1
|
Varner LR, Chaya T, Maeda Y, Tsutsumi R, Zhou S, Tsujii T, Okuzaki D, Furukawa T. The deubiquitinase Otud7b suppresses cone photoreceptor degeneration in mouse models of retinal degenerative diseases. iScience 2024; 27:109380. [PMID: 38510130 PMCID: PMC10951987 DOI: 10.1016/j.isci.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Primary and secondary cone photoreceptor death in retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP), leads to severe visual impairment and blindness. Although the cone photoreceptor protection in retinal degenerative diseases is crucial for maintaining vision, the underlying molecular mechanisms are unclear. Here, we found that the deubiquitinase Otud7b/Cezanne is predominantly expressed in photoreceptor cells in the retina. We analyzed Otud7b-/- mice, which were subjected to light-induced damage, a dry AMD model, or were mated with an RP mouse model, and observed increased cone photoreceptor degeneration. Using RNA-sequencing and bioinformatics analysis followed by a luciferase reporter assay, we found that Otud7b downregulates NF-κB activity. Furthermore, inhibition of NF-κB attenuated cone photoreceptor degeneration in the light-exposed Otud7b-/- retina and stress-induced neuronal cell death resulting from Otud7b deficiency. Together, our findings suggest that Otud7b protects cone photoreceptors in retinal degenerative diseases by modulating NF-κB activity.
Collapse
Affiliation(s)
- Leah Rie Varner
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Taro Chaya
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yamato Maeda
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Ryotaro Tsutsumi
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Shanshan Zhou
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Toshinori Tsujii
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Elsner AE. 2022 Prentice Award Lecture: Advancing Retinal Imaging and Visual Function in Patient Management and Disease Mechanisms. Optom Vis Sci 2023; 100:354-375. [PMID: 37212795 PMCID: PMC10317306 DOI: 10.1097/opx.0000000000002029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
SIGNIFICANCE Patient-based research plays a key role in probing basic visual mechanisms. Less-well recognized is the role of patient-based retinal imaging and visual function studies in elucidating disease mechanisms, which are accelerated by advances in imaging and function techniques and are most powerful when combined with the results from histology and animal models.A patient's visual complaints can be one key to patient management, but human data are also key to understanding disease mechanisms. Unfortunately, pathological changes can be difficult to detect. Before advanced retinal imaging, the measurement of visual function indicated the presence of pathological changes that were undetectable with existing clinical examination. Over the past few decades, advances in retinal imaging have increasingly revealed the unseen. This has led to great strides in the management of many diseases, particularly diabetic retinopathy and macular edema, and age-related macular degeneration. It is likely widely accepted that patient-based research, as in clinical trials, led to such positive outcomes. Both visual function measures and advanced retinal imaging have clearly demonstrated differences among retinal diseases. Contrary to initial thinking, sight-threatening damage in diabetes occurs to the outer retina and not only to the inner retina. This has been clearly indicated in patient results but has only gradually entered the clinical classifications and understanding of disease etiology. There is strikingly different pathophysiology for age-related macular degeneration compared with photoreceptor and retinal pigment epithelial genetic defects, yet research models and even some treatments confuse these. It is important to recognize the role that patient-based research plays in probing basic visual mechanisms and elucidating disease mechanisms, combining these findings with the concepts from histology and animal models. Thus, this article combines sample instrumentation from my laboratory and progress in the fields of retinal imaging and visual function.
Collapse
Affiliation(s)
- Ann E. Elsner
- School of Optometry, Indiana University, Bloomington, Indiana
| |
Collapse
|
3
|
Elsner AE, Dubis AM, Morgan JIW, Sallo FB. Editorial: The neural economy hypothesis: Changes with aging and disease to cones and other central nervous system visual neurons. Front Aging Neurosci 2022; 14:1054455. [PMID: 36483115 PMCID: PMC9724232 DOI: 10.3389/fnagi.2022.1054455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/10/2022] [Indexed: 02/04/2024] Open
Affiliation(s)
- Ann E. Elsner
- School of Optometry, Indiana University, Bloomington, IN, United States
| | - Adam M. Dubis
- Global Business School for Health, University College London, London, United Kingdom
| | - Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ferenc B. Sallo
- Hôpital Ophtalmique Jules-Gonin, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Elsner AE, Walker BR, Gilbert RN, Parimi V, Papay JA, Gast TJ, Burns SA. Cone Photoreceptors in Diabetic Patients. Front Med (Lausanne) 2022; 9:826643. [PMID: 35372411 PMCID: PMC8968172 DOI: 10.3389/fmed.2022.826643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Cones in diabetic patients are at risk due to metabolic and vascular changes. By imaging retinal vessel modeling at high magnification, we reduced its impact on cone distribution measurements. The retinal vessel images and retinal thickness measurements provided information about cone microenvironment. Methods We compared cone data in 10 diabetic subjects (28–78 yr) to our published norms from 36 younger and 10 older controls. All subjects were consented and tested in a manner approved by the Indiana University Institutional Review Board, which adhered to the Declaration of Helsinki. Custom adaptive optics scanning laser ophthalmoscopy (AOSLO) was used to image cones and retinal microcirculation. We counted cones in a montage of foveal and temporal retina, using four non-contiguous samples within 0.9–7 deg that were selected for best visibility of cones and least pathology. The data were fit with a two parameter exponential model: ln(cone density) = a * microns eccentricity + b. These results were compared to retinal thickness measurements from SDOCT. Results Diabetic cone maps were more variable than in controls and included patches, or unusually bright and dark cones, centrally and more peripherally. Model parameters and total cones within the central 14 deg of the macula differed across diabetic patients. Total cones fell into two groups: similar to normal for 5 vs. less than normal for 2 of 2 younger diabetic subjects and 3 older subjects, low but not outside the confidence limits. Diabetic subjects had all retinal vascular remodeling to varying degrees: microaneurysms; capillary thickening, thinning, or bends; and vessel elongation including capillary loops, tangles, and collaterals. Yet SD-OCT showed that no diabetic subject had a Total Retinal Thickness in any quadrant that fell outside the confidence limits for controls. Conclusions AOSLO images pinpointed widespread retinal vascular remodeling in all diabetic eyes, but the SDOCT showed no increased retinal thickness. Cone reflectivity changes were found in all diabetic patients, but significantly low cone density in only some. These results are consistent with early changes to neural, glial, or vascular components of the retinal without significant retinal thickening due to exudation.
Collapse
|
5
|
Baraas RC, Horjen Å, Gilson SJ, Pedersen HR. The Relationship Between Perifoveal L-Cone Isolating Visual Acuity and Cone Photoreceptor Spacing-Understanding the Transition Between Healthy Aging and Early AMD. Front Aging Neurosci 2021; 13:732287. [PMID: 34566629 PMCID: PMC8458634 DOI: 10.3389/fnagi.2021.732287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Age-related macular degeneration (AMD) is a multifactorial degenerative disorder that can lead to irreversible loss of visual function, with aging being the prime risk factor. However, knowledge about the transition between healthy aging and early AMD is limited. We aimed to examine the relationship between psychophysical measures of perifoveal L-cone acuity and cone photoreceptor structure in healthy aging and early AMD. Methods and Results: Thirty-nine healthy participants, 10 with early AMD and 29 healthy controls were included in the study. Multimodal high-resolution retinal images were obtained with adaptive-optics scanning-light ophthalmoscopy (AOSLO), optical-coherence tomography (OCT), and color fundus photographs. At 5 degrees retinal eccentricity, perifoveal L-cone isolating letter acuity was measured with psychophysics, cone inner segment and outer segment lengths were measured using OCT, while cone density, spacing, and mosaic regularity were measured using AOSLO. The Nyquist sampling limit of cone mosaic (Nc) was calculated for each participant. Both L-cone acuity and photoreceptor inner segment length declined with age, but there was no association between cone density nor outer segment length and age. A multiple regression showed that 56% of the variation in log L-cone acuity was accounted for by Nc when age was taken into account. Six AMD participants with low risk of progression were well within confidence limits, while two with medium-to-severe risk of progression were outliers. The observable difference in cone structure between healthy aging and early AMD was a significant shortening of cone outer segments. Conclusion: The results underscore the resilience of cone structure with age, with perifoveal functional changes preceding detectable changes in the cone photoreceptor mosaic. L-cone acuity is a sensitive measure for assessing age-related decline in this region. The transition between healthy aging of cone structures and changes in cone structures secondary to early AMD relates to outer segment shortening.
Collapse
Affiliation(s)
- Rigmor C Baraas
- Faculty of Health and Social Sciences, National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Åshild Horjen
- Faculty of Health and Social Sciences, National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J Gilson
- Faculty of Health and Social Sciences, National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- Faculty of Health and Social Sciences, National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
6
|
Abstract
Advances in retinal imaging are enabling researchers and clinicians to make precise noninvasive measurements of the retinal vasculature in vivo. This includes measurements of capillary blood flow, the regulation of blood flow, and the delivery of oxygen, as well as mapping of perfused blood vessels. These advances promise to revolutionize our understanding of vascular regulation, as well as the management of retinal vascular diseases. This review provides an overview of imaging and optical measurements of the function and structure of the ocular vasculature. We include general characteristics of vascular systems with an emphasis on the eye and its unique status. The functions of vascular systems are discussed, along with physical principles governing flow and its regulation. Vascular measurement techniques based on reflectance and absorption are briefly introduced, emphasizing ways of generating contrast. One of the prime ways to enhance contrast within vessels is to use techniques sensitive to the motion of cells, allowing precise measurements of perfusion and blood velocity. Finally, we provide a brief introduction to retinal vascular diseases.
Collapse
Affiliation(s)
- Stephen A Burns
- Indiana University School of Optometry, Bloomington, Indiana 47405, USA; , ,
| | - Ann E Elsner
- Indiana University School of Optometry, Bloomington, Indiana 47405, USA; , ,
| | - Thomas J Gast
- Indiana University School of Optometry, Bloomington, Indiana 47405, USA; , ,
| |
Collapse
|
7
|
Li J, Liu T, Flynn OJ, Turriff A, Liu Z, Ullah E, Liu J, Dubra A, Johnson MA, Brooks BP, Hufnagel RB, Hammer DX, Huryn LA, Jeffrey BG, Tam J. Persistent Dark Cones in Oligocone Trichromacy Revealed by Multimodal Adaptive Optics Ophthalmoscopy. Front Aging Neurosci 2021; 13:629214. [PMID: 33767618 PMCID: PMC7985087 DOI: 10.3389/fnagi.2021.629214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Dark cone photoreceptors, defined as those with diminished or absent reflectivity when observed with adaptive optics (AO) ophthalmoscopy, are increasingly reported in retinal disorders. However, their structural and functional impact remain unclear. Here, we report a 3-year longitudinal study on a patient with oligocone trichromacy (OT) who presented with persistent, widespread dark cones within and near the macula. Diminished electroretinogram (ERG) cone but normal ERG rod responses together with normal color vision confirmed the OT diagnosis. In addition, the patient had normal to near normal visual acuity and retinal sensitivity. Occasional dark gaps in the photoreceptor layer were observed on optical coherence tomography, in agreement with reflectance AO scanning light ophthalmoscopy, which revealed that over 50% of the cones in the fovea were dark, increasing to 74% at 10° eccentricity. In addition, the cone density was 78% lower than normal histologic value at the fovea, and 20-40% lower at eccentricities of 5-15°. Interestingly, color vision testing was near normal at locations where cones were predominantly dark. These findings illustrate how a retina with predominant dark cones that persist over at least 3 years can support near normal central retinal function. Furthermore, this study adds to the growing evidence that cones can continue to survive under non-ideal conditions.
Collapse
Affiliation(s)
- Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Oliver J Flynn
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amy Turriff
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhuolin Liu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Ehsan Ullah
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jianfei Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, CA, Unites States
| | - Mary A Johnson
- Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Brian P Brooks
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Robert B Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Daniel X Hammer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Laryssa A Huryn
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Brett G Jeffrey
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Elsner AE, Papay JA, Johnston KD, Sawides L, de Castro A, King BJ, Jones DW, Clark CA, Gast TJ, Burns SA. Cones in ageing and harsh environments: the neural economy hypothesis. Ophthalmic Physiol Opt 2020; 40:88-116. [PMID: 32017191 PMCID: PMC7155023 DOI: 10.1111/opo.12670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/31/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE Cones are at great risk in a wide variety of retinal diseases, especially when there is a harsh microenvironment and retinal pigment epithelium is damaged. We provide established and new methods for assessing cones and retinal pigment epithelium, together with new results. We investigated conditions under which cones can be imaged and could guide light, despite the proximity of less than ideal retinal pigment epithelium. RECENT FINDINGS We used a variety of imaging methods to detect and localise damage to the retinal pigment epithelium. As age-related macular degeneration is a particularly widespread disease, we imaged clinical hallmarks: drusen and hyperpigmentation. Using near infrared light provided improved imaging of the deeper fundus layers. We compared confocal and multiply scattered light images, using both the variation of detection apertures and polarisation analysis. We used optical coherence tomography to examine distances between structures and thickness of retinal layers, as well as identifying damage to the retinal pigment epithelium. We counted cones using adaptive optics scanning laser ophthalmoscopy. We compared the results of five subjects with geographic atrophy to data from a previous normative ageing study. Using near infrared imaging and layer analysis of optical coherence tomography, the widespread aspect of drusen became evident. Both multiply scattered light imaging and analysis of the volume in the retinal pigment epithelial layer from the optical coherence tomography were effective in localising drusen and hyperpigmentation beneath the photoreceptors. Cone photoreceptors in normal older eyes were shorter than in younger eyes. Cone photoreceptors survived in regions of atrophy, but with greatly reduced and highly variable density. Regular arrays of cones were found in some locations, despite abnormal retinal pigment epithelium. For some subjects, the cone density was significantly greater than normative values in some retinal locations outside the atrophy. SUMMARY The survival of cones within atrophy is remarkable. The unusually dense packing of cones at some retinal locations outside the atrophy indicates more fluidity in cone distribution than typically thought. Together these findings suggest strategies for therapy that includes preserving cones.
Collapse
|