1
|
Xiao J, Adil MY, Chang K, Yu Z, Yang L, Utheim TP, Chen DF, Cho KS. Visual Contrast Sensitivity Correlates to the Retinal Degeneration in Rhodopsin Knockout Mice. Invest Ophthalmol Vis Sci 2020; 60:4196-4204. [PMID: 31618423 PMCID: PMC6795341 DOI: 10.1167/iovs.19-26966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Clinical manifestations of photoreceptor degeneration include gradual thinning of the outer nuclear layer (ONL) and progressive reduction of electroretinogram (ERG) amplitudes and vision loss. Although preclinical evaluations of treatment strategies greatly depend on rodent models, the courses of these changes in mice remain unclear. We thus sought to investigate the temporal correlations in changes of spatial vision, ERG response, and ONL thickness in mice with progressive photoreceptor degeneration. Methods Adult wild-type (WT) mice and mice carrying rhodopsin deficiency (Rho−/−), a frequently used mouse model of human retinitis pigmentosa, were selected for investigation. Mouse spatial vision, including visual acuity (VA) and contrast sensitivity (CS), was determined using optomotor response (OMR) assays; ONL thickness was quantified by spectral-domain optical coherence tomography (SD-OCT), and ERG was performed to evaluate retinal functions. The mice were killed when they were 14 weeks old, and the cone photoreceptors in retinal sections were counted. Results Spatial vision, ONL thickness, and ERG amplitudes remained stable in WT mice at all examined time points. While 6-week-old Rho−/− mice had VA, CS, as well as ERG responses similar to those of WT mice, progressive reductions in the spatial vision and retinal functions were recorded thereafter. Most tested 12-week-old Rho−/− mice had no visual-evoked OMR and ERG responses. Moreover, CS, but not VA, displayed a linear decline that was closely associated with ONL thinning, reduction of ERG amplitudes, and loss of cones. Conclusions We presented a comprehensive study of the relation between the changes of spatial vision, retinal function, and ONL thickness in postnatal week (PW)6 to PW12 Rho−/− mice. CS is a more sensitive indicator of spatial vision compared to VA, although both are required as separate parameters for monitoring the visual changes in retina undergoing photoreceptor degeneration.
Collapse
Affiliation(s)
- Jiaxin Xiao
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Muhammed Yasin Adil
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karen Chang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,National Taiwan University, Taiwan
| | - Zicheng Yu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Lanbo Yang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Tor P Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Norway
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,Geriatric Research Education and Clinical Center, Office of Research and Development, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, Massachusetts, United States
| |
Collapse
|
2
|
Abstract
Lane changes are important behaviors to study in driving research. Automated detection of lane-change events is required to address the need for data reduction of a vast amount of naturalistic driving videos. This paper presents a method to deal with weak lane-marker patterns as small as a couple of pixels wide. The proposed method is novel in its approach to detecting lane-change events by accumulating lane-marker candidates over time. Since the proposed method tracks lane markers in temporal domain, it is robust to low resolution and many different kinds of interferences. The proposed technique was tested using 490 h of naturalistic driving videos collected from 63 drivers. The lane-change events in a 10-h video set were first manually coded and compared with the outcome of the automated method. The method's sensitivity was 94.8% and the data reduction rate was 93.6%. The automated procedure was further evaluated using the remaining 480-h driving videos. The data reduction rate was 97.4%. All 4971 detected events were manually reviewed and classified as either true or false lane-change events. Bootstrapping showed that the false discovery rate from the larger data set was not significantly different from that of the 10-h manually coded data set. This study demonstrated that the temporal processing of lane markers is an effcient strategy for detecting lane-change events involving weak lane-marker patterns in naturalistic driving.
Collapse
Affiliation(s)
- Shuhang Wang
- Schepens Eye Research Institute, Mass. Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Brian R Ott
- Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Gang Luo
- Schepens Eye Research Institute, Mass. Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|