; Piracicaba Dental School - University of Campinas; Piracicaba São Paulo Brazil
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - A.A. Del Bel Cury
- Department of Prosthodontics and Periodontology; Piracicaba Dental School - University of Campinas; Piracicaba São Paulo Brazil
| | - H.F. Jenkinson
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - A.H. Nobbs
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| |
Collapse
|
25
|
Jakubovics NS. Intermicrobial Interactions as a Driver for Community Composition and Stratification of Oral Biofilms. J Mol Biol 2015; 427:3662-75. [PMID: 26519790 DOI: 10.1016/j.jmb.2015.09.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
The oral cavity is accessible to microorganisms, and biofilms are present throughout on hard and soft tissues. The shedding of epithelial cell layers is usually effective for controlling biofilm development on soft tissues. Innate immune mechanisms are not so effective against biofilms on tooth surfaces, and oral hygiene measures such as brushing and flossing are required for the periodic removal of dental plaque. Even with good oral hygiene, microbial communities accumulate on teeth in areas that are protected from mechanical abrasion forces. Changes in the composition of these biofilms are associated with oral diseases such as dental caries or periodontitis. Newly formed biofilms and more mature dental plaque each have a level of spatial organization in the horizontal and vertical planes. Communities are shaped by many varied interactions between different species and genera within the biofilm, which include physical cell-cell associations known as coaggregation, interspecies signaling, secretion and turnover of antimicrobial compounds and the sharing of an extracellular matrix. Central to these interactions is the selection for metabolic synergies and it is becoming clear that the ability of communities to extract the maximum energy from the available metabolites is a potent driver for biofilm structure and stratification. This review discusses recent advances in our understanding of intermicrobial interactions in oral biofilms and the roles that they play in determining the spatial organization of biofilm communities.
Collapse
Affiliation(s)
- Nicholas S Jakubovics
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4BW, United Kingdom.
| |
Collapse
|