1
|
Sokal P, Palus D, Jabłońska M, Puk O, Kieronska-Siwak S. Spinal Cord Stimulation for Central Neuropathic Pain After Spinal Cord Injury: A Single-Center Case Series. J Pain Res 2024; 17:2029-2035. [PMID: 38881761 PMCID: PMC11177860 DOI: 10.2147/jpr.s462587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose Central neuropathic pain (CNP) following spinal cord injury (SCI) presents a formidable therapeutic challenge, affecting over 50% of the patients post-SCI. For those who experience CNP, conventional treatments often prove insufficient. Spinal cord stimulation (SCS) emerges as a potential intervention for chronic pain after SCI that is unresponsive to pharmacotherapy and supportive measures. However, the efficacy of SCS in alleviating CNP is notably limited. The objective of our study was to evaluate novel stimulation paradigms in SCS for patients with severe CNP after SCI, based on our extensive experience. Patients and Methods From a pool of 112 patients treated with SCS for chronic neuropathic pain in the Department of Neurosurgery and Neurology, we selected eight individuals (4 males and 4 females) with CNP for our case series. Burst and high frequency SCS was applied. The assessment involved utilizing the Numeric Rating Scale (NRS), the Neuropathic Pain Symptom Inventory (NPSI), and the EQ-5D quality of life scale before surgery and during a 12-month follow-up period. Results Over the course of the one-year follow-up, only two patients experienced satisfactory relief from pain, demonstrating the effectiveness of the stimulation. Moreover, high-frequency and burst SCS failed to show improvement in the remaining six patients. Conclusion Our findings suggest that, despite the incorporation of new stimulation paradigms such as burst stimulation and high-frequency stimulation, SCS does not exhibit significant effectiveness in treating neuropathic pain in patients after SCI. These findings highlight the ongoing challenge of treating CNP and emphasize the importance of investigating alternative therapeutic strategies for this group.
Collapse
Affiliation(s)
- Paweł Sokal
- Department of Neurosurgery and Neurology, Faculty of Health Sciences, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, 85-168, Poland
| | - Damian Palus
- Department of Neurosurgery and Neurology, Faculty of Health Sciences, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, 85-168, Poland
| | - Magdalena Jabłońska
- Doctoral School Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, 85-168, Poland
| | - Oskar Puk
- Doctoral School Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, 85-168, Poland
| | - Sara Kieronska-Siwak
- Department of Neurosurgery and Neurology, Faculty of Health Sciences, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, 85-168, Poland
| |
Collapse
|
2
|
Fu Y, Sun L, Zhu F, Xia W, Wen T, Xia R, Yu X, Xu D, Peng C. Ectopic expression of Nav1.7 in spinal dorsal horn neurons induced by NGF contributes to neuropathic pain in a mouse spinal cord injury model. Front Mol Neurosci 2023; 16:1091096. [PMID: 36937049 PMCID: PMC10020601 DOI: 10.3389/fnmol.2023.1091096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/25/2023] [Indexed: 03/06/2023] Open
Abstract
Neuropathic pain (NP) induced by spinal cord injury (SCI) often causes long-term disturbance for patients, but the mechanisms behind remains unclear. Here, our study showed SCI-induced ectopic expression of Nav1.7 in abundant neurons located in deep and superficial laminae layers of the spinal dorsal horn (SDH) and upregulation of Nav1.7 expression in dorsal root ganglion (DRG) neurons in mice. Pharmacologic studies demonstrated that the efficacy of the blood-brain-barrier (BBB) permeable Nav1.7 inhibitor GNE-0439 for attenuation of NP in SCI mice was significantly better than that of the BBB non-permeable Nav1.7 inhibitor PF-05089771. Moreover, more than 20% of Nav1.7-expressing SDH neurons in SCI mice were activated to express FOS when there were no external stimuli, suggesting that the ectopic expression of Nav1.7 made SDH neurons hypersensitive and Nav1.7-expressing SDH neurons participated in central sensitization and in spontaneous pain and/or walking-evoked mechanical pain. Further investigation showed that NGF, a strong activator of Nav1.7 expression, and its downstream JUN were upregulated after SCI in SDH neurons with similar distribution patterns and in DRG neurons too. In conclusion, our findings showed that the upregulation of Nav1.7 was induced by SCI in both SDH and DRG neurons through increased expression of NGF/JUN, and the inhibition of Nav1.7 in both peripheral and spinal neurons alleviated mechanical pain in SCI mice. These data suggest that BBB permeable Nav1.7 blockers might relieve NP in patients with SCI and that blocking the upregulation of Nav1.7 in the early stage of SCI via selective inhibition of the downstream signaling pathways of NGF or Nav1.7-targeted RNA drugs could be a strategy for therapy of SCI-induced NP.
Collapse
Affiliation(s)
- Yan Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Liting Sun
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Fengting Zhu
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
- Pre-clinical College, Dali University, Dali, Yunnan, China
| | - Wei Xia
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Ting Wen
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Ruilong Xia
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Xin Yu
- Pre-clinical College, Dali University, Dali, Yunnan, China
| | - Dan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- *Correspondence: Changgeng Peng, ; Dan Xu,
| | - Changgeng Peng
- The First Rehabilitation Hospital of Shanghai, Brain and Spinal Cord Innovation Research Center, School of Medicine, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
- *Correspondence: Changgeng Peng, ; Dan Xu,
| |
Collapse
|
3
|
Li S, Li J, Xu H, Liu Y, Yang T, Yuan H. Progress in the efficacy and mechanism of spinal cord stimulation in neuropathological pain. IBRAIN 2022; 8:23-36. [PMID: 37786421 PMCID: PMC10529196 DOI: 10.1002/ibra.12020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 10/04/2023]
Abstract
Neuropathic pain (NP) is a long-term recurrent disease caused by somatosensory nervous system injury, with spontaneous pain, hyperalgesia, ectopic pain, and paresthesia as the main clinical manifestations. It adversely affects patients' quality of life. NP treatments often include medication, physical therapy, and invasive therapy; the first two therapies are generally ineffective for some NP patients. These patients sometimes rely on invasive therapy to alleviate pain. Spinal cord stimulation (SCS) is a very effective therapeutic method. SCS is a neuroregulatory method that involves placing the electrodes on the corresponding painful spinal cords. Pain is greatly alleviated after SCS. SCS has been proven to be an effective therapeutic method for the treatment of neurological pain. Furthermore, SCS provides a feasible approach for patients with unsuccessful drug treatment. This paper reviews the relevant literature of spinal cord electrical stimulation, focusing on the mechanism of action, clinical application, clinical efficacy and technical progress of spinal cord electrical stimulation. SCS is widely used in the treatment of NP diseases such as postherpetic neuralgia, back surgery failure syndrome, and phantom limb pain. With advancements in science and technology, tremendous progress has also been made in the spinal cord electrical stimulation method and good momentum has been maintained.
Collapse
Affiliation(s)
- Shun‐Lian Li
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Jing Li
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Hui‐Chan Xu
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Yu‐Cong Liu
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Ting‐Ting Yang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Hao Yuan
- School of Basic MedicineKunming Medical UniversityKunmingYunnanChina
- Department of Spine SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
4
|
Spinal Cord Stimulation and Treatment of Peripheral or Central Neuropathic Pain: Mechanisms and Clinical Application. Neural Plast 2021; 2021:5607898. [PMID: 34721569 PMCID: PMC8553441 DOI: 10.1155/2021/5607898] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord stimulation (SCS) as an evidence-based interventional treatment has been used and approved for clinical use in a variety of pathological states including peripheral neuropathic pain; however, until now, it has not been used for the treatment of spinal cord injury- (SCI-) induced central neuropathic pain. This paper reviews the underlying mechanisms of SCS-induced analgesia and its clinical application in the management of peripheral and central neuropathic pain. Evidence from recent research publications indicates that nociceptive processing at peripheral and central sensory systems is thought to be modulated by SCS through (i) inhibition of the ascending nociceptive transmission by the release of analgesic neurotransmitters such as GABA and endocannabinoids at the spinal dorsal horn; (ii) facilitation of the descending inhibition by release of noradrenalin, dopamine, and serotonin acting on their receptors in the spinal cord; and (iii) activation of a variety of supraspinal brain areas related to pain perception and emotion. These insights into the mechanisms have resulted in the clinically approved use of SCS in peripheral neuropathic pain states like Complex Regional Pain Syndrome (CRPS) and Failed Back Surgery Syndrome (FBSS). However, the mechanisms underlying SCS-induced pain relief in central neuropathic pain are only partly understood, and more research is needed before this therapy can be implemented in SCI patients with central neuropathic pain.
Collapse
|