1
|
Carrabs V, Guillén MI, Ferrándiz ML, Alcaraz MJ, Ferrini F, Agostini R, Guescini M, Fimognari C, Capparucci I, Barbieri E, Sestili P. Hyaluronic Acid Hampers the Inflammatory Response Elicited by Extracellular Vesicles from Activated Monocytes in Human Chondrocytes. Pharmaceutics 2024; 16:1386. [PMID: 39598510 PMCID: PMC11597363 DOI: 10.3390/pharmaceutics16111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Osteoarthritis (OA) is the most common joint disease in the adult population. OA is the result of multiple mechanisms leading to inflammation and the degradation of the cartilage. A complex series of etiological actors have been identified so far, including extracellular vesicles (EVs). The EV content of the synovial fluid (SF) can release inflammatory mediators that enhance OA progression. An intra-articular viscosupplementation of high-MW hyaluronic acid (HyA) constitutes the first-line conservative treatment for OA. Although attractive for the potential pharmacological implications, the possibility that HyA may interact with EVs in the context of OA has not yet been specifically investigated; therefore, the present study aimed to fill this gap. Methods: We studied the effect of a HyA preparation (a blend of crosslinked and linear polymers, CLHyA) on the relevant inflammatory markers in chondrocytes (HC cells or primary chondrocytes isolated from patients with advanced OA) exposed to the EVs collected from IL-1β-stimulated THP-1 human monocytes (EVs+). Results: EVs+ caused specific inflammatory responses in chondrocytes that could be prevented by coincubation with CLHyA. This anti-inflammatory activity is likely dependent on the direct binding of CLHyA to CD44 receptors highly expressed in EVs+ and on the subsequent hindrance to EVs+ diffusion and docking to target cells. Conclusions: On the whole, the tight interactions identified herein between HMW HyA and EVs+ represent a novel, pharmacologically exploitable mechanism potentially relevant in the context of OA treatment.
Collapse
Affiliation(s)
- Vittoria Carrabs
- Dipartimento di Scienze Biomolecolari, University of Urbino Carlo Bo, 61029 Urbino, Italy; (V.C.); (R.A.); (M.G.); (I.C.); (E.B.)
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46010 Valencia, Spain; (M.I.G.); (M.L.F.); (M.J.A.)
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, 46115 Valencia, Spain
| | - Maria Isabel Guillén
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46010 Valencia, Spain; (M.I.G.); (M.L.F.); (M.J.A.)
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, 46115 Valencia, Spain
| | - María Luisa Ferrándiz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46010 Valencia, Spain; (M.I.G.); (M.L.F.); (M.J.A.)
| | - María José Alcaraz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46010 Valencia, Spain; (M.I.G.); (M.L.F.); (M.J.A.)
| | - Fabio Ferrini
- Dipartimento di Scienze Biomolecolari, University of Urbino Carlo Bo, 61029 Urbino, Italy; (V.C.); (R.A.); (M.G.); (I.C.); (E.B.)
| | - Rachele Agostini
- Dipartimento di Scienze Biomolecolari, University of Urbino Carlo Bo, 61029 Urbino, Italy; (V.C.); (R.A.); (M.G.); (I.C.); (E.B.)
| | - Michele Guescini
- Dipartimento di Scienze Biomolecolari, University of Urbino Carlo Bo, 61029 Urbino, Italy; (V.C.); (R.A.); (M.G.); (I.C.); (E.B.)
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita, Università degli Studi di Bologna, C.so d’Augusto 237, 47921 Rimini, Italy;
| | - Italo Capparucci
- Dipartimento di Scienze Biomolecolari, University of Urbino Carlo Bo, 61029 Urbino, Italy; (V.C.); (R.A.); (M.G.); (I.C.); (E.B.)
| | - Elena Barbieri
- Dipartimento di Scienze Biomolecolari, University of Urbino Carlo Bo, 61029 Urbino, Italy; (V.C.); (R.A.); (M.G.); (I.C.); (E.B.)
| | - Piero Sestili
- Dipartimento di Scienze Biomolecolari, University of Urbino Carlo Bo, 61029 Urbino, Italy; (V.C.); (R.A.); (M.G.); (I.C.); (E.B.)
| |
Collapse
|
2
|
Zhang P, Yang J, Wang Z, Wang H, An M, Yakufu M, Wang W, Liu Y, Liu W, Li C. An injectable self-lubricating supramolecular polymer hydrogel loaded with platelet lysate to boost osteoarthritis treatment. J Control Release 2024; 376:20-36. [PMID: 39362609 DOI: 10.1016/j.jconrel.2024.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Globally, osteoarthritis (OA) is the most prevalent joint disease and is characterized by infiltration of M1 macrophages in the synovium, anabolic-catabolic imbalance of the extracellular matrix (ECM), increased articular shear force and overproduction of reactive oxygen species (ROS). Disease-modifying OA drugs are not yet available, and treatments for OA focus solely on reducing pain and inflammation and have limited therapeutic effect. Herein, we developed an injectable self-lubricating poly(N-acryloyl alaninamide) (PNAAA) hydrogel loaded with platelet lysate (PL) (termed "PNAAA@PL") for treating OA. Tribological and drug release tests revealed suitable lubrication properties and sustained release of bioactive factors in PNAAA@PL. In vitro experiments showed that PNAAA@PL alleviated interleukin-1β (IL-1β)-induced anabolic-catabolic imbalance of chondrocytes and repolarized pro-inflammatory M1 macrophages to the anti-inflammatory M2 phenotype via intracellular ROS scavenging. Additionally, the PNAAA@PL hydrogel enhanced the migratory capacity and chemotaxis ability of stem cells, which are essential for chondrogenesis. In vivo, the functionalized PNAAA@PL hydrogel acted like synovial fluid following intra-articular injection into a rat OA model with anterior cruciate ligament transection, ultimately attenuating cartilage degeneration and synovitis. According to molecular mechanism studies, PNAAA@PL repairs cartilage in the OA model by inhibiting the NF-ĸB pathway. Overall, this self-lubricating PNAAA@PL hydrogel offers a comprehensive strategy for preventing OA progression by engineering a biophysiochemical microenvironment to generate high-quality hyaline cartilage.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China; Department of Sports Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Zhuoya Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Hongying Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Mingyang An
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Maihemuti Yakufu
- Department of Orthopedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, China
| | - Wenliang Wang
- Department of Sports Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Yujie Liu
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Chunbao Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
3
|
Li Z, Wang D, Zhu X. Roles of LncRNA ARSR in tumor proliferation, drug resistance, and lipid and cholesterol metabolism. Clin Transl Oncol 2024:10.1007/s12094-024-03700-4. [PMID: 39251493 DOI: 10.1007/s12094-024-03700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Cancer is one of the most serious diseases that threaten human life and health. Among all kinds of diseases, the mortality rate of malignant tumors is the second highest, second only to cardio-cerebrovascular diseases. Cancer treatment typically involves imaging, surgery, and pathological analysis. When patients are identified as carcinoma by the above means, there are often problems of distant metastasis, delayed treatment, and drug tolerance, indicating that patients have some poor prognosis and overall survival. Hence, the development of novel molecular biomarkers is of great clinical importance. In recent years, as an important mediator of material and information exchange between cells in the tumor microenvironment, lncRNA have attracted widespread attention for their roles in tumor development. In this review, we comprehensively summarize the up-to-date knowledge of lncARSR on diverse cancer types which mainly focuses on tumor proliferation, drug tolerance, and lipid and cholesterol metabolism, highlighting the potential of lncARSR as a diagnostic and prognostic biomarker and even a therapeutic target. In our final analysis, we provide a synthesized overview of the directions for future inquiry into lncARSR, and we are eager to witness the advancement of research that will elucidate the multifaceted nature of this lncRNA.
Collapse
Affiliation(s)
- Zhicheng Li
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Dan Wang
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Xiaojun Zhu
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
4
|
Zhang Z, Mao H, Li F, Wang D, Liu Y. METTL14-mediated lncRNA-FAS-AS1 promotes osteoarthritis progression by up-regulating ADAM8. Int J Rheum Dis 2024; 27:e15323. [PMID: 39221886 DOI: 10.1111/1756-185x.15323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent degenerative disease. We explored the role and regulatory mechanisms of lncRNA-FAS-AS1 in OA progression. METHODS We exposed human immortalized chondrocytes to IL-1β for 24 h to induce an OA cell model. The target molecule levels were assessed using western blot and quantitative real-time PCR (RT-qPCR). Cell viability and apoptosis were measured using CCK-8 and flow cytometry. The m6A modification of FAS-AS1 was determined using MeRIP. We examined the binding relationships between FAS-AS1, Fragile X mental retardation 1 (FMR1), and A disintegrin and metalloproteinase 8 (ADAM8) using RIP and RNA pull-down. The OA animal model was established by separating the medial collateral ligament and medial meniscus. Safranin-O staining and Mankin's scale were employed to evaluate pathological changes within the cartilage. RESULTS FAS-AS1, METTL14, and ADAM8 were upregulated, and the JAK/STAT3 signaling pathway was activated in OA mice and IL-1β-induced chondrocytes. FAS-AS1 knockdown inhibited extracellular matrix degradation in IL-1β-induced chondrocytes; however, ADAM8 overexpression reversed this effect. FAS-AS1 maintained the stability of ADAM8 mRNA by recruiting FMR1. METTL14 knockdown repressed FAS-AS1 expression in an m6A-dependent manner. FAS-AS1 overexpression reversed the inhibitory effects of METTL14 knockdown on JAK/STAT3 signaling and cartilage damage in the OA model both in vitro and in vivo. CONCLUSION METTL14-mediated FAS-AS1 promotes OA progression through the FMR1/ADAM8/JAK/STAT3 axis.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- ADAM Proteins/metabolism
- ADAM Proteins/genetics
- Adenosine/analogs & derivatives
- Apoptosis
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/genetics
- Arthritis, Experimental/pathology
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Cell Line
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Disease Models, Animal
- Disease Progression
- Interleukin-1beta/metabolism
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Mice, Inbred C57BL
- Osteoarthritis/metabolism
- Osteoarthritis/genetics
- Osteoarthritis/pathology
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/genetics
- Osteoarthritis, Knee/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Zhehua Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| | - Honggang Mao
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| | - Fang Li
- Department of Experimental Center, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| | - Dahai Wang
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| | - Yan Liu
- Department of Orthopedics, The Third Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia BaoGang Hospital, Baotou, Inner Mongolia, China
| |
Collapse
|
5
|
Lai C, Cheng X, Yuan T, Fang P, Qian H, Jiang H, Meng J, Zhao J, Bao N, Zhang L. A novel mechanism behind irreversible development of cartilage degradation driven articular cartilage defects revealed by rat model: The chain reaction initiated by extracellular vesicles delivered LOC102546541. Int Immunopharmacol 2024; 137:112467. [PMID: 38875997 DOI: 10.1016/j.intimp.2024.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Articular cartilage defects (ACD) are injuries with a diameter greater than 3 mm, resulting from wear and tear on joints. When the diameter of the defect exceeds 6 mm, it can further damage the surrounding joint cartilage, causing osteoarthritis (OA). Try to explain why OA is an irreversible disease, we hypothesize that damaged articular chondrocytes (DAC) may have reduced capacities to repair cartilage because its extracellular vesicle (EVs) that might directly contribute to OA formation. METHODS In this study, DAC-EVs and AC-EVs were isolated using ultracentrifugation. Next-generation sequencing was employed to screen for a pathogenic long non-coding RNA (lncRNA). After verifying its function in vitro, the corresponding small interfering RNA (siRNA) was constructed and loaded into extracellular vesicles, which were then injected into the knee joint cavities of rats. RESULTS The results revealed that DAC-EVs packaged lncRNA LOC102546541 acts as a competitive endogenous RNA (ceRNA) of MMP13, down-regulating miR-632. Consequently, the function of MMP13 in degrading the extracellular matrix is enhanced, promoting the development of osteoarthritis. CONCLUSIONS This study uncovered a novel mode of OA pathogenesis using rat models, which DAC deliver pathogenic LOC102546541 packaged EVs to normal articular chondrocytes, amplifying the degradation of the extracellular matrix. Nonetheless, the functions of highly homologous human gene of LOC102546541 need to be verified in the future.
Collapse
Affiliation(s)
- Chengteng Lai
- Department of Orthopaedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xi Cheng
- Department of Orthopaedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tao Yuan
- Department of Orthopaedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Peng Fang
- Department of Orthopaedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hong Qian
- Department of Orthopaedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hui Jiang
- Department of Orthopaedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jia Meng
- Department of Orthopaedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianning Zhao
- Department of Orthopaedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Nirong Bao
- Department of Orthopaedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Lei Zhang
- Department of Orthopaedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Li K, Leng Y, Lei D, Zhang H, Ding M, Lo WLA. Causal link between metabolic related factors and osteoarthritis: a Mendelian randomization investigation. Front Nutr 2024; 11:1424286. [PMID: 39206315 PMCID: PMC11349640 DOI: 10.3389/fnut.2024.1424286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Metabolic syndrome (MetS) is significantly associated with osteoarthritis (OA), especially in MetS patients with blood glucose abnormalities, such as elevated fasting blood glucose (FG), which may increase OA risk. Dietary modifications, especially the intake of polyunsaturated fatty acids (PUFAs), are regarded as a potential means of preventing MetS and its complications. However, regarding the effects of FG, Omega-3s, and Omega-6s on OA, the research conclusions are conflicting, which is attributed to the complexity of the pathogenesis of OA. Therefore, it is imperative to thoroughly evaluate multiple factors to fully understand their role in OA, which needs further exploration and clarification. Methods Two-sample univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) were employed to examine the causal effect of metabolic related factors on hip OA (HOA) or knee OA (KOA). The exposure and outcome datasets were obtained from Open GWAS IEU. All cases were independent European ancestry data. Three MR methods were performed to estimate the causal effect: inverse-variance weighting (IVW), weighted median method (WMM), and MR-Egger regression. Additionally, the intercept analysis in MR-Egger regression is used to estimate pleiotropy, and the IVW method and MR-Egger regression are used to test the heterogeneity. Results The UVMR analysis revealed a causal relationship between FG and HOA. By MVMR analysis, the study discovered a significant link between FG (OR = 0.79, 95%CI: 0.64∼0.99, p = 0.036) and KOA after accounting for body mass index (BMI), age, and sex hormone-binding globulin (SHBG). However, no causal effects of FG on HOA were seen. Omega-3s and Omega-6s did not have a causal influence on HOA or KOA. No significant evidence of pleiotropy was identified. Discussion The MR investigation showed a protective effect of FG on KOA development but no causal relationship between FG and HOA. No causal effect of Omega-3s and Omega-6s on HOA and KOA was observed. Shared genetic overlaps might also exist between BMI and age, SHBG and PUFAs for OA development. This finding offers a novel insight into the treatment and prevention of KOA from glucose metabolism perspective. The FG cutoff value should be explored in the future, and consideration should be given to demonstrating the study in populations other than Europeans.
Collapse
Affiliation(s)
- Kai Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Leng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Lei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haojie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
8
|
Sarangi P, Senthilkumar MB, Amit S, Kumar N, Jayandharan GR. AAV mediated repression of Neat1 lncRNA combined with F8 gene augmentation mitigates pathological mediators of joint disease in haemophilia. J Cell Mol Med 2024; 28:e18460. [PMID: 38864710 PMCID: PMC11167708 DOI: 10.1111/jcmm.18460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Haemophilic arthropathy (HA), a common comorbidity in haemophilic patients leads to joint pain, deformity and reduced quality of life. We have recently demonstrated that a long non-coding RNA, Neat1 as a primary regulator of matrix metalloproteinase (MMP) 3 and MMP13 activity, and its induction in the target joint has a deteriorating effect on articular cartilage. In the present study, we administered an Adeno-associated virus (AAV) 5 vector carrying an short hairpin (sh)RNA to Neat1 via intra-articular injection alone or in conjunction with systemic administration of a capsid-modified AAV8 (K31Q) vector carrying F8 gene (F8-BDD-V3) to study its impact on HA. AAV8K31Q-F8 vector administration at low dose, led to an increase in FVIII activity (16%-28%) in treated mice. We further observed a significant knockdown of Neat1 (~40 fold vs. untreated injured joint, p = 0.005) in joint tissue of treated mice and a downregulation of chondrodegenerative enzymes, MMP3, MMP13 and the inflammatory mediator- cPLA2, in mice receiving combination therapy. These data demonstrate that AAV mediated Neat1 knockdown in combination with F8 gene augmentation can potentially impact mediators of haemophilic joint disease.
Collapse
Affiliation(s)
- Pratiksha Sarangi
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and TechnologyIndian Institute of Technology KanpurKanpurUttar PradeshIndia
| | - Mohankumar B. Senthilkumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and TechnologyIndian Institute of Technology KanpurKanpurUttar PradeshIndia
| | - Sonal Amit
- Department of PathologyAutonomous State Medical CollegeKanpurUttar PradeshIndia
| | - Narendra Kumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and TechnologyIndian Institute of Technology KanpurKanpurUttar PradeshIndia
| | - Giridhara R. Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Centre for Engineering in Medicine and Gangwal School of Medical Sciences and TechnologyIndian Institute of Technology KanpurKanpurUttar PradeshIndia
| |
Collapse
|
9
|
Wang H, Zhang Y, Zhang C, Zhao Y, Shu J, Tang X. Exosomes derived from miR-146a-overexpressing fibroblast-like synoviocytes in cartilage degradation and macrophage M1 polarization: a novel protective agent for osteoarthritis? Front Immunol 2024; 15:1361606. [PMID: 38846937 PMCID: PMC11153682 DOI: 10.3389/fimmu.2024.1361606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Pathological changes in the articular cartilage (AC) and synovium are major manifestations of osteoarthritis (OA) and are strongly associated with pain and functional limitations. Exosome-derived microRNAs (miRNAs) are crucial regulatory factors in intercellular communication and can influence the progression of OA by participating in the degradation of chondrocytes and the phenotypic transformation in the polarization of synovial macrophages. However, the specific relationships and pathways of action of exosomal miRNAs in the pathological progression of OA in both cartilage and synovium remain unclear. Methods This study evaluates the effects of fibroblast-like synoviocyte (FLS)-derived exosomes (FLS-Exos), influenced by miR-146a, on AC degradation and synovial macrophage polarization. We investigated the targeted relationship between miR-146a and TRAF6, both in vivo and in vitro, along with the involvement of the NF-κB signaling pathway. Results The expression of miR-146a in the synovial exosomes of OA rats was significantly higher than in healthy rats. In vitro, the upregulation of miR-146a reduced chondrocyte apoptosis, whereas its downregulation had the opposite effect. In vivo, exosomes derived from miR-146a-overexpressing FLSs (miR-146a-FLS-Exos) reduced AC injury and chondrocyte apoptosis in OA. Furthermore, synovial proliferation was reduced, and the polarization of synovial macrophages shifted from M1 to M2. Mechanistically, the expression of TRAF6 was inhibited by targeting miR-146a, thereby modulating the Toll-like receptor 4/TRAF6/NF-κB pathway in the innate immune response. Discussion These findings suggest that miR-146a, mediated through FLS-Exos, may alleviate OA progression by modulating cartilage degradation and macrophage polarization, implicating the NF-κB pathway in the innate immune response. These insights highlight the therapeutic potential of miR-146a as a protective agent in OA, underscoring the importance of exosomal miRNAs in the pathogenesis and potential treatment of the disease.
Collapse
Affiliation(s)
- Huan Wang
- Department of Traditional Chinese Medicine Massage, China-Japan Friendship Hospital, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chengfei Zhang
- Department of Endocrinology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- Department of Subhealth, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Shu
- Institute of Clinical Research, China-Japan Friendship Hospital, Beijing, China
| | - Xuezhang Tang
- Department of Traditional Chinese Medicine Massage, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
10
|
Liu Y, Wang Y, Yu Z, Wang Z. Impacts of TP53TG1 in cancer-associated fibroblasts-derived exosomes on epithelial-mesenchymal transition capacity of colorectal carcinoma cells by targeting miR-330-3p. Heliyon 2024; 10:e30301. [PMID: 38707274 PMCID: PMC11068805 DOI: 10.1016/j.heliyon.2024.e30301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Objective This research aims at clarifying the action and mechanisms of action of TP53TG1 in cancer-associated fibroblasts (CAF)-derived exosomes (EXs) on colorectal carcinoma (CRC) cells. Methods CAF and CAF-EXs isolated from CRC tissues were incubated with CRC SW480 cells to determine alterations in biological behavior, epithelial-mesenchymal transition (EMT) capacity, and TP53TG1 and miR-330-3p expression. In addition, a dual luciferase reporter (DLR) assay was conducted to verify the connection between TP53TG1 and miR-330-3p, and the impacts of the two genes on CRC cells were analyzed. Results CRC-CAF-EXs extracted from CRC tissues were successfully identified and were able to promote SW480 multiplication, invasiveness, migration, and EMT ability while inhibiting apoptosis (P < 0.05). In addition, TP53TG1 increased and miR-330-3p decreased in SW480 when cultured with CRC-CAF-EXs (P < 0.05). The DLR assay identified notably reduced fluorescence activity of TP53TG1-WT after transfection with miR-330-3p-mimics (P < 0.05). Furthermore, SW480 cell multiplication, invasiveness and migration were found to be enhanced and the apoptosis decreased after up-regulating TP53TG1, while suppressing TP53TG1 and up-regulating miR-330-3p contributed to quite the opposite effect (P < 0.05). Moreover, by elevating TP53TG1 and miR-330-3p simultaneously, we found a cell activity similar to the NC group (P > 0.05). Conclusion By targeting miR-330-3p, TP53TG1 in CRC-CAF-EXs can enhance CRC cell activity and EMT capacity and inhibit apoptosis.
Collapse
Affiliation(s)
- Yawei Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Youwei Wang
- Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Zhijuan Yu
- Hubei University of Science and Technology, Xianning, Hubei, 437000, China
| | - Ziheng Wang
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, Jiangsu, 215000, China
- The School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Wang Q, Yang J, Pan R, Zha Z. LncRNA SNHG1 overexpression alleviates osteoarthritis via activating PI3K/Akt signal pathway and suppressing autophagy. Immunobiology 2024; 229:152799. [PMID: 38636283 DOI: 10.1016/j.imbio.2024.152799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 04/20/2024]
Abstract
We hereby intend to further explore and confirm the underlying mechanism of Small nucleolar RNA Host Gene 1 (SNHG1) in osteoarthritis (OA). For in vitro assays, OA was induced in primary chondrocytes with interleukin-1β (IL-1β) treatment; while for in vivo tests, OA model was established in mice using the destabilization of the medial meniscus (DMM) method. Cell viability and apoptosis were assessed with MTT and flow cytometry assays, respectively. Cartilage tissue was stained by Safranin-O/Fast Green Staining. The mRNA and protein levels were separately determined via quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. SNHG1 overexpression promoted the viability yet inhibited the apoptosis of chondrocytes injured by IL-1β. Moreover, the overexpression of SNHG1 promoted B-cell lymphoma-2 (Bcl-2) expression and activated phosphoinositol-3 kinase (PI3K)/protein kinase B (Akt) pathway but suppressed the process of autophagy, which led to down-regulation of light chain 3 (LC3)-II/I level and up-regulation of P62 level. However, rapamycin (RAPA, an autophagy activator) and LY294002 (a PI3K inhibitor) reversed the effects of SNHG1 overexpression on the viability and apoptosis of chondrocytes as well as on the proteins related to PI3K/Akt pathway and autophagy. In OA-modeled mice, SNHG1 overexpression prevented the loss of chondrocytes via the activation of PI3K/Akt pathway and the suppression of autophagy. SNHG1 overexpression might inhibit the apoptosis of chondrocytes by promoting PI3K/Akt pathway and inhibiting autophagy.
Collapse
Affiliation(s)
- Qiushi Wang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong, China
| | - Jie Yang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong, China
| | - Rui Pan
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong, China
| | - Zhengang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong, China.
| |
Collapse
|
12
|
Ishida K, Tanishima S, Tanida A, Nagira K, Mihara T, Takeda C, Ogawa S, Nagashima H. Comprehensive analysis of microRNA expression in lumbar facet joint capsules and synovium of patients with osteoarthritis: Comparison between early-stage and late-stage osteoarthritis samples from a single individual. J Orthop Sci 2024; 29:660-667. [PMID: 36781308 DOI: 10.1016/j.jos.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND MicroRNA is attracting attention as a therapeutic target for osteoarthritis. We focused on joint capsules and synovium in lumbar facet joint osteoarthritis. The purpose of this study was to identify microRNAs that are upregulated in lumbar facet joint capsules and synovium with osteoarthritis. METHODS We included patients who underwent spinal fusion for degenerative lumbar spine diseases. We selected patients who had both early-stage and late-stage facet joint osteoarthritis in a single individual. We extracted joint capsule and synovium samples from these patients and isolated microRNAs. During the screening phase, we compared early-stage and late-stage osteoarthritis samples from the same individual. We identified microRNAs with >2-fold change in expression in 75% or more of patients with late-stage osteoarthritis using next generation sequencing. During the technical validation phase, the same samples were used for real-time polymerase chain reaction. We identified microRNAs with >2-fold change in expression in 62.5% or more of patients with late-stage osteoarthritis. RESULTS Of 40 patients who underwent spinal fusion, we selected eight patients with both early-stage and late-stage facet joint osteoarthritis. During the screening phase, we identified eight upregulated microRNAs out of 2274 microRNAs in late-stage OA. In late-stage OA, two microRNAs (miR-133a-5p and miR-144-3p) were upregulated in seven patients and six microRNAs (miR-133a-3p, miR-133b, miR-206, miR-20a-5p, miR-301a-3p, and miR-32-5p) were upregulated in six patients. During the technical validation phase, we found significant upregulation of miR-144-3p expression in late-stage osteoarthritis compared with early-stage osteoarthritis. Expression of the other microRNAs was not significantly different according to the paired-t test. However, miR-133a-3p, miR-133b, and miR-206 were upregulated >2-fold in 62.5% or more of patients with late-stage osteoarthritis. CONCLUSIONS Some of the microRNAs identified in this study might be involved in joint capsule degeneration or synovitis.
Collapse
Affiliation(s)
- Koji Ishida
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Shinji Tanishima
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan.
| | - Atsushi Tanida
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Keita Nagira
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Tokumitsu Mihara
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Chikako Takeda
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Shinya Ogawa
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Hideki Nagashima
- Division of Orthopedic Surgery, Department of Sensory and Motor Organs, School of Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
13
|
Liang J, Yi Q, Liu Y, Li J, Yang Z, Sun W, Sun W. Recent advances of m6A methylation in skeletal system disease. J Transl Med 2024; 22:153. [PMID: 38355483 PMCID: PMC10868056 DOI: 10.1186/s12967-024-04944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Skeletal system disease (SSD) is defined as a class of chronic disorders of skeletal system with poor prognosis and causes heavy economic burden. m6A, methylation at the N6 position of adenosine in RNA, is a reversible and dynamic modification in posttranscriptional mRNA. Evidences suggest that m6A modifications play a crucial role in regulating biological processes of all kinds of diseases, such as malignancy. Recently studies have revealed that as the most abundant epigentic modification, m6A is involved in the progression of SSD. However, the function of m6A modification in SSD is not fully illustrated. Therefore, make clear the relationship between m6A modification and SSD pathogenesis might provide novel sights for prevention and targeted treatment of SSD. This article will summarize the recent advances of m6A regulation in the biological processes of SSD, including osteoporosis, osteosarcoma, rheumatoid arthritis and osteoarthritis, and discuss the potential clinical value, research challenge and future prospect of m6A modification in SSD.
Collapse
Affiliation(s)
- Jianhui Liang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646099, Sichuan, China
| | - Yang Liu
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Jiachen Li
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
- Shantou University Medical College, Shantou, 515000, China
| | - Zecheng Yang
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
14
|
Qiu M, Xie Y, Tan G, Wang X, Huang P, Hong L. Synovial mesenchymal stem cell-derived exosomal miR-485-3p relieves cartilage damage in osteoarthritis by targeting the NRP1-mediated PI3K/Akt pathway: Exosomal miR-485-3p relieves cartilage damage. Heliyon 2024; 10:e24042. [PMID: 38293485 PMCID: PMC10826677 DOI: 10.1016/j.heliyon.2024.e24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis (OA) is an age-related musculoskeletal disease that results in pain and functional disability. Stem cell therapy has been considered as a promising treatment for OA. In this study, the therapeutic action and potential mechanism of synovial mesenchymal stem cells (SMSCs)-derived exosomes (Exos) in OA cartilage damage were investigated. Cartilage cells were stimulated with IL-1β to establish an in vitro model of OA cartilage damage. Cartilage cell functions were detected by CCK-8, scratch assay, and flow cytometry, respectively. Inflammatory cytokine levels were assessed by ELISA. Target molecule levels were measured by qRT‒PCR and Western blotting. Exos-induced differential expression of miRNAs in cartilage cells were analyzed by microarray analysis. The interaction between miR-485-3p and neuropilin-1 (NRP1) was validated by dual luciferase reporter and RIP assays. We found that treatment with Exos promoted proliferation, migration, and ECM secretion, but restrained apoptosis and inflammation of IL-1β-exposed cartilage cells via up-regulation of miR-485-3p. Additionally, miR-485-3p directly targeted NRP1 to repress NRP1 expression, which subsequently caused inactivation of the PI3K/Akt pathway. The protective effect of Exos on cartilage damage was counteracted by NRP1 overexpression-mediated activation of the PI3K/Akt pathway. In conclusion, Exos delivered miR-485-3p to attenuate IL-1β-induced cartilage degradation by targeting NRP1 and succedent inactivation of the PI3K/Akt pathway. Our findings shed light on the novel protective mechanism of Exos in OA, which suggest that the restoration of miR-485-3p by Exos might be a novel approach for OA treatment.
Collapse
Affiliation(s)
- Mingjun Qiu
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Yanhua Xie
- Department of orthopedic, The Second Affiliated Hospital of University of South China, China
| | - Guanghua Tan
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Xiaoxu Wang
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Peiguan Huang
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Liang Hong
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| |
Collapse
|
15
|
Xie W, Jiang L, Huang X, You W, Sun W. Hsa_circ_0004662 Accelerates the Progression of Osteoarthritis via the microRNA-424-5p/VEGFA Axis. Curr Mol Med 2024; 24:217-225. [PMID: 36330643 DOI: 10.2174/1566524023666221103161203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Circular RNAs (circRNAs) have been extensively implicated in osteoarthritis (OA) progression. Therefore, this study explores the impact of hsa_circ_0004662 on OA progression and the related molecular mechanism. METHODS Human articular chondrocyte injury was induced by IL-1β to construct the OA model in vitro. Hsa_circ_0004662 and microRNA (miR)-424-5p expression in chondrocytes was evaluated with qRT-PCR. Vascular endothelial growth factors A (VEGFA) expression was examined with qRT-PCR and western blot after hsa_circ_0004662 knockdown or miR-424-5p overexpression in chondrocytes. Subsequent to loss- and gain-of-function assays in IL-1β-induced chondrocytes, the proliferation and apoptosis of chondrocytes were assessed with CCK-8 assay and flow cytometry, respectively. The expression of MMP13, Aggrecan, and apoptosis-related proteins Bax and Bcl-2 was measured with western blot. The binding of miR-424-5p to hsa_circ_0004662 and VEGFA was assessed with a dual-luciferase reporter gene assay. RESULTS Hsa_circ_0004662 was up-regulated, but miR-424-5p was down-regulated in IL-1β-induced chondrocytes. Mechanistically, both hsa_circ_0004662 and VEGFA bound to miR-424-5p, and hsa_circ_0004662 enhanced VEGFA expression by downregulating miR-424-5p. Hsa_circ_0004662 knockdown elevated cell proliferation, decreased apoptosis and MMP13 and Bax expression, and increased Aggrecan and Bcl- 2 expression in IL-1β-induced chondrocytes, which was counteracted by further miR- 424-5p down-regulation or VEGFA overexpression. CONCLUSION Hsa_circ_0004662 facilitates OA progression via the miR-424-5p/ VEGFA axis.
Collapse
Affiliation(s)
- Wei Xie
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, ShenZhen, 518000, P.R. China
| | - Luoyong Jiang
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, ShenZhen, 518000, P.R. China
| | - Xiaoyang Huang
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, ShenZhen, 518000, P.R. China
| | - Wei You
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, ShenZhen, 518000, P.R. China
| | - Wei Sun
- Department of Orthopedics, the First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, ShenZhen, 518000, P.R. China
| |
Collapse
|
16
|
Chen J, Liu Z, Sun H, Liu M, Wang J, Zheng C, Cao X. MiR-203a-3p attenuates apoptosis and pyroptosis of chondrocytes by regulating the MYD88/NF-κB pathway to alleviate osteoarthritis progression. Aging (Albany NY) 2023; 15:14457-14472. [PMID: 38095638 PMCID: PMC10756106 DOI: 10.18632/aging.205373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease that imposes a significant socioeconomic burden worldwide. Our previous studies revealed a down-regulation of miR-203a-3p in the knee tissues of OA patients. However, the underlying mechanism through which miR-203a-3p mediates the pathological process of OA remains unknown. Thus, we aimed to determine the effects of miR-203a-3p in the progression of OA. METHODS Rat primary chondrocytes were stimulated with 10 μg/mL lipopolysaccharide (LPS) for 24 hours, followed by transfection with 50 nM miR-203a-3p mimic, inhibitor, and siRNA for MYD88 or consistent negative controls for 48 hours. To evaluate the effects of miR-203a-3p on cartilage matrix degradation, oxidative stress, apoptosis, and pyroptosis in chondrocytes, various techniques such as immunofluorescence staining, biochemical analysis, Western blotting, and the TUNEL staining were utilized. In the rat OA model, all rats were randomly divided into four groups: Sham, OA, OA+Agomir negative control (NC), and OA+Agomir. They received intra-articular injections of 25 nmol miR-203a-3p agomir, agomir NC, or normal saline twice a week for the duration of 8 weeks after OA induction. Immunofluorescence staining was performed to evaluate the effects of miR-203a-3p on cartilage matrix degradation in rats. RESULTS MiR-203a-3p was down-regulated in LPS-treated rat chondrocytes and OA cartilage, and directly targeted MYD88. Moreover, miR-203a-3p significantly inhibited LPS-induced cartilage matrix degradation, oxidative stress, apoptosis, and pyroptosis of chondrocytes via targeting MYD88. Mechanistically, miR-203a-3p exerted protective effects via the inhibition of the MYD88/NF-κB pathway. In the rat OA model, intra-articular injections of miR-203a-3p agomir also significantly inhibited cartilage matrix degradation, thereby alleviating OA progression. Furthermore, the miR-203a-3p agomir-treated arthritic rat dramatically exhibited better articular tissue morphology and lower OARSI scores. CONCLUSIONS MiR-203a-3p plays a role in alleviating the progression of OA by regulating the MYD88/NF-κB pathway, thereby inhibiting cartilage matrix degradation, oxidative stress, apoptosis, and pyroptosis of chondrocytes. It highlights the potential significance of miR-203a-3p as an important regulator of OA.
Collapse
Affiliation(s)
- Jiayi Chen
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528401, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Zhutong Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - He Sun
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Mange Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Jiangliang Wang
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang 410300, Hunan, China
| | - Chenxiao Zheng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528401, Guangdong, China
| | - Xuewei Cao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong China
| |
Collapse
|
17
|
Li Z, Bi R, Zhu S. The Dual Role of Small Extracellular Vesicles in Joint Osteoarthritis: Their Global and Non-Coding Regulatory RNA Molecule-Based Pathogenic and Therapeutic Effects. Biomolecules 2023; 13:1606. [PMID: 38002288 PMCID: PMC10669328 DOI: 10.3390/biom13111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
OA is the most common joint disease that affects approximately 7% of the global population. Current treatment methods mainly relieve its symptoms with limited repairing effect on joint destructions, which ultimately contributes to the high morbidity rate of OA. Stem cell treatment is a potential regenerative medical therapy for joint repair in OA, but the uncertainty in differentiation direction and immunogenicity limits its clinical usage. Small extracellular vesicles (sEVs), the by-products secreted by stem cells, show similar efficacy levels but have safer regenerative repair effect without potential adverse outcomes, and have recently drawn attention from the broader research community. A series of research works and reviews have been performed in the last decade, providing references for the application of various exogenous therapeutic sEVs for treating OA. However, the clinical potential of target intervention involving endogenous pathogenic sEVs in the treatment of OA is still under-explored and under-discussed. In this review, and for the first time, we emphasize the dual role of sEVs in OA and explain the effects of sEVs on various joint tissues from both the pathogenic and therapeutic aspects. Our aim is to provide a reference for future research in the field.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Ruiye Bi
- Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Zou Z, Li H, Yu K, Ma K, Wang Q, Tang J, Liu G, Lim K, Hooper G, Woodfield T, Cui X, Zhang W, Tian K. The potential role of synovial cells in the progression and treatment of osteoarthritis. EXPLORATION (BEIJING, CHINA) 2023; 3:20220132. [PMID: 37933282 PMCID: PMC10582617 DOI: 10.1002/exp.20220132] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/15/2023] [Indexed: 11/08/2023]
Abstract
Osteoarthritis (OA), the commonest arthritis, is characterized by the progressive destruction of cartilage, leading to disability. The Current early clinical treatment strategy for OA often centers on anti-inflammatory or analgesia medication, weight loss, improved muscular function and articular cartilage repair. Although these treatments can relieve symptoms, OA tends to be progressive, and most patients require arthroplasty at the terminal stages of OA. Recent studies have shown a close correlation between joint pain, inflammation, cartilage destruction and synovial cells. Consequently, understanding the potential mechanisms associated with the action of synovial cells in OA could be beneficial for the clinical management of OA. Therefore, this review comprehensively describes the biological functions of synovial cells, the synovium, together with the pathological changes of synovial cells in OA, and the interaction between the cartilage and synovium, which is lacking in the present literature. Additionally, therapeutic approaches based on synovial cells for OA treatment are further discussed from a clinical perspective, highlighting a new direction in the treatment of OA.
Collapse
Affiliation(s)
- Zaijun Zou
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Han Li
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Kai Yu
- Department of Bone and JointCentral Hospital of Zhuang He CityDalianLiaoningChina
| | - Ke Ma
- Department of Clinical MedicineChina Medical UniversityShenyangLiaoningChina
| | - Qiguang Wang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuanChina
| | - Junnan Tang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Guozhen Liu
- School of MedicineThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdongChina
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Xiaolin Cui
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- School of MedicineThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdongChina
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Weiguo Zhang
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- Key Laboratory of Molecular Mechanisms for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalianLiaoningChina
| | - Kang Tian
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- Key Laboratory of Molecular Mechanisms for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalianLiaoningChina
| |
Collapse
|
19
|
Zhang Z, Zhao S, Sun Z, Zhai C, Xia J, Wen C, Zhang Y, Zhang Y. Enhancement of the therapeutic efficacy of mesenchymal stem cell-derived exosomes in osteoarthritis. Cell Mol Biol Lett 2023; 28:75. [PMID: 37770821 PMCID: PMC10540339 DOI: 10.1186/s11658-023-00485-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Osteoarthritis (OA), a common joint disorder with articular cartilage degradation as the main pathological change, is the major source of pain and disability worldwide. Despite current treatments, the overall treatment outcome is unsatisfactory. Thus, patients with severe OA often require joint replacement surgery. In recent years, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option for preclinical and clinical palliation of OA. MSC-derived exosomes (MSC-Exos) carrying bioactive molecules of the parental cells, including non-coding RNAs (ncRNAs) and proteins, have demonstrated a significant impact on the modulation of various physiological behaviors of cells in the joint cavity, making them promising candidates for cell-free therapy for OA. This review provides a comprehensive overview of the biosynthesis and composition of MSC-Exos and their mechanisms of action in OA. We also discussed the potential of MSC-Exos as a therapeutic tool for modulating intercellular communication in OA. Additionally, we explored bioengineering approaches to enhance MSC-Exos' therapeutic potential, which may help to overcome challenges and achieve clinically meaningful OA therapies.
Collapse
Affiliation(s)
- Zehao Zhang
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Sheng Zhao
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhaofeng Sun
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Chuanxing Zhai
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| | - Yuge Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| |
Collapse
|
20
|
Yang T, Yang G, Wang G, Jia D, Xiong B, Lu X, Li Y. Bioinformatics identification and integrative analysis of ferroptosis-related key lncRNAs in patients with osteoarthritis. Biosci Rep 2023; 43:BSR20230255. [PMID: 37702097 PMCID: PMC10500229 DOI: 10.1042/bsr20230255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Ferroptosis and dysregulation of long non-coding RNA (lncRNA) have been described to be strictly relevant to the pathogenesis of osteoarthritis (OA). However, the connection between ferroptosis and lncRNA in OA is poorly appreciated. Herein, we investigated the functional contribution of lncRNA markers correlated with the progression of human OA by comprehensive bioinformatics analysis of a panoramic network of competing endogenous RNA (ceRNA) based on ferroptosis-related genes (FRGs). METHODS FRGs-related competing endogenous RNA (ceRNA) networks were generated using differentially expressed genes based on OA-related whole transcriptome data from the Gene Expression Omnibus (GEO) database via starBase, miRTarBase, and miRWalk databases. The pivotal lncRNAs were ascertained by topological features (degree, betweenness, and closeness) and subceRNA networks were re-visualized. The expression difference of pivotal lncRNAs was verified by quantitative real-time polymerase chain reaction (qRT-PCR). The latent molecular mechanisms of the global ceRNA and subceRNA networks were uncovered by the R package clusterProfiler-based enrichment analysis. RESULTS A total of 98 dysregulated lncRNA-miRNA-mRNA regulatory relationships were attained in the FRGs-related panoramic ceRNA network of OA, covering 26 mRNAs, 20 miRNAs, and 20 lncRNAs. Three lncRNAs (AC011511.5, AL358072.1, and C9orf139) were ascertained as the central lncRNAs in the panoramic ceRNA network. Functional ensemble analysis illustrated that both the panoramic ceRNA network and the subceRNA network were integrally affiliated with the immune-inflammatory response, oxygen homeostasis, and cell death (apoptosis, autophagy, and ferroptosis). CONCLUSION Comprehensive bioinformatics analysis of the FRGs-related ceRNA network determined three molecular biomarkers of lncRNAs that might be affiliated with OA progression.
Collapse
Affiliation(s)
- Tengyun Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Guang Yang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Guoliang Wang
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Di Jia
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Bohan Xiong
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Xiaojun Lu
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yanlin Li
- Department of Sports Medicine, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, China
| |
Collapse
|
21
|
Zhang X, Liu Q, Zhang J, Song C, Han Z, Wang J, Shu L, Liu W, He J, Wang P. The emerging role of lncRNAs in osteoarthritis development and potential therapy. Front Genet 2023; 14:1273933. [PMID: 37779916 PMCID: PMC10538550 DOI: 10.3389/fgene.2023.1273933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Osteoarthritis impairs the functions of various joints, such as knees, hips, hands and spine, which causes pain, swelling, stiffness and reduced mobility in joints. Multiple factors, including age, joint injuries, obesity, and mechanical stress, could contribute to osteoarthritis development and progression. Evidence has demonstrated that genetics and epigenetics play a critical role in osteoarthritis initiation and progression. Noncoding RNAs (ncRNAs) have been revealed to participate in osteoarthritis development. In this review, we describe the pivotal functions and molecular mechanisms of numerous lncRNAs in osteoarthritis progression. We mention that long noncoding RNAs (lncRNAs) could be biomarkers for osteoarthritis diagnosis, prognosis and therapeutic targets. Moreover, we highlight the several compounds that alleviate osteoarthritis progression in part via targeting lncRNAs. Furthermore, we provide the future perspectives regarding the potential application of lncRNAs in diagnosis, treatment and prognosis of osteoarthritis.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Qishun Liu
- Department of Orthopedics, Zhejiang Medical & Health Group Hangzhou Hospital, Hang Gang Hospital, Hangzhou, China
| | - Jiandong Zhang
- Department of Orthopedics and Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Caiyuan Song
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Zongxiao Han
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Jinjie Wang
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Lilu Shu
- Zhejiang Zhongwei Medical Research Center, Department of Medicine, Hangzhou, Zhejiang, China
| | - Wenjun Liu
- Zhejiang Zhongwei Medical Research Center, Department of Medicine, Hangzhou, Zhejiang, China
| | - Jinlin He
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Peter Wang
- Zhejiang Zhongwei Medical Research Center, Department of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Li Y, Li H, Wang L, Xie W, Yuan D, Wen Z, Zhang T, Lai J, Xiong Z, Shan Y, Jiang W. The p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop mediates vasoactive intestinal peptide effects on osteoarthritis chondrocytes. Int Immunopharmacol 2023; 122:110518. [PMID: 37392568 DOI: 10.1016/j.intimp.2023.110518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Loss and dysfunction of articular chondrocytes, which disrupt the homeostasis of extracellular matrix formation and breakdown, promote the onset of osteoarthritis (OA). Targeting inflammatory pathways is an important therapeutic strategy for OA. Vasoactive intestinal peptide (VIP) is an immunosuppressive neuropeptide with potent anti-inflammatory effects; however, its role and mechanism in OA remain unclear. In this study, microarray expression profiling from the Gene Expression Omnibus database and integrative bioinformatics analyses were performed to identify differentially expressed lncRNAs in OA samples. qRT-PCR validation of the top ten different expressed lncRNAs indicated that the expression level of intergenic non-protein coding RNA 2203 (LINC02203, also named LOC727924) was the highest in OA cartilage compared to normal cartilage. Hence, the LOC727924 function was further investigated. LOC727924 was upregulated in OA chondrocytes, with a dominant sub-localization in the cytoplasm. In OA chondrocytes, LOC727924 knockdown boosted cell viability, suppressed cell apoptosis, reactive oxygen species (ROS) accumulation, increased aggrecan and collagen II, decreased matrix metallopeptidase (MMP)-3/13 and ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS)-4/5 levels, and reduced the levels of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). LOC727924 could interact with the microRNA 26a (miR-26a)/ karyopherin subunit alpha 3 (KPNA3) axis by competitively targeting miR-26a for KPNA3 binding, therefore down-regulating miR-26a and upregulating KPNA3; in OA chondrocytes, miR-26a inhibition partially abolished LOC727924 knockdown effects on chondrocytes. miR-26a inhibited the nuclear translocation of p65 through targeting KPNA3 and p65 transcriptionally activated LOC727924, forming a p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop to modulate OA chondrocyte phenotypes. In vitro, VIP improved OA chondrocyte proliferation and functions, down-regulated LOC727924, KPNA3, and p65 expression, and upregulated miR-26a expression; in vivo, VIP ameliorated destabilization of the medial meniscus (DMM)-induced damages on the mouse knee joint, down-regulated KPNA3, inhibited the nuclear translocation of p65. In conclusion, the p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop modulates OA chondrocyte apoptosis, ROS accumulation, extracellular matrix (ECM) deposition, and inflammatory response in vitro and OA development in vivo, being one of the mechanisms mediating VIP ameliorating OA.
Collapse
Affiliation(s)
- Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lijie Wang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dongliang Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Zeqin Wen
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tiancheng Zhang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jieyu Lai
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Zixuan Xiong
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Yunhan Shan
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Wei Jiang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| |
Collapse
|
23
|
Chen B, Ning K, Sun ML, Zhang XA. Regulation and therapy, the role of JAK2/STAT3 signaling pathway in OA: a systematic review. Cell Commun Signal 2023; 21:67. [PMID: 37013568 PMCID: PMC10071628 DOI: 10.1186/s12964-023-01094-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/26/2023] [Indexed: 04/05/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial chronic disease primarily characterized by the degeneration of articular cartilage. Currently, there is a lack of effective treatments for OA other than surgery. The exploration of the mechanisms of occurrence is important in exploring other new and effective treatments for OA. The current evidence shows that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a vital role in cytogenesis and is involved in OA progression. The terms "JAK2", "STAT3", and "Osteoarthritis"were used in a comprehensive literature search in PubMed to further investigate the relationship between the JAK2/STAT3 signaling pathway and OA. This review focuses on the role and mechanism of JAK2/STAT3 signaling in cartilage degradation, subchondral bone dysfunction, and synovial inflammation. In addition, this review summarizes recent evidence of therapeutic approaches to treat OA by targeting the JAK2/STAT3 pathway to accelerate the translation of evidence into the progression of strategies for OA treatment. Video abstract.
Collapse
Affiliation(s)
- Bo Chen
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China.
| |
Collapse
|
24
|
Sun Y, Su S, Li M, Deng A. Inhibition of miR-182-5p Targets FGF9 to Alleviate Osteoarthritis. Anal Cell Pathol (Amst) 2023; 2023:5911546. [PMID: 37035017 PMCID: PMC10076120 DOI: 10.1155/2023/5911546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Background. The pathogenesis of osteoarthritis (OA) is complex and there is no specific drug for treatment. The aim of this study was to identify the molecular targets of OA therapy, focusing on the expression and biological functions of miR-182-5p and its target genes in OA. Methods. miR-182-5p and fibroblast growth factor 9 (FGF9) were overexpressed or knocked down in IL-1β-induced chondrocytes. An OA knee model was performed by surgically destroying the medial meniscus. The gene expression of miR-182-5p and FGF9 was calculated. The protein FGF9 was tested by western blotting. Cell counting kit-8 (CCK8), plate cloning assay, and flow cytometry were conducted to evaluate cell proliferation and apoptosis. The expression of inflammatory factors, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and interleukin (IL)-8, was evaluated using enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter assays validated the targeting relationship between miR-182-5p and FGF9. Hematoxylin–eosin (HE) and safranin O-fast Green (S–O) staining were utilized to access cartilage damage. Ki67 expression in cartilage was detected using immunohistochemistry (IHC). TdT-mediated dUTP nick-end labeling (TUNEL) assays were used to calculate the apoptosis rate of cartilage. Results. The expression of miR-182-5p was upregulated, and FGF9 was downregulated in the IL-1β-induced chondrocytes. OA chondrocytes proliferation ability in the miR-182-5p mimics group was decreased, and the apoptosis rate and inflammatory factor were increased. Transfection with miR-182-5p inhibitor increased the proliferative ability and decreased the apoptosis rate in the IL-1β-induced chondrocytes. Transfection with miR-182-5p inhibitor reversed IL-1β-induced inflammatory factor release in chondrocytes. Targeted binding sites existed between miR-182-5p and FGF9. After overexpression of FGF9, the miR-182-5p effect on OA chondrocytes was reversed. The hyaline cartilage thickness and proteoglycan content decreased in OA rats, and this was reversed by miR-182-5p inhibitor treatment. Conclusions. miR-182-5p expression levels were increased in OA chondrocytes and regulated chondrocyte proliferation, apoptosis, and inflammation by targeting FGF9. miR-182-5p is a potential gene for OA treatment.
Collapse
|
25
|
Wu J, Zhang Z, Ma X, Liu X. Advances in Research on the Regulatory Roles of lncRNAs in Osteoarthritic Cartilage. Biomolecules 2023; 13:biom13040580. [PMID: 37189327 DOI: 10.3390/biom13040580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative bone and joint disease that can lead to disability and severely affect the quality of life of patients. However, its etiology and pathogenesis remain unclear. It is currently believed that articular cartilage lesions are an important marker of the onset and development of osteoarthritis. Long noncoding RNAs (lncRNAs) are a class of multifunctional regulatory RNAs that are involved in various physiological functions. There are many differentially expressed lncRNAs between osteoarthritic and normal cartilage tissues that play multiple roles in the pathogenesis of OA. Here, we reviewed lncRNAs that have been reported to play regulatory roles in the pathological changes associated with osteoarthritic cartilage and their potential as biomarkers and a therapeutic target in OA to further elucidate the pathogenesis of OA and provide insights for the diagnosis and treatment of OA.
Collapse
|
26
|
Guo W, Su L, Zhang H, Mi Z. Role of M2 macrophages-derived extracellular vesicles in IL-1β-stimulated chondrocyte proliferation and inflammatory responses. Cell Tissue Bank 2023; 24:93-107. [PMID: 35687263 DOI: 10.1007/s10561-022-10016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
M2 macrophages-derived extracellular vesicles (M2-EVs) serve as a tool for the delivery of miRNAs and play an anti-inflammatory role in diseases. This study sought to explore the role of (M2-EVs) in the proliferation and inflammatory responses of IL-1β-stimulated chondrocytes. M2 macrophages were induced and characterized, followed by isolation and characterization of M2-EVs. Chondrocytes were treated with 10 ng/mL IL-1β and co-cultured with M2 macrophages transfected with Cy3-labeled miR-370-3p. Cell viability, TNF (tumor necrosis factor)-α, IL(Interleukin)-18, IL-10, miR-370-3p, and sex-determining region Y-related high-mobility-group box transcription factor 11 (SOX11) mRNA were determined via cell counting assay kit, colony formation, ELISA, and qRT-PCR. The binding relationship between miR-370-3p and SOX11 was testified via the dual-luciferase assay. The functional rescue experiment was designed to confirm the role of SOX11. M2-EVs improved chondrocyte viability and colony formation, lowered TNF-α and IL-18, and elevated IL-10. M2-EVs delivered miR-370-3p into chondrocytes to upregulate miR-370-3p. Upregulation of miR-370-3p in M2-EVs enhanced the protective role of M2-EVs in chondrocytes. miR-370-3p inhibited SOX11 transcription. SOX11 overexpression attenuated the protective role of M2-EVs in chondrocytes. Overall, our findings suggested that M2-EVs promote proliferation and suppress inflammatory responses in IL-1β-stimulated chondrocytes via the miR-370-3p/SOX11 axis.
Collapse
Affiliation(s)
- Weiwei Guo
- Department of Traumatology and Orthopedics, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China.
| | - Li Su
- Department of Traumatology and Orthopedics, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Hao Zhang
- Department of Traumatology and Orthopedics, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| | - Zhanhu Mi
- Department of Traumatology and Orthopedics, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750001, Ningxia Hui Autonomous Region, China
| |
Collapse
|
27
|
Wang J, Zhang Y, Ma T, Wang T, Wen P, Song W, Zhang B. Screening crucial lncRNAs and genes in osteoarthritis by integrated analysis. Adv Rheumatol 2023; 63:7. [PMID: 36849988 DOI: 10.1186/s42358-023-00288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most frequent chronic diseases with high morbidity worldwide, marked by degradation of the cartilage and bone, joint instability, stiffness, joint space stenosis and subchondral sclerosis. Due to the elusive mechanism of osteoarthritis (OA), we aimed to identify potential markers for OA and explore the molecular mechanisms underlying OA. METHODS Expression profiles data of OA were collected from the Gene Expression Omnibus database to identify differentially expressed mRNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs) in OA. Functional annotation and protein-protein interaction (PPI) networks were performed. Then, nearby DEmRNAs of DElncRNAs was obtained. Moreover, GO and KEGG pathway enrichment analysis of nearby DEmRNAs of DElncRNAs was performed. Finally, expression validation of selected mRNAs and lncRNAs was performed by quantitative reverse transcriptase-polymerase chain reaction. RESULTS In total, 2080 DEmRNAs and 664 DElncRNAs were determined in OA. PI3K-Akt signaling pathway, Endocytosis and Rap1 signaling pathway were significantly enriched KEGG pathways in OA. YWHAB, HSPA8, NEDD4L and SH3KBP1 were four hub proteins in PPI network. The AC093484.4/TRPV2 interact pair may be involved in the occurrence and development of OA. CONCLUSION Our study identified several DEmRNAs and DElncRNAs associated with OA. The molecular characters could provide more information for further study on OA.
Collapse
Affiliation(s)
- Jun Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China
| | - Yumin Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China
| | - Tao Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China
| | - Tao Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China
| | - Pengfei Wen
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China
| | - Wei Song
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China.
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road Nanshaomen, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
28
|
MSCs-derived apoptotic extracellular vesicles promote muscle regeneration by inducing Pannexin 1 channel-dependent creatine release by myoblasts. Int J Oral Sci 2023; 15:7. [PMID: 36646698 PMCID: PMC9842731 DOI: 10.1038/s41368-022-00205-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 01/18/2023] Open
Abstract
Severe muscle injury is hard to heal and always results in a poor prognosis. Recent studies found that extracellular vesicle-based therapy has promising prospects for regeneration medicine, however, whether extracellular vesicles have therapeutic effects on severe muscle injury is still unknown. Herein, we extracted apoptotic extracellular vesicles derived from mesenchymal stem cells (MSCs-ApoEVs) to treat cardiotoxin induced tibialis anterior (TA) injury and found that MSCs-ApoEVs promoted muscles regeneration and increased the proportion of multinucleated cells. Besides that, we also found that apoptosis was synchronized during myoblasts fusion and MSCs-ApoEVs promoted the apoptosis ratio as well as the fusion index of myoblasts. Furthermore, we revealed that MSCs-ApoEVs increased the relative level of creatine during myoblasts fusion, which was released via activated Pannexin 1 channel. Moreover, we also found that activated Pannexin 1 channel was highly expressed on the membrane of myoblasts-derived ApoEVs (Myo-ApoEVs) instead of apoptotic myoblasts, and creatine was the pivotal metabolite involved in myoblasts fusion. Collectively, our findings firstly revealed that MSCs-ApoEVs can promote muscle regeneration and elucidated that the new function of ApoEVs as passing inter-cell messages through releasing metabolites from activated Pannexin 1 channel, which will provide new evidence for extracellular vesicles-based therapy as well as improving the understanding of new functions of extracellular vesicles.
Collapse
|
29
|
Li Y, Duan J, Lin W, Liu J. Exosomal miR-93-5p regulated the progression of osteoarthritis by targeting ADAMTS9. Open Med (Wars) 2023; 18:20230668. [PMID: 36941991 PMCID: PMC10024348 DOI: 10.1515/med-2023-0668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Osteoarthritis (OA) is a type of common degenerative joint disorder, in which adipose mesenchymal stem cells (ADSCs) and the secreted exosomes play an important role. The purpose of this study was to investigate the role and mechanism of exosomes derived from ADSCs (ADSC-exos) in OA. The gradient of IL-1β concentration was designed to construct the articular chondrocyte model of arthritic mice. The expression of miR-93-5p and ADAMTS9 in articular chondrocytes was detected by reverse transcription quantitative polymerase chain reaction. Dual luciferase reporter gene assay was performed to verify the interaction between them. Monodansylcadaverine staining was used to visualize the autophagosome formation and cell apoptosis was analyzed by flow cytometry. ADSC-exos were authenticated by transmission electron microscope and western blot assay. miR-93-5p was found to be downregulated in IL-1β-treated articular chondrocytes compared with OA cartilage while ADAMTS9 was upregulated, which was identified as a direct target gene of miR-93-5p. Silencing of ADAMTS9 attenuated the effects of miR-93-5p. Exosomal miR-93-5p can reduce the release of inflammatory factors in mouse arthritis cell models. This study first described the mechanism under that ADSC-exos inhibited inflammation and alleviated OA through the innovative targets miR-93-5p/ADAMTS9 signal axis. This provided a new method for the treatment of OA.
Collapse
Affiliation(s)
- Yachen Li
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, Yunnan, China
| | - Junjun Duan
- Department of Plastic Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weicheng Lin
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, Yunnan, China
| | - Jie Liu
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, Yunnan, China
| |
Collapse
|
30
|
Liu J, Xie G, Lv S, Xiong Q, Xu H. Recent applications of rolling circle amplification in biosensors and DNA nanotechnology. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
Gu J, Rao W, Huo S, Fan T, Qiu M, Zhu H, Chen D, Sheng X. MicroRNAs and long non-coding RNAs in cartilage homeostasis and osteoarthritis. Front Cell Dev Biol 2022; 10:1092776. [PMID: 36582467 PMCID: PMC9793335 DOI: 10.3389/fcell.2022.1092776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
During the last decade, osteoarthritis (OA) has become one of the most prevalent musculoskeletal diseases worldwide. OA is characterized by progressive loss of articular cartilage, abnormal remodeling of subchondral bone, hyperplasia of synovial cells, and growth of osteophytes, which lead to chronic pain and disability. The pathological mechanisms underlying OA initiation and progression are still poorly understood. Non-coding RNAs (ncRNAs) constitute a large portion of the transcriptome that do not encode proteins but function in numerous biological processes. Cumulating evidence has revealed a strong association between the changes in expression levels of ncRNA and the disease progression of OA. Moreover, loss- and gain-of-function studies utilizing transgenic animal models have demonstrated that ncRNAs exert vital functions in regulating cartilage homeostasis, degeneration, and regeneration, and changes in ncRNA expression can promote or decelerate the progression of OA through distinct molecular mechanisms. Recent studies highlighted the potential of ncRNAs to serve as diagnostic biomarkers, prognostic indicators, and therapeutic targets for OA. MiRNAs and lncRNAs are two major classes of ncRNAs that have been the most widely studied in cartilage tissues. In this review, we focused on miRNAs and lncRNAs and provided a comprehensive understanding of their functional roles as well as molecular mechanisms in cartilage homeostasis and OA pathogenesis.
Collapse
Affiliation(s)
- Jingliang Gu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wu Rao
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Tianyou Fan
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minlei Qiu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haixia Zhu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deta Chen
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoping Sheng
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Zhu Y, Dou H, Liu Y, Yu P, Li F, Wang Y, Xiao M. Breast Cancer Exosome-Derived miR-425-5p Induces Cancer-Associated Fibroblast-Like Properties in Human Mammary Fibroblasts by TGF β1/ROS Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5266627. [PMID: 36506936 PMCID: PMC9729028 DOI: 10.1155/2022/5266627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022]
Abstract
The connection between the cellular microenvironment and tumor cells is crucial for tumor progression. However, the process by which normal fibroblasts (NFs) become cancer-associated fibroblasts (CAFs) is unknown, and mounting evidence suggests that some microRNAs (miRNAs) have an important role in converting NFs into CAFs. Breast cancer (BC) has been proven to have enhanced miR-425-5p expression in order to support progression. We discovered that human mammary fibroblasts (HMFs) could uptake BC cell line-derived exosomes to change their properties, promoting the switch to the CAF phenotype and increasing cell motility, as evidenced by an increase in CAF activation-related marker protein expression and cell proliferation, invasion, and migration. Transfection of exosomes is obtained from BC cells, and miR-425-5p inhibitors suppressed the aforementioned effects as well as lowered chemokine levels and gene expression related with proliferation and metastasis. By suppressing the expression of its target gene TGFβRII (TGFβ1 receptor), miR-425-5p enhanced the transition of HMFs to the CAF phenotype. MDA-MB-231 cells and CAFs stimulated by HMF absorption of MDA-MB-23-derived exosomes showed similar proliferation, invasion, migration, and expression of -SMA, FAP, CXCL1, IL-6, TGFβ1, P21, P27, Ki67, vimentin, E-cadherin, N-cadherin, α-catenin, fibronectin, and MMP-2. TGFβ1 overexpression enhanced ROS production. Finally, we found that HMFs transiently transfected with miR-425-5p can promote tumor growth in vivo. Finally, these findings provide fresh insight on miR-425-5p as an important mediator of the interaction between BC cells and stroma.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| | - He Dou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| | - Yuqi Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| | - Pingyang Yu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| | - Fucheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| | - Youyu Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| | - Min Xiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang, China
| |
Collapse
|
33
|
Lu H, Yang Y, Ou S, Qi Y, Li G, He H, Lu F, Li W, Sun H. miRNA-382-5p Carried by Extracellular Vesicles in Osteoarthritis Reduces Cell Viability and Proliferation, and Promotes Cell Apoptosis by Targeting PTEN. DNA Cell Biol 2022; 41:1012-1025. [DOI: 10.1089/dna.2021.0726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Hanyu Lu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yixin Yang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Shuanji Ou
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yong Qi
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Guitao Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Hebei He
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Fanglian Lu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Wenjun Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Hongtao Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
34
|
Construction and functional enrichment analysis of the competitive endogenous RNA regulatory network for nonarteritic anterior ischemic optic neuropathy based on high-throughput sequencing. Funct Integr Genomics 2022; 22:1253-1267. [DOI: 10.1007/s10142-022-00914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
35
|
Chang W, Wang M, Zhang Y, Yu F, Hu B, Goljanek-Whysall K, Li P. Roles of long noncoding RNAs and small extracellular vesicle-long noncoding RNAs in type 2 diabetes. Traffic 2022; 23:526-537. [PMID: 36109347 PMCID: PMC9828071 DOI: 10.1111/tra.12868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 09/14/2022] [Indexed: 01/20/2023]
Abstract
The prevalence of a high-energy diet and a sedentary lifestyle has increased the incidence of type 2 diabetes (T2D). T2D is a chronic disease characterized by high blood glucose levels and insulin resistance in peripheral tissues. The pathological mechanism of this disease is not fully clear. Accumulated evidence has shown that noncoding RNAs have an essential regulatory role in the progression of diabetes and its complications. The roles of small noncoding RNAs, such as miRNAs, in T2D, have been extensively investigated, while the function of long noncoding RNAs (lncRNAs) in T2D has been unstudied. It has been reported that lncRNAs in T2D play roles in the regulation of pancreatic function, peripheral glucose homeostasis and vascular inflammation. In addition, lncRNAs carried by small extracellular vesicles (sEV) were shown to mediate communication between organs and participate in diabetes progression. Some sEV lncRNAs derived from stem cells are being developed as potential therapeutic agents for diabetic complications. In this review, we summarize the current knowledge relating to lncRNA biogenesis, the mechanisms of lncRNA sorting into sEV and the regulatory roles of lncRNAs and sEV lncRNAs in diabetes. Knowledge of lncRNAs and sEV lncRNAs in diabetes will aid in the development of new therapeutic drugs for T2D in the future.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Man Wang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| | - Bin Hu
- The Institute of Medical Sciences (IMS), School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, Nursing and Health Sciences, College of Medicine, National University of Ireland, Galway, Ireland
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Breakthrough of extracellular vesicles in pathogenesis, diagnosis and treatment of osteoarthritis. Bioact Mater 2022; 22:423-452. [PMID: 36311050 PMCID: PMC9588998 DOI: 10.1016/j.bioactmat.2022.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent whole-joint disease that causes disability and pain and affects a patient's quality of life. However, currently, there is a lack of effective early diagnosis and treatment. Although stem cells can promote cartilage repair and treat OA, problems such as immune rejection and tumorigenicity persist. Extracellular vesicles (EVs) can transmit genetic information from donor cells and mediate intercellular communication, which is considered a functional paracrine factor of stem cells. Increasing evidences suggest that EVs may play an essential and complex role in the pathogenesis, diagnosis, and treatment of OA. Here, we introduced the role of EVs in OA progression by influencing inflammation, metabolism, and aging. Next, we discussed EVs from the blood, synovial fluid, and joint-related cells for diagnosis. Moreover, we outlined the potential of modified and unmodified EVs and their combination with biomaterials for OA therapy. Finally, we discuss the deficiencies and put forward the prospects and challenges related to the application of EVs in the field of OA.
Collapse
|
37
|
Wang R, Shiu HT, Lee WYW. Emerging role of lncRNAs in osteoarthritis: An updated review. Front Immunol 2022; 13:982773. [PMID: 36304464 PMCID: PMC9593085 DOI: 10.3389/fimmu.2022.982773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease, which is associated with progressive articular cartilage loss, synovial inflammation, subchondral sclerosis and meniscus injury. The molecular mechanism underlying OA pathogenesis is multifactorial. Long non-coding RNAs (lncRNAs) are non-protein coding RNAs with length more than 200 nucleotides. They have various functions such as modulating transcription and protein activity, as well as forming endogenous small interfering RNAs (siRNAs) and microRNA (miRNA) sponges. Emerging evidence suggests that lncRNAs might be involved in the pathogenesis of OA which opens up a new avenue for the development of new biomarkers and therapeutic strategies. The purpose of this review is to summarize the current clinical and basic experiments related to lncRNAs and OA with a focus on the extensively studied H19, GAS5, MALAT1, XIST and HOTAIR. The potential translational value of these lncRNAs as therapeutic targets for OA is also discussed.
Collapse
Affiliation(s)
- Rongliang Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Ting Shiu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Wayne Yuk Wai Lee,
| |
Collapse
|
38
|
Wang YH, Tsai CH, Liu SC, Chen HT, Chang JW, Ko CY, Hsu CJ, Chang TK, Tang CH. miR-150-5p and XIST interaction controls monocyte adherence: Implications for osteoarthritis therapy. Front Immunol 2022; 13:1004334. [PMID: 36203618 PMCID: PMC9530358 DOI: 10.3389/fimmu.2022.1004334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Recent literature highlights the importance of microRNAs (miRNAs) functioning as diagnostic biomarkers and therapeutic agents in osteoarthritis (OA) and regulators of gene expression. In OA pathogenesis, cell adhesion molecules (CAMs), especially vascular cell adhesion protein 1 (VCAM-1), recruit monocyte infiltration to inflamed synovial tissues and thus accelerate OA progression. Up until now, little has been known about the regulatory mechanisms between miRNAs, long non-coding RNAs (lncRNAs) and VCAM-1 during OA progression. The evidence in this article emphasizes that the functional feature of miR-150-5p is an interaction with the lncRNA X-inactive specific transcript (XIST), which regulates VCAM-1-dependent monocyte adherence in OA synovial fibroblasts (OASFs). Levels of VCAM-1, CD11b (a monocyte marker) and XIST expression were higher in human synovial tissue samples and OASFs, while levels of miR-150-5p were lower in human OA synovial tissue compared with non-OA specimens. XIST enhanced VCAM-1-dependent monocyte adherence to OASFs. Upregulation of miR-150-5p inhibited the effects of XIST upon monocyte adherence. Administration of miR-150-5p effectively ameliorated OA severity in anterior cruciate ligament transection (ACLT) rats. The interaction of miR-150-5p and XIST regulated VCAM-1-dependent monocyte adherence and attenuated OA progression. Our findings suggest that miR-150-5p is a promising small-molecule therapeutic strategy for OA.
Collapse
Affiliation(s)
- Yu-Han Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, New Taipei, Taiwan
- *Correspondence: Chih-Hsin Tang, ; Ting-Kuo Chang,
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- *Correspondence: Chih-Hsin Tang, ; Ting-Kuo Chang,
| |
Collapse
|
39
|
Bellassai N, D'Agata R, Spoto G. Isothermal circular strand displacement-based assay for microRNA detection in liquid biopsy. Anal Bioanal Chem 2022; 414:6431-6440. [PMID: 35879425 PMCID: PMC9411226 DOI: 10.1007/s00216-022-04228-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022]
Abstract
Extracellular miRNAs are promising targets for developing new assays for the early diagnosis and prognosis of diseases based on liquid biopsy. The detection of miRNAs in liquid biopsies is challenged by their short sequence length, low concentration, and interferences with bodily fluid components. Isothermal circular strand displacement polymerization has emerged as a convenient method for nucleic acid amplification and detection. Herein, we describe an innovative strategy for microRNA detection directly from biological fluids based on hairpin probe-assisted isothermal amplification reaction. We designed and optimized the assay to detect target analytes in 1 µL of the complex media's biological matrix using a microfluidic device for the straightforward analysis of multiple samples. We validated the assay to detect circulating miR-127-5p in synovial fluid, recently indicated as a predictive biomarker for osteoarthritis disease. The combined use of a mutant polymerase operating with high yield and a primer incorporating locked nucleic acid nucleosides allowed detection of miR-127-5p with 34 fmol L-1 LOD. We quantified circulating miR-127-5p directly in synovial fluid, thus demonstrating that the assay may be employed for the convenient detection of 4.3 ± 0.5 pmol L-1 concentrated miRNAs in liquid biopsy samples.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- Consorzio Interuniversitario "Istituto Nazionale Biostrutture E Biosistemi", c/o Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, Catania, Italy.
| |
Collapse
|
40
|
Wu Y, Li J, Zeng Y, Pu W, Mu X, Sun K, Peng Y, Shen B. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int J Oral Sci 2022; 14:40. [PMID: 35927232 PMCID: PMC9352673 DOI: 10.1038/s41368-022-00187-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage loss and accounts for a major source of pain and disability worldwide. However, effective strategies for cartilage repair are lacking, and patients with advanced OA usually need joint replacement. Better comprehending OA pathogenesis may lead to transformative therapeutics. Recently studies have reported that exosomes act as a new means of cell-to-cell communication by delivering multiple bioactive molecules to create a particular microenvironment that tunes cartilage behavior. Specifically, exosome cargos, such as noncoding RNAs (ncRNAs) and proteins, play a crucial role in OA progression by regulating the proliferation, apoptosis, autophagy, and inflammatory response of joint cells, rendering them promising candidates for OA monitoring and treatment. This review systematically summarizes the current insight regarding the biogenesis and function of exosomes and their potential as therapeutic tools targeting cell-to-cell communication in OA, suggesting new realms to improve OA management.
Collapse
Affiliation(s)
- Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Mu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kaibo Sun
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
41
|
Fan WJ, Liu D, Pan LY, Wang WY, Ding YL, Zhang YY, Ye RX, Zhou Y, An SB, Xiao WF. Exosomes in osteoarthritis: Updated insights on pathogenesis, diagnosis, and treatment. Front Cell Dev Biol 2022; 10:949690. [PMID: 35959489 PMCID: PMC9362859 DOI: 10.3389/fcell.2022.949690] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2022] [Indexed: 01/09/2023] Open
Abstract
Osteoarthritis (OA) has remained a prevalent public health problem worldwide over the past decades. OA is a global challenge because its specific pathogenesis is unclear, and no effective disease-modifying drugs are currently available. Exosomes are small and single-membrane vesicles secreted via the formation of endocytic vesicles and multivesicular bodies (MVBs), which are eventually released when MVBs fuse with the plasma membrane. Exosomes contain various integral surface proteins derived from cells, intercellular proteins, DNAs, RNAs, amino acids, and metabolites. By transferring complex constituents and promoting macrophages to generate chemokines and proinflammatory cytokines, exosomes function in pathophysiological processes in OA, including local inflammation, cartilage calcification and degradation of osteoarthritic joints. Exosomes are also detected in synovial fluid and plasma, and their levels continuously change with OA progression. Thus, exosomes, specifically exosomal miRNAs and lncRNAs, potentially represent multicomponent diagnostic biomarkers for OA. Exosomes derived from various types of mesenchymal stem cells and other cell or tissue types affect angiogenesis, inflammation, and bone remodeling. These exosomes exhibit promising capabilities to restore OA cartilage, attenuate inflammation, and balance cartilage matrix formation and degradation, thus demonstrating therapeutic potential in OA. In combination with biocompatible and highly adhesive materials, such as hydrogels and cryogels, exosomes may facilitate cartilage tissue engineering therapies for OA. Based on numerous recent studies, we summarized the latent mechanisms and clinical value of exosomes in OA in this review.
Collapse
Affiliation(s)
- Wen-Jin Fan
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Lin-Yuan Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wei-Yang Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi-Lan Ding
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yue-Yao Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Rui-Xi Ye
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yang Zhou
- Department of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yang Zhou, ; Sen-Bo An, ; Wen-Feng Xiao,
| | - Sen-Bo An
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,*Correspondence: Yang Zhou, ; Sen-Bo An, ; Wen-Feng Xiao,
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yang Zhou, ; Sen-Bo An, ; Wen-Feng Xiao,
| |
Collapse
|
42
|
Yang S, Sun M, Zhang X. Protective Effect of Resveratrol on Knee Osteoarthritis and its Molecular Mechanisms: A Recent Review in Preclinical and Clinical Trials. Front Pharmacol 2022; 13:921003. [PMID: 35959426 PMCID: PMC9357872 DOI: 10.3389/fphar.2022.921003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Osteoarthritis (OA) is one of the progressing chronic joint associated with by many complex factors such as age, obesity, and trauma. Knee osteoarthritis (KOA) is the most common type of OA. KOA is characterized by articular cartilage destruction and degeneration, synovial inflammation, and abnormal subchondral bone changes. To date, no practical clinical approach has been able to modify the pathological progression of KOA. Drug therapy is limited to pain control and may lead to serious side effects when taken for a long time. Therefore, searching for safer and more reliable treatments has become necessary. Interestingly, more and more research has focused on natural products, and monomeric compounds derived from natural products have received much attention as drug candidates for KOA treatment. Resveratrol (RES), a natural phenolic compound, has various pharmacological and biological activities, including anti-cancer, anti-apoptotic, and anti-decay. Recently, studies on the effects of RES on maintaining the normal homeostasis of chondrocytes in KOA have received increasing attention, which seems to be attributed to the multi-targeted effects of RES on chondrocyte function. This review summarizes preclinical trials, clinical trials, and emerging tissue engineering studies of RES for KOA and discusses the specific mechanisms by which RES alleviates KOA. A better understanding of the pharmacological role of RES in KOA could provide clinical implications for intervention in the development of KOA.
Collapse
Affiliation(s)
| | - Mingli Sun
- *Correspondence: Mingli Sun, ; Xinan Zhang,
| | | |
Collapse
|
43
|
Wang B, Wang X, Li P, Niu X, Liang X, Liu G, Liu Z, Ge H. Osteosarcoma Cell-Derived Exosomal ELFN1-AS1 Mediates Macrophage M2 Polarization via Sponging miR-138-5p and miR-1291 to Promote the Tumorgenesis of Osteosarcoma. Front Oncol 2022; 12:881022. [PMID: 35785218 PMCID: PMC9248260 DOI: 10.3389/fonc.2022.881022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 12/28/2022] Open
Abstract
BackgroundExosomes play an important role in cell-cell communication by transferring genetic materials such as long non-coding RNAs (lncRNAs) between cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME). Recent studies revealed that lncRNA ELFN1-AS1 could function as an oncogene in many human cancers. However, the role of extracellular lncRNA ELFN1-AS1 in cell-to-cell communication of osteosarcoma (OS) has not been fully investigated.MethodsFunctional studies, including CCK-8, EdU staining and transwell assay were performed to investigate the role of ELFN1-AS1 in the progression of OS. 143B via xenograft mouse model was established to assess the role of ELFN1-AS1 in vivo. In addition, transmission electron microscopy (TEM) and real-time quantitative PCR (RT-qPCR) assay were used to verify the existence of exosomal ELFN1-AS1.ResultsThe level of ELFN1-AS1 was markedly upregulated in patients with advanced OS and in OS cells. In addition, overexpression of ELFN1-AS1 significantly promoted the proliferation, migration and invasion of OS cells, while knockdown of ELFN1-AS1 exhibited the opposite effects. Meanwhile, ELFN1-AS1 could be transferred from OS cells to macrophages via exosomes. Exosomal ELFN1-AS1 from 143B cells was able to promote macrophage M2 polarization, and M2 macrophage in return facilitated OS progression. Mechanistically, overexpression of ELFN1-AS1 upregulated CREB1 level via sponging miR-138-5p and miR-1291 in macrophage via.ConclusionOS cell-derived exosomal ELFN1-AS1 was able to induce macrophage M2 polarization via sponging miR-138-5p and miR-1291, and M2 macrophage notably facilitated the progression of OS. These data suggested that ELFN1-AS1 might serve as a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Bangmin Wang
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xin Wang
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Po Li
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoying Niu
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoxiao Liang
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Guancong Liu
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhiyong Liu
- Department of Bone Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hong Ge
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Hong Ge,
| |
Collapse
|
44
|
The protective effect of icariin on glucocorticoid-damaged BMECs explored by microfluidic organ chip. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Li Z, Jin Q, Sun Y. LINC00941 promoted in vitro progression and glycolysis of laryngocarcinoma by upregulating PKM via activating the PI3K/AKT/mTOR signaling pathway. J Clin Lab Anal 2022; 36:e24406. [PMID: 35588431 PMCID: PMC9280015 DOI: 10.1002/jcla.24406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Background LINC00941 has been proved to be related to various tumors, but its relationship with laryngocarcinoma remains vague. Methods LINC00941 expression in laryngocarcinoma tumor and laryngocarcinoma cells was determined by real time‐quantitative polymerase chain reaction (RT‐qPCR). Besides, the five‐year survival of laryngocarcinoma patients with different LINC00941 expression was analyzed with Kaplan–Meier survival analysis, and the clinical characteristics of laryngocarcinoma patients were also recorded. After transfection, cell viability, cell proliferation, apoptosis, cell cycle, migration, and invasion were detected by cell counting kit‐8 (CCK‐8), colony formation, flow cytometry, cell scratch, and Transwell assays, respectively. Glycolysis was assessed by the colorimetric method. Expressions of proliferation‐associated proteins, migration‐associated proteins, glycolysis‐associated proteins, and phosphatidylinositol 3‐kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signal pathway‐associated proteins were detected by Western blot. Results In laryngocarcinoma tumor tissues and cells, LINC00941 was highly expressed. High expression of LINC00941 decreased the 5‐year survival of laryngocarcinoma patients, and it was positively related to lymph node metastasis and clinical stages. LINC00941 overexpression decreased apoptosis but promoted cell viability, proliferation, cell‐cycle progression, migration, and invasion, and glucose consumption and lactate production in laryngocarcinoma cells. Moreover, LINC00941 overexpression elevated expressions of Ki‐67, PCNA, MMP2, N‐Cadherin, HK2, PFKFB4, and PKM, activated the PI3K/AKT/mTOR signal pathway but reduced E‐Cadherin expression, while LINC00941 silencing had the opposite effects. PKM overexpression reversed the effects of LINC00941 silencing on cellular and glycolytic phenotypes. Conclusion LINC00941 promoted in vitro progression and glycolysis of laryngocarcinoma cells by upregulating PKM via activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhihai Li
- Department of Otorhinolaryngology, Taizhou Municipal Hospital, Taizhou, China
| | - Qiaozhi Jin
- Department of Otorhinolaryngology, Taizhou Municipal Hospital, Taizhou, China
| | - Yana Sun
- Department of Clinical Psychology, Taizhou Municipal Hospital, Taizhou, China
| |
Collapse
|
46
|
Ren J, Li Y, Wuermanbieke S, Hu S, Huang G. N 6-methyladenosine (m 6A) methyltransferase METTL3-mediated LINC00680 accelerates osteoarthritis through m 6A/SIRT1 manner. Cell Death Dis 2022; 8:240. [PMID: 35501316 PMCID: PMC9061755 DOI: 10.1038/s41420-022-00890-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 01/01/2023]
Abstract
Increasing evidence suggest the biological roles of N6-methyladenosine (m6A) and long noncoding RNAs (lncRNAs) in the bone disease, especially osteoarthritis (OA). However, the interaction of m6A and lncRNA in osteoarthritis is still unclear. Here, we found that a m6A-related lncRNA LINC00680 upregulated in the OA tissue and IL-1β-induced isolated primary chondrocytes. Functionally, in IL-1β-induced chondrocytes, silencing of LINC00680 recovered the proliferation and repressed the extracellular matrix (ECM) degradation. Mechanistically, m6A methyltransferase METTL3 combined tithe the m6A site of LINC00680 to up-regulate its expression. Moreover, LINC00680 interacted with SIRT1 mRNA through binding at m6A site on SIRT1 mRNA 3'-UTR, thereby enhancing the stability of SIRT1 mRNA. Overall, these findings exhibited a role of LINC00680/m6A/SIRT1 mRNA complex in chondrocytes. Taken together, the present study intends to uncover the mechanism by which METTL3-mediated LINC00680 accelerates OA progression, which may provide novel insight for OA.
Collapse
Affiliation(s)
- Jiangdong Ren
- Department of Joint Surgery, Center for Orthopaedics Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopaedics Guangdong Province), Tianhe District, Guangzhou, Guangdong Province, China.,Orthopaedics Hospital of Guangdong Province, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yicheng Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | - Shu Hu
- Department of Joint Surgery, Center for Orthopaedics Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopaedics Guangdong Province), Tianhe District, Guangzhou, Guangdong Province, China.,Orthopaedics Hospital of Guangdong Province, Tianhe District, Guangzhou, Guangdong Province, China
| | - Guangxin Huang
- Department of Joint Surgery, Center for Orthopaedics Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopaedics Guangdong Province), Tianhe District, Guangzhou, Guangdong Province, China. .,Orthopaedics Hospital of Guangdong Province, Tianhe District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
47
|
Ball HC, Alejo AL, Samson TK, Alejo AM, Safadi FF. Epigenetic Regulation of Chondrocytes and Subchondral Bone in Osteoarthritis. Life (Basel) 2022; 12:582. [PMID: 35455072 PMCID: PMC9030470 DOI: 10.3390/life12040582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this review is to provide an updated review of the epigenetic factors involved in the onset and development of osteoarthritis (OA). OA is a prevalent degenerative joint disease characterized by chronic inflammation, ectopic bone formation within the joint, and physical and proteolytic cartilage degradation which result in chronic pain and loss of mobility. At present, no disease-modifying therapeutics exist for the prevention or treatment of the disease. Research has identified several OA risk factors including mechanical stressors, physical activity, obesity, traumatic joint injury, genetic predisposition, and age. Recently, there has been increased interest in identifying epigenetic factors involved in the pathogenesis of OA. In this review, we detail several of these epigenetic modifications with known functions in the onset and progression of the disease. We also review current therapeutics targeting aberrant epigenetic regulation as potential options for preventive or therapeutic treatment.
Collapse
Affiliation(s)
- Hope C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Andrew L. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Trinity K. Samson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- GPN Therapeutics, Inc., REDI Zone, Rootstown, OH 44272, USA
| | - Amanda M. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Fayez F. Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (A.L.A.); (T.K.S.); (A.M.A.)
- Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- Department of Orthopaedic Surgery, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
48
|
Khan A, Singh K, Jaiswal S, Raza M, Jasrotia RS, Kumar A, Gurjar AKS, Kumari J, Nayan V, Iquebal MA, Angadi UB, Rai A, Datta TK, Kumar D. Whole-Genome-Based Web Genomic Resource for Water Buffalo (Bubalus bubalis). Front Genet 2022; 13:809741. [PMID: 35480326 PMCID: PMC9035531 DOI: 10.3389/fgene.2022.809741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Water buffalo (Bubalus bubalis), belonging to the Bovidae family, is an economically important animal as it is the major source of milk, meat, and drought in numerous countries. It is mainly distributed in tropical and subtropical regions with a global population of approximately 202 million. The advent of low cost and rapid sequencing technologies has opened a new vista for global buffalo researchers. In this study, we utilized the genomic data of five commercially important buffalo breeds, distributed globally, namely, Mediterranean, Egyptian, Bangladesh, Jaffrarabadi, and Murrah. Since there is no whole-genome sequence analysis of these five distinct buffalo breeds, which represent a highly diverse ecosystem, we made an attempt for the same. We report the first comprehensive, holistic, and user-friendly web genomic resource of buffalo (BuffGR) accessible at http://backlin.cabgrid.res.in/buffgr/, that catalogues 6028881 SNPs and 613403 InDels extracted from a set of 31 buffalo tissues. We found a total of 7727122 SNPs and 634124 InDels distributed in four breeds of buffalo (Murrah, Bangladesh, Jaffarabadi, and Egyptian) with reference to the Mediterranean breed. It also houses 4504691 SSR markers from all the breeds along with 1458 unique circRNAs, 37712 lncRNAs, and 938 miRNAs. This comprehensive web resource can be widely used by buffalo researchers across the globe for use of markers in marker trait association, genetic diversity among the different breeds of buffalo, use of ncRNAs as regulatory molecules, post-transcriptional regulations, and role in various diseases/stresses. These SNPs and InDelscan also be used as biomarkers to address adulteration and traceability. This resource can also be useful in buffalo improvement programs and disease/breed management.
Collapse
Affiliation(s)
- Aamir Khan
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Kalpana Singh
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mustafa Raza
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Animesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anoop Kishor Singh Gurjar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Juli Kumari
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Varij Nayan
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- *Correspondence: Mir Asif Iquebal,
| | - U. B. Angadi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
49
|
Shi F, He R, Zhu J, Lu T, Zhong L. miR-589-3p promoted osteogenic differentiation of periodontal ligament stem cells through targeting ATF1. J Orthop Surg Res 2022; 17:221. [PMID: 35399081 PMCID: PMC8996605 DOI: 10.1186/s13018-022-03000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background An increasing number of studies have shown that dysregulated miR-589-3p is associated with multiple diseases. However, the role of miR-589-3p in osteogenic differentiation of periodontal ligament stem cells (PDLSCs) remains unknown. This study aimed to explore the biological function and potential molecular mechanism of miR-589-3p in osteogenic differentiation of PDLSCs. Methods GSE159508 was downloaded from Gene Expression Omibus (GEO, http://www.ncbi.nlm.nih.gov/geo/). Differentially expressed miRNAs between osteogenic induction PDLSCs versus non-induction PDLSCs were obtained by R software. miR-589-3p mimic and miR-589-3p inhibitor and corresponding negative control were obtained and to identify the role of miR-589-3p in osteogenic differentiation of PDLSCs. ALP staining and ARS were used to evaluate ALP activity and mineralization, respectively. The targeted binding relationship between miR-589-3p and ATF1 was predicted and verified by target prediction analysis and dual-luciferase assay. Furthermore, the functional mechanism based on miR-589-3p and ATF1 in osteogenic differentiation of PDLSCs was further investigated through rescue experiments. Results According to the cut-off criteria with log 2 FC > 1.0 and P < 0.05, 514 differentially expressed miRNAs were identified between osteogenic induction and non-induction PDLSCs, including 309 upregulated miRNAs and 205 downregulated miRNAs. Compared with control PDLSCs, miR-589-3p expression level was notably increased in PDLSCs that underwent osteogenic induction. The overexpression of miR-589-3p promoted the cell viability of PDLSCs, while the low expression of miR-589-3p had the opposite effect. The dual luciferase reporter assay verified that ATF1 was proved to be a direct target of miR-589-3p in PDLSCs. And overexpressed miR-589-3p reduced the expression of ATF1. Overexpression of miR-589-3p enhanced the osteogenic capacity of PDLSCs, as demonstrated by increases in ALP activity, matrix mineralization, and RUNX2, OCN and OSX expression. In addition, the rescue experiments confirmed that overexpressed ATF1 restored the effects of overexpressed miR-589-3p on cell proliferation and osteogenic differentiation of PDLSCs. Conclusion miR-589-3p could down-regulate the expression of ATF1, thereby promote the proliferation and osteogenic differentiation of PDLSCs. This finding may provide a new therapeutic target for molecular therapy of periodontitis. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03000-z.
Collapse
|
50
|
Li L, Bi Y, Diao S, Li X, Yuan T, Xu T, Huang C, Li J. Exosomal LncRNAs and hepatocellular Carcinoma: From basic research to clinical practice. Biochem Pharmacol 2022; 200:115032. [PMID: 35395241 DOI: 10.1016/j.bcp.2022.115032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with poor prognosis. The incidences of HCC and HCC-related deaths have increased over the last several decades. However, the treatment options for advanced HCC are very limited. Long noncoding RNAs (lncRNAs) wrapped in exosomes can change the expression of their target genes in recipient cells, thereby regulating the behavior of recipient cells. Increasing evidence has demonstrated that there is a correlation between the activation of exosomal lncRNAs and the development of HCC. In this review article, we highlighted the functions of exosomal lncRNAs in the development of HCC, showing that exosomal lncRNAs play a vital role in the growth and progression of HCC and are targets for HCC.
Collapse
Affiliation(s)
- Liangyun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Yihui Bi
- The Second Affiliated Hospital of Anhui Medical University, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Tong Yuan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China.
| |
Collapse
|