1
|
Benderski K, Schneider P, Kordeves P, Fichter M, Schunke J, De Lorenzi F, Durak F, Schrörs B, Akilli Ö, Kiessling F, Bros M, Diken M, Grabbe S, Schattenberg JM, Lammers T, Sofias AM, Kaps L. A hepatocellular carcinoma model with and without parenchymal liver damage that integrates technical and pathophysiological advantages for therapy testing. Pharmacol Res 2024:107560. [PMID: 39730106 DOI: 10.1016/j.phrs.2024.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Hepatocellular Carcinoma (HCC) is the most common form of primary liver cancer, with cirrhosis being its strongest risk factor. Interestingly, an increasing number of HCC cases is also observed without cirrhosis. We developed an HCC model via intrasplenic injection of highly tumorigenic HCC cells, which, due to cellular tropism, invade the liver and allow for a controllable disease progression. Specifically, C57BL/6JRj mice were intrasplenically inoculated with Dt81Hepa1-6 HCC cells, with a subgroup pre-treated with CCl4 to induce cirrhosis (C-HCC). At four weeks post-inoculation, mice were sacrificed, and diseased livers were analyzed via histology, flow cytometry, and RT-qPCR to profile the extracellular matrix (ECM), angiogenesis, and immune cells. In addition, tumor-bearing mice were treated with the first-line therapy, AtezoBev, to assess therapeutic responsiveness of the model. Dt81Hepa1-6 cells displayed similar gene expression as human HCC. After intrasplenic injection, all mice developed multifocal disease. C-HCC mice had a significantly higher tumor load than non-cirrhotic HCC mice. Both HCC and C-HCC models displayed extensive ECM formation, increased levels of vascularization, and immune cell infiltration compared to healthy and non-cancerous cirrhotic livers. AtezoBev treatment produced robust antitumor efficacy, validating the model's suitability for therapy testing. In conclusion, we established a rapidly developing and high-yield HCC model through a simple intrasplenic injection, with or without cirrhotic damage. The model overexpressed key human HCC genes and showed high responsiveness to first-line treatment. Our model uniquely combines all the above-mentioned features, promoting its use towards HCC therapy testing.
Collapse
Affiliation(s)
- Karina Benderski
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Panayiotis Kordeves
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany; TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074 Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIO(A)), RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Feyza Durak
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Barbara Schrörs
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Özlem Akilli
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz GmbH, Freiligrathstrasse 12, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Jörn M Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, 66123 Saarbrücken, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074 Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIO(A)), RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstrasse 55, 52074 Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen (CIO(A)), RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany; Department of Medicine II, Saarland University Medical Center, Saarland University, Kirrberger Strasse 100, 66123 Saarbrücken, Germany.
| |
Collapse
|
2
|
Zhang Q, Xia Y, Wang L, Wang Y, Bao Y, Zhao GS. Targeted anti-angiogenesis therapy for advanced osteosarcoma. Front Oncol 2024; 14:1413213. [PMID: 39252946 PMCID: PMC11381227 DOI: 10.3389/fonc.2024.1413213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
To date, despite extensive research, the prognosis of advanced osteosarcoma has not improved significantly. Thus, patients experience a reduced survival rate, suggesting that a reevaluation of current treatment strategies is required. Recently, in addition to routine surgery, chemotherapy and radiotherapy, researchers have explored more effective and safer treatments, including targeted therapy, immunotherapy, anti-angiogenesis therapy, metabolic targets therapy, and nanomedicine therapy. The tumorigenesis and development of osteosarcoma is closely related to angiogenesis. Thus, anti-angiogenesis therapy is crucial to treat osteosarcoma; however, recent clinical trials found that it has insufficient efficacy. To solve this problem, the causes of treatment failure and improve treatment strategies should be investigated. This review focuses on summarizing the pathophysiological mechanisms of angiogenesis in osteosarcoma and recent advances in anti-angiogenesis treatment of osteosarcoma. We also discuss some clinical studies, with the aim of providing new ideas to improve treatment strategies for osteosarcoma and the prognosis of patients.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Pain and Rehabilitation, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuxuan Xia
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - LiYuan Wang
- Department of Spine Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo-Sheng Zhao
- Department of Spine Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Yu L, Zhang J, Li Y. Effects of microenvironment in osteosarcoma on chemoresistance and the promise of immunotherapy as an osteosarcoma therapeutic modality. Front Immunol 2022; 13:871076. [PMID: 36311748 PMCID: PMC9608329 DOI: 10.3389/fimmu.2022.871076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is one of the most common primary malignant tumors originating in bones. Its high malignancy typically manifests in lung metastasis leading to high mortality. Although remarkable advances in surgical resection and neoadjuvant chemotherapy have lengthened life expectancy and greatly improved the survival rate among OS patients, no further breakthroughs have been achieved. It is challenging to treat patients with chemoresistant tumors and distant metastases. Recent studies have identified a compelling set of links between hypoxia and chemotherapy failure. Here, we review the evidence supporting the positive effects of hypoxia in the tumor microenvironment (TME). In addition, certain anticancer effects of immune checkpoint inhibitors have been demonstrated in OS preclinical models. Continued long-term observation in clinical trials is required. In the present review, we discuss the mutualistic effects of the TME in OS treatment and summarize the mechanisms of immunotherapy and their interaction with TME when used to treat OS. We also suggest that immunotherapy, a new comprehensive and potential antitumor approach that stimulates an immune response to eliminate tumor cells, may represent an innovative approach for the development of a novel treatment regimen for OS patients.
Collapse
|
4
|
Bevacizumab attenuates osteosarcoma angiogenesis by suppressing MIAT encapsulated by serum-derived extracellular vesicles and facilitating miR-613-mediated GPR158 inhibition. Cell Death Dis 2022; 13:272. [PMID: 35347106 PMCID: PMC8960875 DOI: 10.1038/s41419-022-04620-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
Targeting angiogenesis has been considered a promising treatment for a large number of malignancies, including osteosarcoma. Bevacizumab (Bev) is an anti-vascular endothelial growth factor being used for this purpose. We herein investigate the therapeutic potential of Bev in angiogenesis during osteosarcoma and the related mechanisms. Bioinformatics were performed for identification of osteosarcoma-related microarray dataset to collect related lncRNA and miRNA, with MIAT and miR-613 obtained. The predicted binding site between miR-613 and GPR158 3'UTR region was further confirmed by luciferase assay. Then, their effects combined with treatment with Bev on osteosarcoma cells were explored by the gain- and loss-of-function. After extraction from osteosarcoma patients' serum (serum-EVs) and identification, EVs were co-cultured with osteosarcoma cells, the biological behaviors of which were detected by CCK-8 assay and microtubule formation in vitro. A mouse tumor xenograft model was used to determine the effect of Bev on tumor angiogenesis in vivo. Bev inhibited osteosarcoma cell proliferation and angiogenesis in vivo and in vitro. Besides, serum-EVs could transfer MIAT (EV-MIAT) into osteosarcoma cells, where it is competitively bound to miR-613 to elevate GPR158, thus promoting osteosarcoma cell proliferation and angiogenesis. Furthermore, Bev arrested osteosarcoma cell proliferation and angiogenesis by inhibiting EV-MIAT and inducing miR-613-mediated GPR158 inhibition. In conclusion, the Bev-mediated MIAT/miR-613/GPR158 regulatory feedback revealed a new molecular mechanism in the pathogenesis of osteosarcoma angiogenesis.
Collapse
|
5
|
Zhang H, Yu Z, Wu B, Sun F. Circular RNA circFOXP1 promotes angiogenesis by regulating microRNA -127-5p/CDKN2AIP signaling pathway in osteosarcoma. Bioengineered 2021; 12:9991-9999. [PMID: 34637672 PMCID: PMC8810073 DOI: 10.1080/21655979.2021.1989258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma is known to have a high metastatic potential, which is closely related to angiogenesis. circRNAs are closely associated with osteosarcoma metastasis. This study aims to investigate the role of Circular RNA circFOXP1 in angiogenesis in osteosarcoma. We detected circFOXP1 expression in osteosarcoma, as well as its prognostic value. Tube formation assay and immunohistochemistry staining were conducted to determine the condition of tube formation. RT-qPCR was performed to explore targeted genes. Luciferase reporter assays were carried out to explore the interaction between miR-127-5p, ircFOXP1, and CDKN2AIP, respectively. In vivo studies further confirmed the relationship between circFOXP1 and tumor angiogenesis in osteosarcoma. We found that circFOXP1 expression was increased in osteosarcoma, and could promote angiogenesis in osteosarcoma through upregulating CDKN2AIP expression. Moreover, circFOXP1 could directly bind to miR-127-5p, which further targets CDKN2AIP directly. In conclusion, circFOXP1 promoted angiogenesis by regulating miR-127-5p/CDKN2AIP signaling pathway in osteosarcoma.
Collapse
Affiliation(s)
- Haiping Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ziliang Yu
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Bingbing Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Farui Sun
- Department of Orthopedics, Huangshi Central Hospital of East Hubei Medical Group Affiliated to Hubei Institute of Technology, Huangshi, China
| |
Collapse
|
6
|
Liu Y, Huang N, Liao S, Rothzerg E, Yao F, Li Y, Wood D, Xu J. Current research progress in targeted anti-angiogenesis therapy for osteosarcoma. Cell Prolif 2021; 54:e13102. [PMID: 34309110 PMCID: PMC8450128 DOI: 10.1111/cpr.13102] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumour with a peak in incidence during adolescence. Delayed patient presentation and diagnosis is common with approximately 15% of OS patients presenting with metastatic disease at initial diagnosis. With the introduction of neoadjuvant chemotherapy in the 1970s, disease prognosis improved from 17% to 60%-70% 5-year survival, but outcomes have not significantly improved since then. Novel and innovative therapeutic strategies are urgently needed as an adjunct to conventional treatment modalities to improve outcomes for OS patients. Angiogenesis is crucial for tumour growth, metastasis and invasion, and its prevention will ultimately inhibit tumour growth and metastasis. Dysregulation of angiogenesis in bone microenvironment involving osteoblasts and osteoclasts might contribute to OS development. This review summarizes existing knowledge regarding pre-clinical and developmental research of targeted anti-angiogenic therapy for OS with the aim of highlighting the limitations associated with this application. Targeted anti-angiogenic therapies include monoclonal antibody to VEGF (bevacizumab), tyrosine kinase inhibitors (Sorafenib, Apatinib, Pazopanib and Regorafenib) and human recombinant endostatin (Endostar). However, considering the safety and efficacy of these targeted anti-angiogenesis therapies in clinical trials cannot be guaranteed at this point, further research is needed to completely understand and characterize targeted anti-angiogenesis therapy in OS.
Collapse
Affiliation(s)
- Yun Liu
- Department of Spine and Osteopathic SurgeryFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Research Centre for Regenerative MedicineGuangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityNanningChina
- Division of Regenerative BiologySchool of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Nenggan Huang
- Department of Trauma Orthopedic and Hand SurgeryFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Shijie Liao
- Department of Spine and Osteopathic SurgeryFirst Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Research Centre for Regenerative MedicineGuangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityNanningChina
- Division of Regenerative BiologySchool of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Emel Rothzerg
- Division of Regenerative BiologySchool of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
- Perron Institute for Neurological and Translational ScienceOEII Medical CentreNedlandsWAAustralia
| | - Felix Yao
- Division of Regenerative BiologySchool of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Yihe Li
- Division of Regenerative BiologySchool of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| | - David Wood
- Division of Regenerative BiologySchool of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Jiake Xu
- Division of Regenerative BiologySchool of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| |
Collapse
|
7
|
Alonso-Diez Á, Cáceres S, Peña L, Crespo B, Illera JC. Anti-Angiogenic Treatments Interact with Steroid Secretion in Inflammatory Breast Cancer Triple Negative Cell Lines. Cancers (Basel) 2021; 13:3668. [PMID: 34359570 PMCID: PMC8345132 DOI: 10.3390/cancers13153668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022] Open
Abstract
Human inflammatory breast cancer (IBC) is a highly angiogenic disease for which antiangiogenic therapy has demonstrated only a modest response, and the reason for this remains unknown. Thus, the purpose of this study was to determine the influence of different antiangiogenic therapies on in vitro and in vivo steroid hormone and angiogenic growth factor production using canine and human inflammatory breast carcinoma cell lines as well as the possible involvement of sex steroid hormones in angiogenesis. IPC-366 and SUM149 cell lines and xenotransplanted mice were treated with different concentrations of VEGF, SU5416, bevacizumab and celecoxib. Steroid hormone (progesterone, dehydroepiandrostenedione, androstenedione, testosterone, dihydrotestosterone, estrone sulphate and 17β-oestradiol), angiogenic growth factors (VEGF-A, VEGF-C and VEGF-D) and IL-8 determinations in culture media, tumour homogenate and serum samples were assayed by EIA. In vitro, progesterone- and 17β-oestradiol-induced VEGF production promoting cell proliferation and androgens are involved in the formation of vascular-like structures. In vivo, intratumoural testosterone concentrations were augmented and possibly associated with decreased metastatic rates, whereas elevated E1SO4 concentrations could promote tumour progression after antiangiogenic therapies. In conclusion, sex steroid hormones could regulate the production of angiogenic factors. The intratumoural measurement of sex steroids and growth factors may be useful to develop preventive and individualized therapeutic strategies.
Collapse
Affiliation(s)
- Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Sara Cáceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Belén Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
8
|
Li YS, Liu Q, Tian J, He HB, Luo W. Angiogenesis Process in Osteosarcoma: An Updated Perspective of Pathophysiology and Therapeutics. Am J Med Sci 2019; 357:280-288. [DOI: 10.1016/j.amjms.2018.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/23/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
|
9
|
Navid F, Santana VM, Neel M, McCarville MB, Shulkin BL, Wu J, Billups CA, Mao S, Daryani VM, Stewart CF, Kunkel M, Smith W, Ward D, Pappo AS, Bahrami A, Loeb DM, Reikes Willert J, Rao BN, Daw NC. A phase II trial evaluating the feasibility of adding bevacizumab to standard osteosarcoma therapy. Int J Cancer 2017. [PMID: 28631382 DOI: 10.1002/ijc.30841] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increased vascular endothelial growth factor (VEGF) expression in osteosarcoma correlates with a poor outcome. We conducted a phase II trial to evaluate the feasibility and efficacy of combining bevacizumab, a monoclonal antibody against VEGF, with methotrexate, doxorubicin and cisplatin (MAP) in patients with localized osteosarcoma. Eligible patients received two courses of MAP chemotherapy before definitive surgery at week 10. Bevacizumab (15 mg/kg) was administered 3 days before starting chemotherapy then on day 1 of weeks 3 and 5 of chemotherapy. After surgery, patients received MAP for a total of 29 weeks; bevacizumab was added every 2 or 3 weeks on day 1 of chemotherapy at least 5 weeks after surgery. Group sequential monitoring rules were used to monitor for unacceptable bevacizumab-related targeted toxicity (grade 4 hypertension, proteinuria or bleeding, grade 3 or 4 thrombosis/embolism, and grade 2-4 major wound complications). Thirty-one patients (median age 12.8 years) with localized osteosarcoma were enrolled. No unacceptable targeted toxicities were observed except for wound complications (9 minor and 6 major), which occurred in 15 patients; none required removal of prosthetic hardware or amputation. The estimated 4-year event-free survival (EFS) rate and overall survival rate were 57.5 ± 10.0% and 83.4 ± 7.8%, respectively. Eight (28%) of 29 evaluable patients had good histologic response (<5% viable tumor) to preoperative chemotherapy. The addition of bevacizumab to MAP for localized osteosarcoma is feasible but frequent wound complications are encountered. The observed histologic response and EFS do not support further evaluation of bevacizumab in osteosarcoma.
Collapse
Affiliation(s)
- Fariba Navid
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN
| | - Victor M Santana
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN
| | - Michael Neel
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN
| | - M Beth McCarville
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN.,Department of Radiology, University of Tennessee Health Science Center, Memphis, TN
| | - Barry L Shulkin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN.,Department of Radiology, University of Tennessee Health Science Center, Memphis, TN
| | - Jianrong Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Catherine A Billups
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Shenghua Mao
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Vinay M Daryani
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Michelle Kunkel
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Wendene Smith
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Deborah Ward
- Department of Pharmaceutical Services, St. Jude Children's Research Hospital, Memphis, TN
| | - Alberto S Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - David M Loeb
- Department of Oncology, Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Jennifer Reikes Willert
- Pediatric Hematology/Oncology/Blood and Marrow Transplant, Rady Children's Hospital, San Diego, CA
| | - Bhaskar N Rao
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN.,Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Najat C Daw
- Division of Pediatrics, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|