1
|
Nie MD, Huang ZB, Zhang NZ, Fu LJ, Cheng CK. Biomechanical evaluation of a novel intervertebral disc repair technique for large box-shaped ruptures. Front Bioeng Biotechnol 2023; 11:1104015. [PMID: 36845190 PMCID: PMC9945520 DOI: 10.3389/fbioe.2023.1104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Objective: The purpose of this study was to analyze the feasibility of repairing a ruptured intervertebral disc using a patch secured to the inner surface of the annulus fibrosus (AF). Different material properties and geometries for the patch were evaluated. Methods: Using finite element analysis, this study created a large box-shaped rupture in the posterior-lateral region of the AF and then repaired it with a circular and square inner patch. The elastic modulus of the patches ranged from 1 to 50 MPa to determine the effect on the nucleus pulposus (NP) pressure, vertical displacement, disc bulge, AF stress, segmental range of motion (ROM), patch stress, and suture stress. The results were compared against the intact spine to determine the most suitable shape and properties for the repair patch. Results: The intervertebral height and ROM of the repaired lumbar spine was similar to the intact spine and was independent of the patch material properties and geometry. The patches with a modulus of 2-3 MPa resulted in an NP pressure and AF stresses closest to the healthy disc, and produced minimal contact pressure on the cleft surfaces and minimal stress on the suture and patch of all models. Circular patches caused lower NP pressure, AF stress and patch stress than the square patch, but also caused greater stress on the suture. Conclusion: A circular patch with an elastic modulus of 2-3 MPa secured to the inner region of the ruptured annulus fibrosus was able to immediately close the rupture and maintain an NP pressure and AF stress similar to the intact intervertebral disc. This patch had the lowest risk of complications and produced the greatest restorative effect of all patches simulated in this study.
Collapse
Affiliation(s)
- Mao-Dan Nie
- School of Biomedical Engineering and Engineering Research Center of Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Bin Huang
- Department of Spine Surgery, First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Ning-Ze Zhang
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ling-Jie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Ling-Jie Fu, ; Cheng-Kung Cheng,
| | - Cheng-Kung Cheng
- School of Biomedical Engineering and Engineering Research Center of Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Ling-Jie Fu, ; Cheng-Kung Cheng,
| |
Collapse
|
2
|
Che YJ, Li HT, Liang T, Chen X, Guo JB, Jiang HY, Luo ZP, Yang HL. Intervertebral disc degeneration induced by long-segment in-situ immobilization: a macro, micro, and nanoscale analysis. BMC Musculoskelet Disord 2018; 19:308. [PMID: 30153821 PMCID: PMC6114269 DOI: 10.1186/s12891-018-2235-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/16/2018] [Indexed: 01/08/2023] Open
Abstract
Background Cervical spine fixation or immobilization has become a routine treatment for spinal fracture, dislocation, subluxation injuries, or spondylosis. The effects of immobilization of intervertebral discs of the cervical spine is unclear. The goal of this study was to evaluate the effects of long-segment in-situ immobilization of intervertebral discs of the caudal vertebra, thereby simulating human cervical spine immobilization. Methods Thirty-five fully grown, male Sprague-Dawley rats were used. Rats were randomly assigned to one of five groups: Group A, which served as controls, and Groups B, C, D, and E, in which the caudal vertebrae were in-situ immobilized using a custom-made external device that fixed four caudal vertebrae (Co7-Co10). After 2 weeks, 4 weeks, 6 weeks, and 8 weeks of in-situ immobilization, the caudal vertebrae were harvested, and the disc height, the T2 signal intensity of the discs, disc morphology, the gene expression of discs, and the structure and the elastic modulus of discs was measured. Results The intervertebral disc height progressively decreased, starting at the 6th week. At week 6 and week 8, disc degeneration was classified as grade III, according to the modified Pfirrmann grading system criteria. Long-segment immobilization altered the gene expression of discs. The nucleus pulposus showed a typical cell cluster phenomenon over time. The annulus fibrosus inner layer began to appear disordered with fissure formation. The elastic modulus of collagen fibrils within the nucleus pulposus was significantly decreased in rats in group E compared to rats in group A (p < 0.05). On the contrary, the elastic modulus within the annulus was significantly increased in rats in group E compared to rats in group A (p < 0.05). Conclusion Long-segment in-situ immobilization caused target disc degeneration, and positively correlated with fixation time. The degeneration was not only associated with changes at the macroscale and microscale, but also indicated changes in collagen fibrils at the nanoscale. Long-segment immobilization of the spine (cervical spine) does not seem to be an innocuous strategy for the treatment of spine-related diseases and may be a predisposing factor in the development of the symptomatic spine.
Collapse
Affiliation(s)
- Yan-Jun Che
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu, 215006, People's Republic of China.,Department of Orthopedics, Peace Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, People's Republic of China
| | - Hai-Tao Li
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Ting Liang
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Xi Chen
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Jiang-Bo Guo
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Hua-Ye Jiang
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Zong-Ping Luo
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu, 215006, People's Republic of China.
| | - Hui-Lin Yang
- Orthopaedic Institute, Department of Orthopaedics, The First Affiliated Hospital of SooChow University, 708 Renmin Rd, Suzhou, Jiangsu, 215006, People's Republic of China
| |
Collapse
|