1
|
Stapley V, Anderson RS, Saunders K, Mulholland PJ. Examining the concordance of retinal ganglion cell counts generated using measures of structure and function. Ophthalmic Physiol Opt 2022; 42:1338-1352. [PMID: 36065739 PMCID: PMC9826349 DOI: 10.1111/opo.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE There are several indirect methods used to estimate retinal ganglion cell (RGC) count in an individual eye, but there is limited information as to the agreement between these methods. In this work, RGC receptive field (RGC-RF) count underlying a spot stimulus (0.43°, Goldmann III) was calculated and compared using three different methods. METHODS RGC-RF count was calculated at a retinal eccentricity of 2.32 mm for 44 healthy adult participants (aged 18-58 years, refractive error -9.75 DS to +1.75 DS) using: (i) functional measures of achromatic peripheral grating resolution acuity (PGRA), (ii) structural measures of RGC-layer thickness (OCT-model, based on the method outlined by Raza and Hood) and (iii) scaling published histology density data to simulate a global expansion in myopia (Histology-Balloon). RESULTS Whilst average RGC-RF counts from the OCT-model (median 105.3, IQR 99.6-111.0) and the Histology-Balloon model (median 107.5, IQR 97.7-114.6) were similar, PGRA estimates were approximately 65% lower (median 37.7, IQR 33.8-46.0). However, there was poor agreement between all three methods (Bland-Altman 95% limits of agreement; PGRA/OCT: 55.4; PGRA/Histology-Balloon 59.3; OCT/Histology-Balloon: 52.4). High intersubject variability in RGC-RF count was evident using all three methods. CONCLUSIONS The lower PGRA RGC-RF counts may be the result of targeting only a specific subset of functional RGCs, as opposed to the coarser approach of the OCT-model and Histology-Balloon, which include all RGCs, and also likely displaced amacrine cells. In the absence of a 'ground truth', direct measure of RGC-RF count, it is not possible to determine which method is most accurate, and each has limitations. However, what is clear is the poor agreement found between the methods prevents direct comparison of RGC-RF counts between studies utilising different methodologies and highlights the need to utilise the same method in longitudinal work.
Collapse
Affiliation(s)
- Victoria Stapley
- Centre for Optometry & Vision Science, Biomedical Sciences Research InstituteUlster UniversityColeraineUK
| | - Roger S. Anderson
- Centre for Optometry & Vision Science, Biomedical Sciences Research InstituteUlster UniversityColeraineUK,National Institute for Health Research (NIHR)Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Kathryn Saunders
- Centre for Optometry & Vision Science, Biomedical Sciences Research InstituteUlster UniversityColeraineUK
| | - Pádraig J. Mulholland
- Centre for Optometry & Vision Science, Biomedical Sciences Research InstituteUlster UniversityColeraineUK,National Institute for Health Research (NIHR)Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| |
Collapse
|
2
|
Sarossy M, Crowston J, Kumar D, Weymouth A, Wu Z. Prediction of glaucoma severity using parameters from the electroretinogram. Sci Rep 2021; 11:23886. [PMID: 34903831 PMCID: PMC8668922 DOI: 10.1038/s41598-021-03421-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Glaucoma is an optic neuropathy that results in the progressive loss of retinal ganglion cells (RGCs), which are known to exhibit functional changes prior to cell loss. The electroretinogram (ERG) is a method that enables an objective assessment of retinal function, and the photopic negative response (PhNR) has conventionally been used to provide a measure of RGC function. This study sought to examine if additional parameters from the ERG (amplitudes of the a-, b-, i-wave, as well the trough between the b- and i-wave), a multivariate adaptive regression splines (MARS; a non-linear) model and achromatic stimuli could better predict glaucoma severity in 103 eyes of 55 individuals with glaucoma. Glaucoma severity was determined using standard automated perimetry and optical coherence tomography imaging. ERGs targeting the PhNR were recorded with a chromatic (red-on-blue) and achromatic (white-on-white) stimulus with the same luminance. Linear and MARS models were fitted to predict glaucoma severity using the PhNR only or all ERG markers, derived from chromatic and achromatic stimuli. Use of all ERG markers predicted glaucoma severity significantly better than the PhNR alone (P ≤ 0.02), and the MARS performed better than linear models when using all markers (P = 0.01), but there was no significant difference between the achromatic and chromatic stimulus models. This study shows that there is more information present in the photopic ERG beyond the conventional PhNR measure in characterizing RGC function.
Collapse
Affiliation(s)
- Marc Sarossy
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
| | | | | | - Anne Weymouth
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Zhichao Wu
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| |
Collapse
|
3
|
A simplified combined index of structure and function for detecting and staging glaucomatous damage. Sci Rep 2021; 11:3172. [PMID: 33542367 PMCID: PMC7862440 DOI: 10.1038/s41598-021-82756-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/25/2021] [Indexed: 11/09/2022] Open
Abstract
Glaucomatous damage results in characteristics structural and functional changes on optical coherence tomography (OCT) imaging and standard automated perimetry (SAP) testing. The clinical utility of these measures differs based on disease severity, as they are evaluated along different measurement scales. This study therefore sought to examine if a simplified combined structure-function index (sCSFI) could improve the detection and staging of glaucomatous damage, compared to the use of average retinal nerve fiber layer thickness (RNFL) measurements from OCT and mean deviation (MD) values from SAP alone, and also an estimated retinal ganglion cell counts (eRGC) measure derived using empirical formulas described previously. Examining 577 eyes from 354 participants with perimetric glaucoma and 241 normal eyes from 138 healthy participants, we found that the sCSFI performed significantly better than average RNFL, MD and eRGC count for discriminating between glaucoma and healthy eyes (P ≤ 0.008 for all). The sCSFI also performed significantly better than RNFL and eRGC count at discriminating between different levels of visual field damage in glaucoma eyes (P < 0.001 for both). These findings highlight the clinical utility of combining structural and functional information for detecting and staging glaucomatous damage using the simplified index developed in this study.
Collapse
|
4
|
Turpin A, McKendrick AM. Improving Personalized Structure to Function Mapping From Optic Nerve Head to Visual Field. Transl Vis Sci Technol 2021; 10:19. [PMID: 33510958 PMCID: PMC7804493 DOI: 10.1167/tvst.10.1.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/21/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Maps are required to relate visual field locations to optic nerve head regions. We compare individualized structure-to-function mapping (CUSTOM-MAP) to a population-derived mapping schema (POP-MAP). Methods Maps were compared for 118 eyes with glaucomatous field loss, circumpapillary retinal nerve fiber layer (cpRNFL) thickness measured using spectral domain optical coherence tomography (OCT), and two landmarks: the optic nerve head (ONH) position relative to the fovea and the temporal raphe angle. Locations with visual field damage (total deviation < −6 dB) were mapped to 30° ONH sectors centered on the angle given by each mapping schema. The concordance between damaged function and damaged structure was determined per location for various cpRNFL damage probability levels, with the number of concordant locations divided by the total number of damaged field locations providing a concordance ratio per eye. Results For the strictest concordance criteria (minimum cpRNFL thickness < 1% of normal), CUSTOM-MAP had higher mean concordance ratio than POP-MAP (60.5% c.f. 57.0% paired Wilcoxon, P = 0.005), with CUSTOM-MAP having a higher ratio in 43 eyes and POP-MAP having a higher ratio in 21 eyes. For all cpRNFL probability levels <20% of normal, more locations concorded for CUSTOM-MAP than POP-MAP. Inspection of the spatial patterns of differences revealed that CUSTOM-MAP often performed better in the arcuate regions, whereas POP-MAP had benefits inferior to the macula. Conclusions Anatomic parameters required for individualized structure-function mapping are readily measured with OCT and can provide improved concordance for some eyes. Translational Relevance Personalizing structure-function mapping may improve concordance between these measures. We provide a web-based tool for creating customized maps.
Collapse
Affiliation(s)
- Andrew Turpin
- School of Computing & Information Systems, The University of Melbourne, Melbourne, Australia
| | - Allison M McKendrick
- Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Liu R, Kwon M. Increased Equivalent Input Noise in Glaucomatous Central Vision: Is it Due to Undersampling of Retinal Ganglion Cells? Invest Ophthalmol Vis Sci 2020; 61:10. [PMID: 32645132 PMCID: PMC7425734 DOI: 10.1167/iovs.61.8.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/01/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Recent evidence shows that macular damage is common even in early stages of glaucoma. Here we investigated whether contrast sensitivity loss in the central vision of glaucoma patients is due to an increase in equivalent input noise (Neq), a decrease in calculation efficiency, or both. We also examined how retinal undersampling resulting from loss of retinal ganglion cells (RGCs) may affect Neq and calculation efficiency. Methods This study included 21 glaucoma patients and 23 age-matched normally sighted individuals. Threshold contrast for orientation discrimination was measured with a sinewave grating embedded in varying levels of external noise. Data were fitted to the linear amplifier model (LAM) to factor contrast sensitivity into Neq and calculation efficiency. We also correlated macular RGC counts estimated from structural (spectral-domain optical coherence tomography) and functional (standard automated perimetry Swedish interactive thresholding algorithm 10-2) data with either Neq or efficiency. Furthermore, using analytical and computer simulation approach, the relative effect of retinal undersampling on Neq and efficiency was evaluated by adding the RGC sampling module into the LAM. Results Compared with normal controls, glaucoma patients exhibited a significantly larger Neq without significant difference in efficiency. Neq was significantly correlated with Pelli-Robson contrast sensitivity and macular RGC counts. The results from analytical derivation and model simulation further demonstrated that Neq can be expressed as a function of internal noise and retinal sampling. Conclusions Our results showed that equivalent input noise is significantly elevated in glaucomatous vision, thereby impairing foveal contrast sensitivity. Our findings further elucidated how undersampling at the retinal level may increase equivalent input noise.
Collapse
Affiliation(s)
- Rong Liu
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - MiYoung Kwon
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
6
|
Almog Y, Gefen N, Nesher R, Segal O, Nemet A, Nemet AY. Four-dot visual field artefacts. Clin Exp Optom 2020; 104:229-232. [PMID: 32449299 DOI: 10.1111/cxo.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yehoshua Almog
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
| | - Noa Gefen
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
| | - Ronit Nesher
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
| | - Ori Segal
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
| | - Achia Nemet
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
| | - Arie Y Nemet
- Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
7
|
Abstract
Structural and functional tests are essential for detecting and monitoring glaucomatous damage. However, the correlations between structural and functional tests in glaucoma are complex and faulty, with the combination of both modalities being recommended for better assessment of glaucoma. The objective of this review is to explore investigations from the last 5 years in the field of structure-function correlation in glaucoma that contributed to increment in the understanding of this correlation and have the potential to improve the diagnosis and detection of glaucoma progression.
Collapse
|
8
|
Yohannan J, Boland MV. The Evolving Role of the Relationship between Optic Nerve Structure and Function in Glaucoma. Ophthalmology 2017; 124:S66-S70. [DOI: 10.1016/j.ophtha.2017.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
|
9
|
Abstract
PURPOSE The purpose of this study is to evaluate the suitable visual field (VF) test conditions (target size, test type, and eccentricity) for the macular region, we investigated the correlations between the ganglion cell layer (GCL) thickness and 6 VF test results. METHODS We tested 32 eyes of patients (61.1±9.2 y) with preperimetric (6), early-stage (16), and moderate-stage (10) glaucoma. The VF tests included 3 SAP (the 10-2 HFA using SITA with target size III [HFA SITA (III)], full threshold with size III [HFA FULL (III)] and size I [HFA FULL (I)]) and 3 visual function-specific perimetry tests (the 10-2 SWAP, 10-2 flicker, and 10-2 Humphrey Matrix). The GCL and inner plexiform layer (GCL+IPL) thickness was measured by Spectral Domain Optical Coherence Tomography (SD-OCT) with a macular 7×7 mm cube scan (3D OCT-2000, Topcon). The coefficient of determination (r) for the correlation between visual sensitivity and the GCL+IPL thickness was calculated for each test at eccentricities 0 to 5 degrees, 5 to 7 degrees, and 7 to 10 degrees using linear and quadratic regressions. RESULTS All 6 tests showed the strongest correlation with the GCL+IPL thickness at 5 to 7 degrees. The respective r (linear) and R (quadratic) for HFA SITA (III), HFA FULL (III), HFA FULL (I), SWAP, Flicker, and Matrix were (0.40, 0.50), (0.43, 0.53), (0.44, 0.46), (0.51, 0.51), (0.33, 0.34), and (0.52, 0.52). CONCLUSIONS As compared with the frequently-used SAP with a size III, SAP with size I and the function-specific perimetry tests (especially the Matrix) could be more suitable for testing the macular region.
Collapse
|
10
|
Reznicek L, Burzer S, Laubichler A, Nasseri A, Lohmann CP, Feucht N, Ulbig M, Maier M. Structure-function relationship comparison between retinal nerve fibre layer and Bruch's membrane opening-minimum rim width in glaucoma. Int J Ophthalmol 2017; 10:1534-1538. [PMID: 29062772 DOI: 10.18240/ijo.2017.10.09] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
AIM To evaluate and compare structural optical coherence tomography (OCT)-based parameters, such as Bruch's membrane opening-minimum rim width (BMO-MRW), and retinal nerve fiber layer (RNFL) thickness in glaucoma patients with visual field (VF) defects, and to correlate both to mean deviation (MD) values of obtained standard achromatic perimetry (SAP) examinations. METHODS Patients with glaucoma and glaucomatous VF defects were enrolled in this prospective study and compared to age-matched healthy individuals. All study participants underwent a full ophthalmic examination and VF testing with SAP. Peripapillary RNFL thickness and BMO-MRW were acquired with SD-OCT. Correlation analyses between obtained global functional and global as well as sectorial structural parameters were calculated. RESULTS A consecutive series of 30 glaucomatous right eyes of 30 patients were included and compared to 36 healthy right eyes of 36 individuals in the control group. Global MD of values correlated significantly with global RNFL (Pearson corr. coeff: 0.632, P=0.001) and global BMO-MRW (Pearson corr. coeff: 0.746, P<0.001) values in the glaucoma group. Global MD and sectorial RNFL or BMO-MRW values correlated less significantly. In the control group, MD values did not correlate with RNFL or BMO-MRW measurements. A subgroup analysis of myopic patients (>4 diopters) within the glaucoma group (n=6) revealed a tendency for higher correlations between MD and BMO-MRW than MD and RNFL measurements. CONCLUSION In a clinical setting, RNFL thickness and BMO-MRW correlate similarly with global VF sensitivity in glaucoma patients with BMO-MRW showing higher correlations in myopic glaucoma patients.
Collapse
Affiliation(s)
- Lukas Reznicek
- Department of Ophthalmology, Technical University of Munich, Munich 81675, Germany
| | - Sophie Burzer
- Department of Ophthalmology, Technical University of Munich, Munich 81675, Germany
| | - Andrea Laubichler
- Department of Ophthalmology, Technical University of Munich, Munich 81675, Germany
| | - Ali Nasseri
- Department of Ophthalmology, Technical University of Munich, Munich 81675, Germany
| | - Chris P Lohmann
- Department of Ophthalmology, Technical University of Munich, Munich 81675, Germany
| | - Nikolaus Feucht
- Department of Ophthalmology, Technical University of Munich, Munich 81675, Germany
| | - Michael Ulbig
- Department of Ophthalmology, Technical University of Munich, Munich 81675, Germany
| | - Mathias Maier
- Department of Ophthalmology, Technical University of Munich, Munich 81675, Germany
| |
Collapse
|
11
|
Sakamoto M, Mori S, Ueda K, Akashi A, Inoue Y, Kurimoto T, Kanamori A, Yamada Y, Nakamura M. Diagnostic utility of combined retinal ganglion cell count estimates in Japanese glaucoma patients. Jpn J Ophthalmol 2017; 62:31-40. [PMID: 29027590 DOI: 10.1007/s10384-017-0540-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE To assess the combined estimate of retinal ganglion cell (RGC) count developed by Medeiros et al. as a tool for diagnosis of glaucoma in Japanese patients. STUDY DESIGN Cross-sectional study. METHODS Thirty-one eyes of 19 healthy controls and 106 eyes of 70 glaucoma patients underwent standard automated perimetry (SAP) and three types of spectral domain optical coherence tomography (SD-OCT) imaging using the Cirrus, RTVue, and 3D-OCT instruments. RGC counts derived from SAP and SD-OCT data were estimated using the Harwerth model (SAPrgc and OCTrgc, respectively), from which the combined RGC count estimates (CRGC) were calculated using the formula developed by Medeiros et al. Receiver operating characteristic curve (ROC) analyses were conducted for mean deviation (MD), retinal nerve fiber layer thickness (RNFLT), and CRGC. RESULTS The mean OCTrgc derived from the Cirrus, RTVue, and 3D-OCT instruments were 1150, 1245, and 1316 (× 1000 cells), respectively, for the control group and 463, 519, and 516 (× 1000 cells), respectively, for the patient group. SAPrgc of the controls' group was 1526 and the patients' group, 731 (× 1000 cells), and were consistently greater than OCTrgc in both groups (a generalized estimating equation model, p < 0.001). Partial area under the curve (pAUC) of MD was 0.178, and that of RNFLT and CRGC for the three OCT instruments were 0.185, 0.18, 0.189 and 0.196, 0.196, 0.197, respectively. CRGC had larger pAUC than MD, whereas there was no or marginal difference in pAUC between CRGC and cpRNFLT, irrespective of OCT device used or glaucoma severity. CONCLUSION CRGC proved well suited to discriminate glaucoma patients from controls. However, its clinical utility did not seem to overwhelm isolated structural measures in the tested Japanese patients.
Collapse
Affiliation(s)
- Mari Sakamoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Sotaro Mori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kaori Ueda
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Azusa Akashi
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yukako Inoue
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takuji Kurimoto
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Akiyasu Kanamori
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuko Yamada
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
12
|
Price DA, Swanson WH, Horner DG. Using perimetric data to estimate ganglion cell loss for detecting progression of glaucoma: a comparison of models. Ophthalmic Physiol Opt 2017; 37:409-419. [PMID: 28439944 PMCID: PMC5518449 DOI: 10.1111/opo.12378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/28/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE Models relating perimetric sensitivities to ganglion cell numbers have been proposed for combining structural and functional measures from patients with glaucoma. Here we compared seven models for ability to differentiate progressing and stable patients, testing the hypothesis that the model incorporating local spatial scale would have the best performance. METHODS The models were compared for the United Kingdom Glaucoma Treatment Study (UKGTS) data for the right eyes of 489 patients recently diagnosed with glaucoma. The SITA 24-2 program was utilised for perimetry and Stratus OCT fast scanning protocol for thickness of circumpapillary retinal nerve fibre layer (RNFL). The first analysis defined progression in terms of decline in RNFL thickness. The highest and lowest quintiles (22 subjects per group) were identified for change in thickness of inferior temporal (IT), superior temporal (ST), and global RNFL (μm year-1 ); a two-way anova was used to look for differences between the models in ability to discriminate the two quintiles. The second analysis defined a 'progression group' as those who were flagged by the UKGTS criteria as having progressive loss in perimetric sensitivity, and a 'no progression' group as those with rate of change in Mean Deviation (MD) closest to 0 dB year-1 (87 subjects per group). The third analysis characterised variability of retinal ganglion cell (RGC) models for the two groups in the second analysis, using the standard deviation of residuals from linear regression of ganglion cell number over time to compute Coefficient of Variation (CoV). RESULTS The first analysis produced a negative result because the three anovas found no effect of model or interaction of model and group (F6,294 < 3.1, p > 0.08). There was an effect of group only for the anova with the ST sector (F6,294 = 12.2, p < 0.001). The second analysis also produced a negative result, because ROC areas were in the range 0.69-0.72 for all models. The third analysis found that even when variability in MD was low, the CoV was so large that test-retest variation could include 100% loss of ganglion cells. CONCLUSIONS Two very different approaches for testing the hypothesis both gave a negative result. For all seven ganglion cell models, rates of ganglion cell loss were highly affected by fluctuations in height of the hill of vision. Methods for reducing effects of between-visit variability are needed in order to assess progression by relating perimetric sensitivities and ganglion cell numbers.
Collapse
Affiliation(s)
- Derek A Price
- Indiana University School of Optometry, Bloomington, USA
| | | | | |
Collapse
|
13
|
Reznicek L, Muth D, Vogel M, Hirneiß C. Structure-Function Relationship between Flicker-Defined Form Perimetry and Spectral-Domain Optical Coherence Tomography in Glaucoma Suspects. Curr Eye Res 2016; 42:418-423. [PMID: 27419859 DOI: 10.1080/02713683.2016.1190848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To evaluate the relationship between functional parameters of repeated flicker-defined form perimetry (FDF) and structural parameters of spectral-domain optical coherence tomography (SD-OCT) in glaucoma suspects with normal findings in achromatic standard automated perimetry (SAP). METHODS Patients with optic nerve heads (ONH) clinically suspicious for glaucoma and normal SAP findings were enrolled in this prospective study. Each participant underwent visual field (VF) testing with FDF perimetry, using the Heidelberg Edge Perimeter (HEP, Heidelberg Engineering, Heidelberg, Germany) at two consecutive visits. Peripapillary RNFL thickness was obtained by SD-OCT (Spectralis, Heidelberg Engineering, Heidelberg, Germany). Correlations and regression analyses of global and sectoral peripapillary RNFL thickness with corresponding global and regional VF sensitivities were investigated. RESULTS A consecutive series of 65 study eyes of 36 patients were prospectively included. The second FDF test (HEP II) was used for analysis. Cluster-point based suspicious VF defects were found in 34 eyes (52%). Significant correlations were observed between mean global MD (PSD) of HEP II and SD-OCT-based global peripapillary RNFL thickness (r = 0.380, p = 0.003 for MD and r = -0.516, p < 0.001 for PSD) and RNFL classification scores (R2 = 0.157, p = 0.002 for MD and R2 = 0.172, p = 0.001 for PSD). Correlations between mean global MD and PSD of HEP II and sectoral peripapillary RNFL thickness and classification scores showed highest correlations between function and structure for the temporal superior and temporal inferior sectors whereas sectoral MD and PSD correlated weaker with sectoral RNFL thickness. Correlations between linear RNFL values and untransformed logarithmic MD values for each segment were less significant than correlations between logarithmic MD values and RNFL thickness. CONCLUSIONS In glaucoma suspects with normal SAP, global and sectoral peripapillary RNFL thickness is correlated with sensitivity and VF defects in FDF perimetry.
Collapse
Affiliation(s)
- Lukas Reznicek
- a Department of Ophthalmology , Technical University Munich , Munich , Germany
| | - Daniel Muth
- b Department of Ophthalmology , Ludwig Maximilians University , Munich , Germany
| | - Michaela Vogel
- b Department of Ophthalmology , Ludwig Maximilians University , Munich , Germany
| | - Christoph Hirneiß
- b Department of Ophthalmology , Ludwig Maximilians University , Munich , Germany
| |
Collapse
|
14
|
Raza AS, Hood DC. Evaluation of the Structure-Function Relationship in Glaucoma Using a Novel Method for Estimating the Number of Retinal Ganglion Cells in the Human Retina. Invest Ophthalmol Vis Sci 2015; 56:5548-56. [PMID: 26305526 DOI: 10.1167/iovs.14-16366] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We developed a simple method for estimating the number of retinal ganglion cells (RGCs) in the human retina using optical coherence tomography (OCT), compared it to a previous approach, and demonstrated its potential for furthering our understanding of the structure-function relationship in glaucoma. METHODS Swept-source (ss) OCT data and 10-2 visual fields (VFs) were obtained from 43 eyes of 36 healthy controls, and 50 eyes of 50 glaucoma patients and suspects. Using estimates of RGC density from the literature and relatively few assumptions, estimates of the number of RGCs in the macula were obtained based on ssOCT-derived RGC layer thickness measurements. RESULTS The RGC estimates were in general agreement with previously published values derived from histology, whereas a prior method based on VF sensitivity did not agree as well with histological data and had significantly higher (P = 0.001) and more variable (P < 0.001) RGC estimates than the new method based on ssOCT. However, the RGC estimates of the new approach were not zero for extreme VF losses, suggesting that a residual, non-RGC contribution needs to be added. Finally, the new ssOCT-derived RGC estimates were significantly (P < 0.001 to P = 0.018) related to VF sensitivity (Spearman's ρ = 0.26-0.47), and, in contrast to claims made in prior studies, statistically significant RGC loss did not occur more often than statistically significant visual loss. CONCLUSIONS The novel method for estimating RGCs yields values that are closer to histological estimates than prior methods, while relying on considerably fewer assumptions. Although the value added for clinical applications is yet to be determined, this approach is useful for assessing the structure-function relationship in glaucoma.
Collapse
Affiliation(s)
- Ali S Raza
- Department of Psychology, Columbia University, New York, New York, United States 2Department of Neurobiology and Behavior, Columbia University, New York, New York, United States
| | - Donald C Hood
- Department of Psychology, Columbia University, New York, New York, United States 3Department of Ophthalmology, Columbia University, New York, New York, United States
| |
Collapse
|