1
|
Kadam US, Deshmukh R, Tian L. Editorial: RNA plasticity: novel structures, shapes, modifications, and functions. FRONTIERS IN PLANT SCIENCE 2023; 14:1265867. [PMID: 37767300 PMCID: PMC10520274 DOI: 10.3389/fpls.2023.1265867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Affiliation(s)
- Ulhas S. Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Li Tian
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
2
|
Borșa RM, Toma V, Onaciu A, Moldovan CS, Mărginean R, Cenariu D, Știufiuc GF, Dinu CM, Bran S, Opriș HO, Văcăraș S, Onișor-Gligor F, Sentea D, Băciuț MF, Iuga CA, Știufiuc RI. Developing New Diagnostic Tools Based on SERS Analysis of Filtered Salivary Samples for Oral Cancer Detection. Int J Mol Sci 2023; 24:12125. [PMID: 37569501 PMCID: PMC10418512 DOI: 10.3390/ijms241512125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer still represents one of the biggest challenges in current medical practice. Among different types of cancer, oral cancer has a huge impact on patients due to its great visibility, which is more likely to create social stigma and increased anxiety. New early diagnose methods are still needed to improve treatment efficiency and patients' life quality. Raman/SERS (Surface Enhanced Raman Spectroscopy) spectroscopy has a unique and powerful potential for detecting specific molecules that can become priceless biomarkers in different pathologies, such as oral cancer. In this study, a batch of saliva samples obtained from a group of 17 patients with oro-maxillofacial pathologies compared with saliva samples from 18 healthy donors using the aforementioned methods were evaluated. At the same time, opiorphin, potassium thiocyanate and uric acid were evaluated as potential specific biomarkers for oro-maxillofacial pathologies using multivariate analysis. A careful examination of SERS spectra collected on saliva samples showed that the spectra are dominated by the vibrational bands of opiorphin, potassium thiocyanate and uric acid. Given the fact that all these small molecules are found in very small amounts, we filtrated all the samples to get rid of large molecules and to improve our analysis. By using solid plasmonic substrates, we were able to gain information about molecular concentration and geometry of interaction. On the other hand, the multivariate analysis of the salivary spectra contributed to developing a new detection method for oral cancer.
Collapse
Affiliation(s)
- Rareș-Mario Borșa
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Valentin Toma
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Anca Onaciu
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Cristian-Silviu Moldovan
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Radu Mărginean
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | - Diana Cenariu
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
| | | | - Cristian-Mihail Dinu
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Simion Bran
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Horia-Octavian Opriș
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Sergiu Văcăraș
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Florin Onișor-Gligor
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Dorin Sentea
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Mihaela-Felicia Băciuț
- Dental Medicine Faculty, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania; (R.-M.B.); (C.-M.D.); (S.B.); (H.-O.O.); (S.V.); (F.O.-G.); (M.-F.B.)
- Department of Maxillofacial Surgery and Implantology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Iuliu Hossu 37, 400029 Cluj-Napoca, Romania
- County Emergency Hospital Cluj, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Cristina-Adela Iuga
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| | - Rareș-Ionuț Știufiuc
- Research Center for Advanced Medicine—MedFuture, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 4-6, 400337 Cluj-Napoca, Romania; (V.T.); (A.O.); (C.-S.M.); (R.M.); (D.C.); (C.-A.I.)
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
- TRANSCEND Research Center, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
3
|
Berus SM, Nowicka AB, Wieruszewska J, Niciński K, Kowalska AA, Szymborski TR, Dróżdż I, Borowiec M, Waluk J, Kamińska A. SERS Signature of SARS-CoV-2 in Saliva and Nasopharyngeal Swabs: Towards Perspective COVID-19 Point-of-Care Diagnostics. Int J Mol Sci 2023; 24:ijms24119706. [PMID: 37298658 DOI: 10.3390/ijms24119706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, the intrinsic surface-enhanced Raman spectroscopy (SERS)-based approach coupled with chemometric analysis was adopted to establish the biochemical fingerprint of SARS-CoV-2 infected human fluids: saliva and nasopharyngeal swabs. The numerical methods, partial least squares discriminant analysis (PLS-DA) and support vector machine classification (SVMC), facilitated the spectroscopic identification of the viral-specific molecules, molecular changes, and distinct physiological signatures of pathetically altered fluids. Next, we developed the reliable classification model for fast identification and differentiation of negative CoV(-) and positive CoV(+) groups. The PLS-DA calibration model was described by a great statistical value-RMSEC and RMSECV below 0.3 and R2cal at the level of ~0.7 for both type of body fluids. The calculated diagnostic parameters for SVMC and PLS-DA at the stage of preparation of calibration model and classification of external samples simulating real diagnostic conditions evinced high accuracy, sensitivity, and specificity for saliva specimens. Here, we outlined the significant role of neopterin as the biomarker in the prediction of COVID-19 infection from nasopharyngeal swab. We also observed the increased content of nucleic acids of DNA/RNA and proteins such as ferritin as well as specific immunoglobulins. The developed SERS for SARS-CoV-2 approach allows: (i) fast, simple and non-invasive collection of analyzed specimens; (ii) fast response with the time of analysis below 15 min, and (iii) sensitive and reliable SERS-based screening of COVID-19 disease.
Collapse
Affiliation(s)
- Sylwia M Berus
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ariadna B Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Wieruszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Niciński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aneta A Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz R Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Łódź, Pomorska 251, 92-213 Łódź, Poland
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Łódź, Pomorska 251, 92-213 Łódź, Poland
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Shinde H, Dudhate A, Kadam US, Hong JC. RNA methylation in plants: An overview. FRONTIERS IN PLANT SCIENCE 2023; 14:1132959. [PMID: 36938064 PMCID: PMC10014531 DOI: 10.3389/fpls.2023.1132959] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
RNA methylation is an important post-transcriptional modification that influences gene regulation. Over 200 different types of RNA modifications have been identified in plants. In animals, the mystery of RNA methylation has been revealed, and its biological role and applications have become increasingly clear. However, RNA methylation in plants is still poorly understood. Recently, plant science research on RNA methylation has advanced rapidly, and it has become clear that RNA methylation plays a critical role in plant development. This review summarizes current knowledge on RNA methylation in plant development. Plant writers, erasers, and readers are highlighted, as well as the occurrence, methods, and software development in RNA methylation is summarized. The most common and abundant RNA methylation in plants is N6-methyladenosine (m6A). In Arabidopsis, mutations in writers, erasers, and RNA methylation readers have affected the plant's phenotype. It has also been demonstrated that methylated TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1-messenger RNA moves from shoot to root while unmethylated TCTP1-mRNA does not. Methylated RNA immunoprecipitation, in conjunction with next-generation sequencing, has been a watershed moment in plant RNA methylation research. This method has been used successfully in rice, Arabidopsis, Brassica, and maize to study transcriptome-wide RNA methylation. Various software or tools have been used to detect methylated RNAs at the whole transcriptome level; the majority are model-based analysis tools (for example, MACS2). Finally, the limitations and future prospects of methylation of RNA research have been documented.
Collapse
Affiliation(s)
- Harshraj Shinde
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Ambika Dudhate
- Sequencing and Genome Discovery Center, Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Ulhas S. Kadam
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju-daero, Jinju, Gyeongnam, Republic of Korea
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju-daero, Jinju, Gyeongnam, Republic of Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Hinge VR, Shaikh IM, Chavhan RL, Deshmukh AS, Shelake RM, Ghuge SA, Dethe AM, Suprasanna P, Kadam US. Assessment of genetic diversity and volatile content of commercially grown banana (Musa spp.) cultivars. Sci Rep 2022; 12:7979. [PMID: 35562398 PMCID: PMC9106755 DOI: 10.1038/s41598-022-11992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Banana is an important fruit crop in the tropics and subtropics; however, limited information on biomarkers and signature volatiles is available for selecting commercial cultivars. Clonal fidelity is a major contributor to banana yield and aroma; however, there are no useful biomarkers available to validate clonal fidelity. In this study, we performed the molecular profiling of 20 banana cultivars consisting of diploid (AA or AB) and triploid (AAA or AAB or ABB) genomic groups. We screened 200 molecular markers, of which 34 markers (11 RAPD, 11 ISSR, and 12 SSR) yielded unequivocally scorable biomarker profiles. About 75, 69, and 24 allelic loci per marker were detected for RAPD, ISSR, and SSR markers, respectively. The statistical analysis of molecular variance (AMOVA) exhibited a high genetic difference of 77% with a significant FST value of 0.23 (p < 0.001). Interestingly, the UBC-858 and SSR CNMPF-13 markers were unique to Grand Nain and Ardhapuri cultivars, respectively, which could be used for clonal fidelity analysis. Furthermore, the analysis of banana fruit volatilome using headspace solid-phase microextraction-gas chromatography-tandem mass spectrometry (HS-SPME-GCMS) revealed a total of fifty-four volatile compounds in nine banana cultivars with 56% of the total volatile compounds belonging to the ester group as the significant contributor of aroma. The study assumes significance with informative biomarkers and signature volatiles which could be helpful in breeding and for the authentic identification of commercial banana cultivars.
Collapse
Affiliation(s)
- Vidya R Hinge
- Department of Plant Biotechnology, Vilasrao Deshmukh College of Agricultural Biotechnology (Vasantrao Naik Marathwada Agricultural University, Parbhani), Latur, Maharashtra, India
| | - Irfan M Shaikh
- Department of Plant Biotechnology, Vilasrao Deshmukh College of Agricultural Biotechnology (Vasantrao Naik Marathwada Agricultural University, Parbhani), Latur, Maharashtra, India
| | - Rahul L Chavhan
- Department of Plant Biotechnology, Vilasrao Deshmukh College of Agricultural Biotechnology (Vasantrao Naik Marathwada Agricultural University, Parbhani), Latur, Maharashtra, India
| | - Abhijit S Deshmukh
- Department of Plant Biotechnology, Vilasrao Deshmukh College of Agricultural Biotechnology (Vasantrao Naik Marathwada Agricultural University, Parbhani), Latur, Maharashtra, India
| | - Rahul Mahadev Shelake
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Sandip A Ghuge
- Agricultural Research Organization (ARO), The Volcani Institute, P. O. Box 15159, 7505101, Rishon LeZion, Israel
| | - Amol M Dethe
- Department of Plant Biotechnology, Vilasrao Deshmukh College of Agricultural Biotechnology (Vasantrao Naik Marathwada Agricultural University, Parbhani), Latur, Maharashtra, India
| | - Penna Suprasanna
- Homi Bhabha National Institute (HBNI) and Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Mumbai, India
| | - Ulhas Sopanrao Kadam
- Department of Plant Biotechnology, Vilasrao Deshmukh College of Agricultural Biotechnology (Vasantrao Naik Marathwada Agricultural University, Parbhani), Latur, Maharashtra, India. .,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
6
|
Trinh KH, Kadam US, Rampogu S, Cho Y, Yang KA, Kang CH, Lee KW, Lee KO, Chung WS, Hong JC. Development of novel fluorescence-based and label-free noncanonical G4-quadruplex-like DNA biosensor for facile, specific, and ultrasensitive detection of fipronil. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127939. [PMID: 34893377 DOI: 10.1016/j.jhazmat.2021.127939] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Fipronil is a broad-spectrum insecticide widely used in agriculture and residential areas; its indiscriminate use leads to environmental pollution and poses health hazards. Early detection of fipronil is critical to prevent the deleterious effects. However, current insecticide analysis methods such as HPLC, LC/MS, and GC/MS are incompetent; they are costly, immobile, time-consuming, laborious, and need skilled technicians. Hence, a sensitive, specific, and cheap biosensor are essential to containing the contamination. Here, we designed two novel biosensors-the first design relied on fluorescent labeling/quenching, while the second sensor focused on label-free detection using Thioflavin T displacement. Altogether, we identified four candidate aptamers, predicted secondary structures, and performed 3D molecular modeling to predict the binding pocket of fipronil in FiPA6B aptamer. Furthermore, the aptameric sensors showed high sensitivity to fipronil of sub-ppb level LOD, attributed to stringent experimental design. The biosensors displayed high specificity against other phenylpyrazole insecticides and demonstrated robust sensitivity for fipronil in real samples like cabbage and cucumber. Notably, to the best of our knowledge, this is the first demonstration of noncanonical G4-quadruplex-like aptamer binding to fipronil, verified using CD spectroscopy. Such aptasensors possess considerable potential for real-time measurements of hazardous insecticides as point-of-care technology.
Collapse
Affiliation(s)
- Kien Hong Trinh
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi City 12400, Vietnam
| | - Ulhas Sopanrao Kadam
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Shailima Rampogu
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Yuhan Cho
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Kyung-Ae Yang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Chang Ho Kang
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Keun-Woo Lee
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Woo Sik Chung
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Life Science and Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam 52828, Republic of Korea; Division of Plant Sciences, University of Missouri, Columbia, Missouri, MO 65211, USA.
| |
Collapse
|
7
|
Farber C, Kurouski D. Raman Spectroscopy and Machine Learning for Agricultural Applications: Chemometric Assessment of Spectroscopic Signatures of Plants as the Essential Step Toward Digital Farming. FRONTIERS IN PLANT SCIENCE 2022; 13:887511. [PMID: 35557733 PMCID: PMC9087799 DOI: 10.3389/fpls.2022.887511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/05/2022] [Indexed: 05/07/2023]
Abstract
A growing body of evidence suggests that Raman spectroscopy (RS) can be used for diagnostics of plant biotic and abiotic stresses. RS can be also utilized for identification of plant species and their varieties, as well as assessment of the nutritional content and commercial values of seeds. The power of RS in such cases to a large extent depends on chemometric analyses of spectra. In this work, we critically discuss three major approaches that can be used for advanced analyses of spectroscopic data: summary statistics, statistical testing and chemometric classification. On the example of Raman spectra collected from roses, we demonstrate the outcomes and the potential of all three types of spectral analyses. We anticipate that our findings will help to design the most optimal spectral processing and preprocessing that is required to achieved the desired results. We also expect that reported collection of results will be useful to all researchers who work on spectroscopic analyses of plant specimens.
Collapse
Affiliation(s)
- Charles Farber
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Molecular and Environmental Plant Science, Texas A&M University, College Station, TX, United States
- *Correspondence: Dmitry Kurouski,
| |
Collapse
|
8
|
Trinh KH, Kadam US, Song J, Cho Y, Kang CH, Lee KO, Lim CO, Chung WS, Hong JC. Novel DNA Aptameric Sensors to Detect the Toxic Insecticide Fenitrothion. Int J Mol Sci 2021; 22:ijms221910846. [PMID: 34639187 PMCID: PMC8509669 DOI: 10.3390/ijms221910846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
Fenitrothion is an insecticide belonging to the organophosphate family of pesticides that is widely used around the world in agriculture and living environments. Today, it is one of the most hazardous chemicals that causes severe environmental pollution. However, detection of fenitrothion residues in the environment is considered a significant challenge due to the small molecule nature of the insecticide and lack of molecular recognition elements that can detect it with high specificity. We performed in vitro selection experiments using the SELEX process to isolate the DNA aptamers that can bind to fenitrothion. We found that newly discovered DNA aptamers have a strong ability to distinguish fenitrothion from other organophosphate insecticides (non-specific targets). Furthermore, we identified a fenitrothion-specific aptamer; FenA2, that can interact with Thioflavin T (ThT) to produce a label-free detection mode with a Kd of 33.57 nM (9.30 ppb) and LOD of 14 nM (3.88 ppb). Additionally, the FenA2 aptamer exhibited very low cross-reactivity with non-specific targets. This is the first report showing an aptamer sensor with a G4-quadruplex-like structure to detect fenitrothion. Moreover, these aptamers have the potential to be further developed into analytical tools for real-time detection of fenitrothion from a wide range of samples.
Collapse
Affiliation(s)
- Kien Hong Trinh
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi City 12400, Vietnam
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Jinnan Song
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Yuhan Cho
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Chang Ho Kang
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Kyun Oh Lee
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Chae Oh Lim
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Woo Sik Chung
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
| | - Jong Chan Hong
- Division of Life Science and Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (K.H.T.); (U.S.K.); (J.S.); (Y.C.); (C.H.K.); (K.O.L.); (C.O.L.); (W.S.C.)
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
9
|
Vega-Vásquez P, Mosier NS, Irudayaraj J. Nanoscale Drug Delivery Systems: From Medicine to Agriculture. Front Bioeng Biotechnol 2020; 8:79. [PMID: 32133353 PMCID: PMC7041307 DOI: 10.3389/fbioe.2020.00079] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/29/2020] [Indexed: 12/29/2022] Open
Abstract
The main challenges in drug delivery systems are to protect, transport and release biologically active compounds at the right time in a safe and reproducible manner, usually at a specific target site. In the past, drug nano-carriers have contributed to the development of precision medicine and to a lesser extent have focused on its inroads in agriculture. The concept of engineered nano-carriers may be a promising route to address confounding challenges in agriculture that could perhaps lead to an increase in crop production while reducing the environmental impact associated with crop protection and food production. The main objective of this review is to contrast the advantages and disadvantages of different types of nanoparticles and nano-carriers currently used in the biomedical field along with their fabrication methods to discuss the potential use of these technologies at a larger scale in agriculture. Here we explain what is the problem that nano-delivery systems intent to solve as a technological platform and describe the benefits this technology has brought to medicine. Also here we highlight the potential drawbacks that this technology may face during its translation to agricultural applications, based on the lessons learned so far from its use for biomedical purposes. We discuss not only the characteristics of an ideal nano-delivery system, but also the potential constraints regarding the fabrication including technical, environmental, and legal aspects. A key motivation is to evaluate the potential use of these systems in agriculture, especially in the area of plant breeding, growth promotion, disease control, and post-harvest quality control. Further, we highlight the importance of a rational design of nano-carriers and identify current research gaps to enable scale-up relevant to applications in the treatment of plant diseases, controlled release of fertilizers, and plant breeding.
Collapse
Affiliation(s)
- Pablo Vega-Vásquez
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
| | - Nathan S. Mosier
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
| | - Joseph Irudayaraj
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IL, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
10
|
Kadam US, Shelake RM, Chavhan RL, Suprasanna P. Concerns regarding 'off-target' activity of genome editing endonucleases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 131:22-30. [PMID: 29653762 DOI: 10.1016/j.plaphy.2018.03.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 05/15/2023]
Abstract
Genome editing (GE) tools ensure targeted mutagenesis and sequence-specific modification in plants using a wide resource of customized endonucleases; namely, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), and the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) system. Among these, in recent times CRISPR/Cas9 has been widely used in functional genomics and plant genetic modification. A significant concern in the application of GE tools is the occurrence of 'off-target' activity and induced mutations, which may impede functional analysis and gene activity studies. Moreover, the 'off-target' activity results in either not reported or unknown, difficult to detect, produce non-quantifiable cellular signaling and physiological effects. In the past few years, several experimental methods have been developed to identify undesired mutations and to curtail 'off-target' cleavage. Improvement in target specificity and minimizing 'off-target' activity will offer better applications of GE technology in plant biology and crop improvement.
Collapse
Affiliation(s)
- Ulhas Sopanrao Kadam
- VD College of Agricultural Biotechnology, Latur, Maharashtra, India; Max-Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Rahul Mahadev Shelake
- Plant Molecular Biology & Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Rahul L Chavhan
- VD College of Agricultural Biotechnology, Latur, Maharashtra, India
| | - Penna Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
| |
Collapse
|
11
|
Kadam US, Chavhan RL, Schulz B, Irudayaraj J. Single molecule Raman spectroscopic assay to detect transgene from GM plants. Anal Biochem 2017; 532:60-63. [DOI: 10.1016/j.ab.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023]
|
12
|
Kadam US, Schulz B, Irudayaraj JMK. Multiplex single-cell quantification of rare RNA transcripts from protoplasts in a model plant system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1187-1195. [PMID: 28301688 DOI: 10.1111/tpj.13537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 05/23/2023]
Abstract
Here we demonstrate multiplex and simultaneous detection of four different rare RNA species from plant, Arabidopsis thaliana, using surface-enhanced Raman spectroscopy (SERS) and gold nanoprobes at single-cell resolution. We show the applicability of nanoparticle-based Raman spectroscopic sensor to study intracellular RNA copies. First, we demonstrate that gold-nanoparticles decorated with Raman probes and carrying specific nucleic acid probe sequences can be uptaken by the protoplasts. We confirm the internalization of gold nanoprobes by transmission electron microscopy, inductively-coupled plasma-mass spectrometry and fluorescence imaging. Second, we show the utility of a SERS platform to monitor individual alternatively spliced (AS) variants and miRNA copies within single cells. Finally, the distinctive spectral features of Raman-active dyes were exploited for multiplex analysis of AtPTB2, AtDCL2, miR156a and miR172a. Furthermore, single-cell studies were validated by in vitro quantification and evaluation of nanotoxicity of gold probes. Raman tag functionalized gold nanosensors yielded an approach for the tracking of rare RNAs within the protoplasts. The SERS-based approach for quantification of RNAs has the capability to be a highly sensitive, accurate and discerning method for single-cell studies including AS variants quantification and rare miRNA detection in specific plant species.
Collapse
Affiliation(s)
- Ulhas S Kadam
- VD College of Agricultural Biotechnology (VNMKV), Latur, Maharashtra, 413512, India
- Agricultural and Biological Engineering, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center at Discovery Park, West Lafayette, IN, 47907, USA
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Burkhard Schulz
- Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Joseph M K Irudayaraj
- Agricultural and Biological Engineering, West Lafayette, IN, 47907, USA
- Bindley Bioscience Center at Discovery Park, West Lafayette, IN, 47907, USA
| |
Collapse
|
13
|
Liu J, Cho IH, Cui Y, Irudayaraj J. Second harmonic super-resolution microscopy for quantification of mRNA at single copy sensitivity. ACS NANO 2014; 8:12418-27. [PMID: 25494326 PMCID: PMC4334232 DOI: 10.1021/nn505096t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell-specific information on the quantity and localization of key mRNAs at single copy sensitivity in single cells is critical for evaluating basic cellular process, disease risk, and efficacy of therapy. Quantification of overexpressed mRNAs beyond the diffraction limit is constrained by the optical property of the probes and microscopy techniques. In this report, nanosized barium titanium oxide (BaTiO3, BTO) crystals were utilized as probes for mRNA quantification by a second harmonic super-resolution microscopy (SHaSM). The SHaSM was able to detect a single copy of the human epidermal growth factor receptor 2 (Her2) mRNA at a resolution of 55.6 nm with the ability to resolve multiple mRNA copies in a diffraction-limited spot. Her2 mRNA per cell was counted in SK-BR-3, MCF-7, and HeLa cell lines as 595±79.1, 38.9±8.26, and 1.5±2.8, respectively. Our single-cell quantification results were validated with the fluorescence in situ hybridization studies and quantitative PCR, showing better specificity and selectivity over current single-molecule approaches for transcript detection. The SHaSM is expected to have an upper limit of resolving ∼10(4) transcripts in a single cell with the ability to monitor intracellular transcriptional dynamics at video rate. The developed approach has strong potential in clinical research and in the early diagnosis of life-threatening diseases such as cancer.
Collapse
|
14
|
Kadam US, Schulz B, lrudayaraj J. Detection and quantification of alternative splice sites in Arabidopsis genes AtDCL2 and AtPTB2 with highly sensitive surface enhanced Raman spectroscopy (SERS) and gold nanoprobes. FEBS Lett 2014; 588:1637-43. [DOI: 10.1016/j.febslet.2014.02.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/28/2014] [Indexed: 11/30/2022]
|