1
|
Chen N, Li Y, Liang X, Qin K, Zhang Y, Wang J, Wu Q, Gupta TB, Ding Y. Bacterial extracellular vesicle: A non-negligible component in biofilm life cycle and challenges in biofilm treatments. Biofilm 2024; 8:100216. [PMID: 39184814 PMCID: PMC11341940 DOI: 10.1016/j.bioflm.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Bacterial biofilms, especially those formed by pathogens, have been increasingly impacting human health. Bacterial extracellular vesicle (bEV), a kind of spherical membranous structure released by bacteria, has not only been reported to be a component of the biofilm matrix but also plays a non-negligible role in the biofilm life cycle. Nevertheless, a comprehensive overview of the bEVs functions in biofilms remains elusive. In this review, we summarize the biogenesis and distinctive features characterizing bEVs, and consolidate the current literature on their functions and proposed mechanisms in the biofilm life cycle. Furthermore, we emphasize the formidable challenges associated with vesicle interference in biofilm treatments. The primary objective of this review is to raise awareness regarding the functions of bEVs in the biofilm life cycle and lay the groundwork for the development of novel therapeutic strategies to control or even eliminate bacterial biofilms.
Collapse
Affiliation(s)
- Nuo Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yangfu Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xinmin Liang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Keyuan Qin
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ying Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tanushree B. Gupta
- Food System Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
2
|
Song G, Li M, Zhou B, Qi H, Guo J. Streptococcus mutans outer membrane vesicles affect inflammasome activation and the glycolysis of macrophages. Microb Pathog 2024; 196:106994. [PMID: 39366588 DOI: 10.1016/j.micpath.2024.106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Recent studies indicate that bacterial outer membrane vesicles (OMVs) play a significant role in bacterial virulence and pathogenicity. Streptococcus mutans (S. mutans), a principal pathogen in dental caries, secretes a substantial number of OMVs. However, the impact of S. mutans OMVs on oral health and their underlying pathogenic mechanisms remain poorly understood. Macrophages were the initial innate immune cells to respond to bacterial invaders and their products. Therefore, we purified S. mutans OMVs, which stimulated macrophages. Compared to controls, RT-PCR and ELISA analyses revealed that S. mutans OMVs significantly increased the production of IL-1β, IL-6, TNF-α and IL-8, with IL-1β being notably elevated. IL-1β production and secretion are tightly regulated by the inflammasome. Western blot analyses demonstrated that S. mutans OMVs upregulated the expression of inflammasome components, including NLRP3, NLRC4, ASC and AIM2, with a marked increase in NLRP3 expression. Silencing different inflammasome components with siRNA revealed a reduction in IL-1β secretion induced by S. mutans OMVs, particularly through NLRP3. Additionally, ATP production and K+ efflux were found to be crucial for NLRP3 activation. Prolonged stimulation with S. mutans OMVs resulted in increased lactate production and elevated expression of glycolysis-related genes Glut-1, PFKFB3, and HK I, indicating that S. mutans OMVs significantly induce macrophage glycolysis. Furthermore, S. mutans OMVs were shown to enhance biofilm formation, increase S. mutans colonisation on epithelial cells, and inhibit macrophage phagocytosis, thereby improving the survival of S. mutans in the oral cavity. In summary, S. mutans OMVs promote the survival of S. mutans in the mouth through multiple mechanisms, potentially influencing the development of dental caries.
Collapse
Affiliation(s)
- Gongyuan Song
- The Second Hospital of Shijiazhuang, Shijiazhuang, 050000, China
| | - Min Li
- Handan Stomatology Hospital, Handan, 056000, China
| | - Bing Zhou
- Cangzhou People's Hospital, Cangzhou, 061000, China
| | - Hongguang Qi
- Gucheng County Hospital of Hebei Provence, Gucheng, 253800, China
| | - Jie Guo
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
3
|
Beliakoff RE, Gonzalez CF, Lorca GL. Bile promotes Lactobacillus johnsonii N6.2 extracellular vesicle production with conserved immunomodulatory properties. Sci Rep 2024; 14:12272. [PMID: 38806562 PMCID: PMC11133329 DOI: 10.1038/s41598-024-62843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Recently, Lactobacillus johnsonii N6.2-derived extracellular vesicles (EVs) were shown to reduce apoptosis in human beta cell lines and stimulate insulin secretion in human islets. Our goal was to identify a physiologically relevant environmental condition that induces a hypervesiculation phenotype in L. johnsonii N6.2 and to evaluate if transcriptional changes are involved in this process. Culturing this strain in the presence of 0.2% bovine bile, which mimics a stressor encountered by the bacterium in the small intestine, resulted in approximately a 100-fold increase in EVs relative to cells grown in media without bile. Whole transcriptome analysis of cells grown with bile revealed upregulation of several peptidoglycan hydrolases as well as several genes involved in fatty acid utilization. These results suggest that the hypervesiculation phenotype may be the result of increased cell wall turnover combined with increased accumulation of phospholipids, in agreement with our previous proteomic and lipidomics results. Additionally, EVs isolated from L. johnsonii N6.2 grown in presence of bile maintained their immunomodulatory properties in host-derived βlox5 pancreatic and THP-1 macrophage cell lines. Our findings suggest that in L. johnsonii N6.2 vesiculogenesis is significantly impacted by the expression of cell wall modifying enzymes and proteins utilized for exogenous fatty acid uptake that are regulated at the transcriptional level. Furthermore, this data suggests that vesiculogenesis could be stimulated in vivo using small molecules thereby maximizing the beneficial interactions between bacteria and their hosts.
Collapse
Affiliation(s)
- Reagan E Beliakoff
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Mobarak H, Javid F, Narmi MT, Mardi N, Sadeghsoltani F, Khanicheragh P, Narimani S, Mahdipour M, Sokullu E, Valioglu F, Rahbarghazi R. Prokaryotic microvesicles Ortholog of eukaryotic extracellular vesicles in biomedical fields. Cell Commun Signal 2024; 22:80. [PMID: 38291458 PMCID: PMC10826215 DOI: 10.1186/s12964-023-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
Every single cell can communicate with other cells in a paracrine manner via the production of nano-sized extracellular vesicles. This phenomenon is conserved between prokaryotic and eukaryotic cells. In eukaryotic cells, exosomes (Exos) are the main inter-cellular bioshuttles with the potential to carry different signaling molecules. Likewise, bacteria can produce and release Exo-like particles, namely microvesicles (MVs) into the extracellular matrix. Bacterial MVs function with diverse biological properties and are at the center of attention due to their inherent therapeutic properties. Here, in this review article, the comparable biological properties between the eukaryotic Exos and bacterial MVs were highlighted in terms of biomedical application. Video Abstract.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzin Javid
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Khanicheragh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| | - Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Zheng K, Feng Y, Li L, Kong F, Gao J, Kong X. Engineered bacterial outer membrane vesicles: a versatile bacteria-based weapon against gastrointestinal tumors. Theranostics 2024; 14:761-787. [PMID: 38169585 PMCID: PMC10758051 DOI: 10.7150/thno.85917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/01/2023] [Indexed: 01/05/2024] Open
Abstract
Outer membrane vesicles (OMVs) are nanoscale lipid bilayer structures released by gram-negative bacteria. They share membrane composition and properties with their originating cells, making them adept at traversing cellular barriers. These OMVs have demonstrated exceptional membrane stability, immunogenicity, safety, penetration, and tumor-targeting properties, which have been leveraged in developing vaccines and drug delivery systems. Recent research efforts have focused on engineering OMVs to increase production yield, reduce cytotoxicity, and improve the safety and efficacy of treatment. Notably, gastrointestinal (GI) tumors have proven resistant to several traditional oncological treatment strategies, including chemotherapy, radiotherapy, and targeted therapy. Although immune checkpoint inhibitors have demonstrated efficacy in some patients, their usage as monotherapy remains limited by tumor heterogeneity and individual variability. The immunogenic and modifiable nature of OMVs makes them an ideal design platform for the individualized treatment of GI tumors. OMV-based therapy enables combination therapy and optimization of anti-tumor effects. This review comprehensively summarizes recent advances in OMV engineering for GI tumor therapy and discusses the challenges in the clinical translation of emerging OMV-based anti-tumor therapies.
Collapse
Affiliation(s)
- Keshuang Zheng
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, 200433, China
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yongpu Feng
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, 200433, China
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Li
- Digestive Endoscopy Center, Shanghai Tenth People's Hospital, Shanghai, China
| | - Fanyang Kong
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, 200433, China
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiangyu Kong
- National Key Laboratory of Immunology and Inflammation, Naval Medical University, Shanghai, 200433, China
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Changhai Clinical Research Unit, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Jurakova V, Farková V, Kucera J, Dadakova K, Zapletalova M, Paskova K, Reminek R, Glatz Z, Holla LI, Ruzicka F, Lochman J, Linhartova PB. Gene expression and metabolic activity of Streptococcus mutans during exposure to dietary carbohydrates glucose, sucrose, lactose, and xylitol. Mol Oral Microbiol 2023; 38:424-441. [PMID: 37440366 DOI: 10.1111/omi.12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Recent RNA sequencing studies have given us a deeper insight into the cariogenic impact of carbohydrate sources in the bacterium Streptococcus mutans, the principal microbial agent in dental caries etiopathogenesis. The process of dental caries development is facilitated by the ability of this bacterium to ferment some carbohydrates into organic acids contributing to a pH decrease in the oral cavity and the demineralization of the hard tissues of the tooth. Furthermore, in dental caries progression, biofilm formation, which starts and ends with free planktonic cells, plays an important role and has several unique properties called virulence factors. The most cariogenic carbohydrate is sucrose, an easily metabolizable source of energy that induces the acidification and synthesis of glucans, forming typical bacterial cell clumps. We used multifaceted methodological approaches to compare the transcriptomic and metabolomic profiles of S. mutans growing in planktonic culture on preferred and nonpreferred carbohydrates and in fasting conditions. Streptococcus mutans in a planktonic culture with lactose produced the same pH drop as glucose and sucrose. By contrast, xylitol and lactose showed high effectiveness in regulating intracellular polysaccharide metabolism, cell wall structure, and overall virulence involved in the initial phase of biofilm formation and structure but with an opposite pattern compared with sucrose and glucose. Our results confirmed the recent findings that xylitol and lactose play a vital role in biofilm structure. However, they do not reduce its formation, which is related to the creation of a cariogenic environment.
Collapse
Affiliation(s)
- Veronika Jurakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Veronika Farková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katerina Dadakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martina Zapletalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katerina Paskova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Reminek
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| | - Zdenek Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filip Ruzicka
- Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Borilova Linhartova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Clinic of Maxillofacial Surgery, Institution Shared with University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Gurunathan S, Kim JH. Bacterial extracellular vesicles: Emerging nanoplatforms for biomedical applications. Microb Pathog 2023; 183:106308. [PMID: 37595812 DOI: 10.1016/j.micpath.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Bacterial extracellular vesicles (BEVs) are nanosized lipid bilayers generated from membranes that are filled with components derived from bacteria. BEVs are important for the physiology, pathogenicity, and interactions between bacteria and their hosts as well. BEVs represent an important mechanism of transport and interaction between cells. Recent advances in biomolecular nanotechnology have enabled the desired properties to be engineered on the surface of BEVs and decoration with desired and diverse biomolecules and nanoparticles, which have potential biomedical applications. BEVs have been the focus of various fields, including nanovaccines, therapeutic agents, and drug delivery vehicles. In this review, we delineate the fundamental aspects of BEVs, including their biogenesis, cargo composition, function, and interactions with host cells. We comprehensively summarize the factors influencing the biogenesis of BEVs. We further highlight the importance of the isolation, purification, and characterization of BEVs because they are essential processes for potential benefits related to host-microbe interactions. In addition, we address recent advancements in BEVs in biomedical applications. Finally, we provide conclusions and future perspectives as well as highlight the remaining challenges of BEVs for different biomedical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Rathinam Techzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
8
|
Ke L, Wang J, Liu Y, Sun Z, Li Y, Xiao X. Identification of the antibacterial action mechanism of curcumin on Streptococcus mutans through transcriptome profiling. Arch Oral Biol 2023; 149:105655. [PMID: 36842372 DOI: 10.1016/j.archoralbio.2023.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE The purpose of this study was to explore the effect and mechanism responsible for how curcumin affects the biofilm formation by Streptococcus mutans (S. mutans). DESIGN The antibacterial activity of curcumin was evaluated by measuring the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The mass of the biofilm was measured by crystal violet staining. Transcriptome sequencing was used to obtain all the transcript information associated with the biological activity of curcumin-treated S. mutans. Real-time quantitative PCR (qRT-PCR) was performed to examine the expression levels of related biofilm formation genes. RESULTS The MIC value for curcumin was 64 μM. Curcumin inhibited the formation of a biofilm by S. mutans and degraded mature biofilms. A gene ontology enrichment analysis showed that the DEGs were significantly relevant to biofilm formation. In addition, 17 significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways (p ≤ 0.01) were identified and were potentially associated with the biochemical metabolic processes of S. mutans. DEGs associated with the biofilm formation of S. mutants, including gtfB, gtfC, rgpG, spaP, spxA1, spxA2, bacA, lrgB, and gshAB. The qRT-PCR results were consistent with transcriptome sequencing that the expression levels of gtfB, gtfC, rgpG, and spaP significantly decreased in the curcumin-treated group, whereas the expression levels of spx1, spx2, bacA, lrgB, and gshAB were up-regulated. CONCLUSIONS Curcumin showed marked inhibitory effects against the formation of biofilms by S. mutans and degradation of formed biofilms.
Collapse
Affiliation(s)
- Li Ke
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Jiajun Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China; Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Science, Wuhan, China.
| | - Yanhua Liu
- Department of clinical laboratory, Hospital of China University of Geosciences, Wuhan, China.
| | - Zhongyi Sun
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China; Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Science, Wuhan, China.
| | - Xiao Xiao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China; Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Science, Wuhan, China.
| |
Collapse
|
9
|
da Silva Barreira D, Laurent J, Lourenço J, Novion Ducassou J, Couté Y, Guzzo J, Rieu A. Membrane vesicles released by Lacticaseibacillus casei BL23 inhibit the biofilm formation of Salmonella Enteritidis. Sci Rep 2023; 13:1163. [PMID: 36670157 PMCID: PMC9859808 DOI: 10.1038/s41598-023-27959-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Biofilms represent a major concern in the food industry and healthcare. The use of probiotic bacteria and their derivatives as an alternative to conventional treatments to fight biofilm development is a promising option that has provided convincing results in the last decades. Recently, membrane vesicles (MVs) produced by probiotics have generated considerable interest due to the diversity of roles they have been associated with. However, the antimicrobial activity of probiotic MVs remains to be studied. In this work, we showed that membrane vesicles produced by Lacticaseibacillus casei BL23 (LC-MVs) exhibited strong antibiofilm activity against Salmonella enterica serovar Enteritidis (S. Enteritidis) without affecting bacterial growth. Furthermore, we found that LC-MVs affected the early stages of S. Enteritidis biofilm development and prevented attachment of bacteria to polystyrene surfaces. Importantly, LC-MVs did not impact the biomass of already established biofilms. We also demonstrated that the antibiofilm activity depended on the proteins associated with the LC-MV fraction. Finally, two peptidoglycan hydrolases (PGHs) were found to be associated with the antibiofilm activity of LC-MVs. Overall, this work allowed to identify the antibiofilm properties of LC-MVs and paved the way for the use of probiotic MVs against the development of negative biofilms.
Collapse
Affiliation(s)
- David da Silva Barreira
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Julie Laurent
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Jessica Lourenço
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Julia Novion Ducassou
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, R2048, 38000, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, R2048, 38000, Grenoble, France
| | - Jean Guzzo
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Aurélie Rieu
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France.
| |
Collapse
|
10
|
Wu R, Cui G, Cao Y, Zhao W, Lin H. Streptococcus Mutans Membrane Vesicles Enhance Candida albicans Pathogenicity and Carbohydrate Metabolism. Front Cell Infect Microbiol 2022; 12:940602. [PMID: 35959374 PMCID: PMC9361861 DOI: 10.3389/fcimb.2022.940602] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans and Candida albicans, as the most common bacterium and fungus in the oral cavity respectively, are considered microbiological risk markers of early childhood caries.
S. mutans
membrane vesicles (MVs) contain virulence proteins, which play roles in biofilm formation and disease progression. Our previous research found that S. mutans MVs harboring glucosyltransferases augment C. albicans biofilm formation by increasing exopolysaccharide production, but the specific impact of S. mutans MVs on C. albicans virulence and pathogenicity is still unknown. In the present study, we developed C. albicans biofilms on the surface of cover glass, hydroxyapatite discs and bovine dentin specimens. The results showed that C. albicans can better adhere to the tooth surface with the effect of S. mutans MVs. Meanwhile, we employed C. albicans biofilm-bovine dentin model to evaluate the influence of S. mutans MVs on C. albicans biofilm cariogenicity. In the S. mutans MV-treated group, the bovine dentin surface hardness loss was significantly increased and the surface morphology showed more dentin tubule exposure and broken dentin tubules. Subsequently, integrative proteomic and metabolomic approaches were used to identify the differentially expressed proteins and metabolites of C. albicans when cocultured with S. mutans MVs. The combination of proteomics and metabolomics analysis indicated that significantly regulated proteins and metabolites were involved in amino acid and carbohydrate metabolism. In summary, the results of the present study proved that S. mutans MVs increase bovine dentin demineralization provoked by C. albicans biofilms and enhance the protein and metabolite expression of C. albicans related to carbohydrate metabolism.
Collapse
Affiliation(s)
- Ruixue Wu
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Guxin Cui
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yina Cao
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wei Zhao, ; Huancai Lin,
| | - Huancai Lin
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
- Department of Preventive Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wei Zhao, ; Huancai Lin,
| |
Collapse
|
11
|
陈 冬, 林 焕. [Research Updates: Cariogenic Mechanism of Streptococcus mutans]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:208-213. [PMID: 35332719 PMCID: PMC10409355 DOI: 10.12182/20220360508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 06/14/2023]
Abstract
The prevalence of dental caries remains high, posing a major burden on the public health of the global society. Microorganisms are the main cause of dental caries, among which Streptococcus mutans ( S. mutans) is one of the most widely recognized cariogenic bacteria. In recent years, the progress in research technology enabled the academic circle to conduct more in-depth research into caries-inducing S. mutans at the DNA, RNA and protein levels, and to gain thereby a new understanding of the surface structure and extracellular matrix composition of S. mutans. In this paper, we summarized recent findings on the cariogenic mechanism of S. mutans in order to help reveal more targets and potential approaches for the future development of caries prevention agents that target S. mutans, and to promote the development of dental caries prevention campaign.
Collapse
Affiliation(s)
- 冬茹 陈
- 中山大学光华口腔医学院·附属口腔医院 (广州 510055)Guanghua College of Stomatology and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- 广东省口腔医学重点实验室 (广州 510055)Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - 焕彩 林
- 中山大学光华口腔医学院·附属口腔医院 (广州 510055)Guanghua College of Stomatology and Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- 广东省口腔医学重点实验室 (广州 510055)Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
12
|
Qiao L, Rao Y, Zhu K, Rao X, Zhou R. Engineered Remolding and Application of Bacterial Membrane Vesicles. Front Microbiol 2021; 12:729369. [PMID: 34690971 PMCID: PMC8532528 DOI: 10.3389/fmicb.2021.729369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial membrane vesicles (MVs) are produced by both Gram-positive and Gram-negative bacteria during growth in vitro and in vivo. MVs are nanoscale vesicular structures with diameters ranging from 20 to 400 nm. MVs incorporate bacterial lipids, proteins, and often nucleic acids, and can effectively stimulate host immune response against bacterial infections. As vaccine candidates and drug delivery systems, MVs possess high biosafety owing to the lack of self-replication ability. However, wild-type bacterial strains have poor MV yield, and MVs from the wild-type strains may be harmful due to the carriage of toxic components, such as lipopolysaccharides, hemolysins, enzymes, etc. In this review, we summarize the genetic modification of vesicle-producing bacteria to reduce MV toxicity, enhance vesicle immunogenicity, and increase vesicle production. The engineered MVs exhibit broad applications in vaccine designs, vaccine delivery vesicles, and drug delivery systems.
Collapse
Affiliation(s)
- Li Qiao
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yifan Rao
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Keting Zhu
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Renjie Zhou
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
13
|
Complete Genome Sequence of Streptococcus mutans 27-3, an Active Extracellular Membrane Vesicle Producer. Microbiol Resour Announc 2021; 10:e0016621. [PMID: 34165333 PMCID: PMC8223807 DOI: 10.1128/mra.00166-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of Streptococcus mutans 27-3. Isolated from a caries-active patient, 27-3 produces significantly more extracellular membrane vesicles than the commonly used laboratory strain UA159. This study provides useful information for comparative genomic analysis and better understanding of regulation of vesiculogenesis in this bacterium.
Collapse
|
14
|
Morales-Aparicio JC, Lara Vasquez P, Mishra S, Barrán-Berdón AL, Kamat M, Basso KB, Wen ZT, Brady LJ. The Impacts of Sortase A and the 4'-Phosphopantetheinyl Transferase Homolog Sfp on Streptococcus mutans Extracellular Membrane Vesicle Biogenesis. Front Microbiol 2020; 11:570219. [PMID: 33193163 PMCID: PMC7649765 DOI: 10.3389/fmicb.2020.570219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular membrane vesicles (EMVs) are produced by many Gram-positive organisms, but information regarding vesiculogenesis is incomplete. We used single gene deletions to evaluate the impacts on Streptococcus mutans EMV biogenesis of Sortase A (SrtA), which affects S. mutans EMV composition, and Sfp, a 4'-phosphopantetheinyl transferase that affects Bacillus subtilis EMV stability. ΔsrtA EMVs were notably larger than Δsfp and wild-type (WT) EMVs. EMV proteins identified from all three strains are known to be involved in cell wall biogenesis and cell architecture, bacterial adhesion, biofilm cell density and matrix development, and microbial competition. Notably, the AtlA autolysin was not processed to its mature active form in the ΔsrtA mutant. Proteomic and lipidomic analyses of all three strains revealed multiple dissimilarities between vesicular and corresponding cytoplasmic membranes (CMs). A higher proportion of EMV proteins are predicted substrates of the general secretion pathway (GSP). Accordingly, the GSP component SecA was identified as a prominent EMV-associated protein. In contrast, CMs contained more multi-pass transmembrane (TM) protein substrates of co-translational transport machineries than EMVs. EMVs from the WT, but not the mutant strains, were enriched in cardiolipin compared to CMs, and all EMVs were over-represented in polyketide flavonoids. EMVs and CMs were rich in long-chain saturated, monounsaturated, and polyunsaturated fatty acids, except for Δsfp EMVs that contained exclusively polyunsaturated fatty acids. Lipoproteins were less prevalent in EMVs of all three strains compared to their CMs. This study provides insight into biophysical characteristics of S. mutans EMVs and indicates discrete partitioning of protein and lipid components between EMVs and corresponding CMs of WT, ΔsrtA, and Δsfp strains.
Collapse
Affiliation(s)
| | | | - Surabhi Mishra
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Ana L. Barrán-Berdón
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Zezhang T. Wen
- Department of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|