1
|
Kumar T, Wang JG, Xu CH, Lu X, Mao J, Lin XQ, Kong CY, Li CJ, Li XJ, Tian CY, Ebid MHM, Liu XL, Liu HB. Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1739. [PMID: 38999579 PMCID: PMC11244436 DOI: 10.3390/plants13131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Sugarcane, a vital cash crop, contributes significantly to the world's sugar supply and raw materials for biofuel production, playing a significant role in the global sugar industry. However, sustainable productivity is severely hampered by biotic and abiotic stressors. Genetic engineering has been used to transfer useful genes into sugarcane plants to improve desirable traits and has emerged as a basic and applied research method to maintain growth and productivity under different adverse environmental conditions. However, the use of transgenic approaches remains contentious and requires rigorous experimental methods to address biosafety challenges. Clustered regularly interspaced short palindromic repeat (CRISPR) mediated genome editing technology is growing rapidly and may revolutionize sugarcane production. This review aims to explore innovative genetic engineering techniques and their successful application in developing sugarcane cultivars with enhanced resistance to biotic and abiotic stresses to produce superior sugarcane cultivars.
Collapse
Affiliation(s)
- Tanweer Kumar
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
- Sugar Crops Research Institute, Agriculture, Fisheries and Co-Operative Department, Charsadda Road, Mardan 23210, Khyber Pakhtunkhwa, Pakistan
| | - Jun-Gang Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Chao-Hua Xu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xin Lu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Jun Mao
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xiu-Qin Lin
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Yan Kong
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Jia Li
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Xu-Juan Li
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Chun-Yan Tian
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Mahmoud H. M. Ebid
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
- Sugar Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Xin-Long Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| | - Hong-Bo Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, China; (T.K.)
| |
Collapse
|
2
|
Zahmanova G, Aljabali AAA, Takova K, Minkov G, Tambuwala MM, Minkov I, Lomonossoff GP. Green Biologics: Harnessing the Power of Plants to Produce Pharmaceuticals. Int J Mol Sci 2023; 24:17575. [PMID: 38139405 PMCID: PMC10743837 DOI: 10.3390/ijms242417575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Plants are increasingly used for the production of high-quality biological molecules for use as pharmaceuticals and biomaterials in industry. Plants have proved that they can produce life-saving therapeutic proteins (Elelyso™-Gaucher's disease treatment, ZMapp™-anti-Ebola monoclonal antibodies, seasonal flu vaccine, Covifenz™-SARS-CoV-2 virus-like particle vaccine); however, some of these therapeutic proteins are difficult to bring to market, which leads to serious difficulties for the manufacturing companies. The closure of one of the leading companies in the sector (the Canadian biotech company Medicago Inc., producer of Covifenz) as a result of the withdrawal of investments from the parent company has led to the serious question: What is hindering the exploitation of plant-made biologics to improve health outcomes? Exploring the vast potential of plants as biological factories, this review provides an updated perspective on plant-derived biologics (PDB). A key focus is placed on the advancements in plant-based expression systems and highlighting cutting-edge technologies that streamline the production of complex protein-based biologics. The versatility of plant-derived biologics across diverse fields, such as human and animal health, industry, and agriculture, is emphasized. This review also meticulously examines regulatory considerations specific to plant-derived biologics, shedding light on the disparities faced compared to biologics produced in other systems.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
| | - George Minkov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK;
| | - Ivan Minkov
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | | |
Collapse
|
3
|
Mohanan MV, Pushpanathan A, Jayanarayanan AN, Selvarajan D, Ramalingam S, Govind H, Chinnaswamy A. Isolation of 5' regulatory region of COLD1 gene and its functional characterization through transient expression analysis in tobacco and sugarcane. 3 Biotech 2023; 13:228. [PMID: 37304407 PMCID: PMC10256666 DOI: 10.1007/s13205-023-03650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Chilling Tolerant Divergence 1 (COLD1) gene consists of Golgi pH Receptor (GPHR) as well as Abscisic Acid-linked G Protein-Coupled Receptor (ABA_GPCR), which are the major transmembrane proteins in plants. This gene expression has been found to be differentially regulated, under various stress conditions, in wild Saccharum-related genera, Erianthus arundinaceus, compared to commercial sugarcane variety. In this study, Rapid Amplification of Genomic Ends (RAGE) technique was employed to isolate the 5' upstream region of COLD1 gene to gain knowledge about the underlying stress regulatory mechanism. The current study established the cis-acting elements, main promoter regions, and Transcriptional Start Site (TSS) present within the isolated 5' upstream region (Cold1P) of COLD1, with the help of specific bioinformatics techniques. Phylogenetic analysis results revealed that the isolated Cold1P promoter is closely related to the species, Sorghum bicolor. Cold1P promoter-GUS gene construct was generated in pCAMBIA 1305.1 vector that displayed a constitutive expression of the GUS reporter gene in both monocot as well as dicot plants. The histochemical GUS assay outcomes confirmed that Cold1P can drive expression in both monocot as well as dicot plants. Cold1P's activities under several abiotic stresses such as cold, heat, salt, and drought, revealed its differential expression profile in commercial sugarcane variety. The highest activity of the GUS gene was found after 24 h of cold stress, driven by the isolated Cold1P promoter. The outcomes from GUS fluorimetric assay correlated with that of the GUS expression findings. This is the first report on Cold1P isolated from the species, E. arundinaceus. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03650-8.
Collapse
Affiliation(s)
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Hemaprabha Govind
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
4
|
Rozov SM, Deineko EV. Increasing the Efficiency of the Accumulation of Recombinant Proteins in Plant Cells: The Role of Transport Signal Peptides. PLANTS (BASEL, SWITZERLAND) 2022; 11:2561. [PMID: 36235427 PMCID: PMC9572730 DOI: 10.3390/plants11192561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The problem with increasing the yield of recombinant proteins is resolvable using different approaches, including the transport of a target protein to cell compartments with a low protease activity. In the cell, protein targeting involves short-signal peptide sequences recognized by intracellular protein transport systems. The main systems of the protein transport across membranes of the endoplasmic reticulum and endosymbiotic organelles are reviewed here, as are the major types and structure of the signal sequences targeting proteins to the endoplasmic reticulum and its derivatives, to plastids, and to mitochondria. The role of protein targeting to certain cell organelles depending on specific features of recombinant proteins and the effect of this targeting on the protein yield are discussed, in addition to the main directions of the search for signal sequences based on their primary structure. This knowledge makes it possible not only to predict a protein localization in the cell but also to reveal the most efficient sequences with potential biotechnological utility.
Collapse
|
5
|
Dinesh Babu KS, Janakiraman V, Palaniswamy H, Kasirajan L, Gomathi R, Ramkumar TR. A short review on sugarcane: its domestication, molecular manipulations and future perspectives. GENETIC RESOURCES AND CROP EVOLUTION 2022; 69:2623-2643. [PMID: 36159774 PMCID: PMC9483297 DOI: 10.1007/s10722-022-01430-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/11/2022] [Indexed: 06/16/2023]
Abstract
Sugarcane (Saccharum spp.) is a special crop plant that underwent anthropogenic evolution from a wild grass species to an important food, fodder, and energy crop. Unlike any other grass species which were selected for their kernels, sugarcane was selected for its high stem sucrose accumulation. Flowering in sugarcane is not favored since flowering diverts the stored sugar resources for the reproductive and developmental energy needs. Cultivars are vegetatively propagated and sugarcane breeding is still essentially focused on conventional methods, since the knowledge of sugarcane genetics has lagged that of other major crops. Cultivar improvement has been extremely challenging due to its polyploidy and aneuploidy nature derived from a few interspecific hybridizations between Saccharum officinarum and Saccharum spontaneum, revealing the coexistence of two distinct genome organization modes in the modern variety. Alongside implementation of modern agricultural techniques, generation of hybrid clones, transgenics and genome edited events will help to meet the ever-growing bioenergy needs. Additionally, there are two common biotechnological approaches to improve plant stress tolerance, which includes marker-assisted selection (MAS) and genetic transformation. During the past two decades, the use of molecular approaches has contributed greatly to a better understanding of the genetic and biochemical basis of plant stress-tolerance and in some cases, it led to the development of plants with enhanced tolerance to abiotic stress. Hence, this review mainly intends on the events that shaped the sugarcane as what it is now and what challenges ahead and measures taken to further improve its yield, production and maximize utilization to beat the growing demands.
Collapse
Affiliation(s)
| | - Vardhana Janakiraman
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced studies (VISTAS), Chennai, TN 600117 India
| | - Harunipriya Palaniswamy
- Tissue Culture Laboratory, Division of Crop Improvement, ICAR‐Sugarcane Breeding Institute, Coimbatore, TN 641007 India
| | - Lakshmi Kasirajan
- Genomics Laboratory, Division of Crop Improvement, ICAR‐Sugarcane Breeding Institute, Coimbatore, TN 641007 India
| | - Raju Gomathi
- Plant Physiology Laboratory, Division of Crop Production, ICAR‐Sugarcane Breeding Institute, Coimbatore, TN 641007 India
| | - Thakku R. Ramkumar
- Agronomy Department, IFAS, University of Florida, Gainesville, FL 32611 USA
- Department of Biological Sciences, Delaware State University, Dover, DE 19001 USA
| |
Collapse
|
6
|
Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. Int J Mol Sci 2022; 23:ijms23031326. [PMID: 35163249 PMCID: PMC8836236 DOI: 10.3390/ijms23031326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plants offer several unique advantages in the production of recombinant pharmaceuticals for humans and animals. Although numerous recombinant proteins have been expressed in plants, only a small fraction have been successfully put into use. The hugely distinct expression systems between plant and animal cells frequently cause insufficient yield of the recombinant proteins with poor or undesired activity. To overcome the issues that greatly constrain the development of plant-produced pharmaceuticals, great efforts have been made to improve expression systems and develop alternative strategies to increase both the quantity and quality of the recombinant proteins. Recent technological revolutions, such as targeted genome editing, deconstructed vectors, virus-like particles, and humanized glycosylation, have led to great advances in plant molecular farming to meet the industrial manufacturing and clinical application standards. In this review, we discuss the technological advances made in various plant expression platforms, with special focus on the upstream designs and milestone achievements in improving the yield and glycosylation of the plant-produced pharmaceutical proteins.
Collapse
|
7
|
Comparative expression analysis of potential pathogenicity-associated genes of high- and low-virulent Sporisorium scitamineum isolates during interaction with sugarcane. 3 Biotech 2021; 11:353. [PMID: 34249594 DOI: 10.1007/s13205-021-02893-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023] Open
Abstract
Sporisorium scitamineum is a teleomorphic, biotrophic fungus causing the globally prevalent sugarcane smut disease in sugarcane. The severity of the disease depends on two major factors, viz. degree of resistance in the host genotype and virulence level of the pathogen. Hence, in this study, temporal transcriptomic expression of potential pathogenicity-associated genes of two distinctly virulent S. scitamineum isolates, viz. SsV89101 (low virulent) and Ss97009 (high virulent) were analyzed during interaction with a smut susceptible sugarcane cv. Co 97009 at six different time intervals. The pathogenicity-associated genes profiled in this study comprises 14 plant cell wall degrading enzymes (PCWDEs) and ten candidates secreted effector protein-coding (CSEPs) genes. Absolute quantification of pathogen biomass and comparative expression profiling analyses of these pathogenicity-associated genes during host-pathogen interaction indicated that there was a significant variation between low and high virulent isolates. More precisely, the higher and early expression (24 hpi) of certain PCWDEs, viz. Chitinase-1 and Laccase, and the CSEPs, viz. SUC2, SRT1 and CMU1 during the colonization of high virulent isolate suggested that they might possibly play a major role in facilitating faster and successful pathogen ingress, and tissue colonization than the less-virulent isolate. Transcript expression profiling of Chitinase and Laccases were also in correlation with their corresponding enzyme activity assays. Comprehensively, this quantitative temporal expression analysis has provided critical insights into the early expression of pathogenicity-associated genes and their putative role in attributing to higher virulence. Moreover, this study provides valuable clues for the screening of candidate virulence determinants for further functional characterization of the test pathogen isolates used for the evaluation of smut resistance in breeding clones. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02893-7.
Collapse
|
8
|
Shibao PYT, Santos-Júnior CD, Santiago AC, Mohan C, Miguel MC, Toyama D, Vieira MAS, Narayanan S, Figueira A, Carmona AK, Schiermeyer A, Soares-Costa A, Henrique-Silva F. Sugarcane cystatins: From discovery to biotechnological applications. Int J Biol Macromol 2020; 167:676-686. [PMID: 33285201 DOI: 10.1016/j.ijbiomac.2020.11.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/01/2022]
Abstract
Phytocystatins are tight-binding cysteine protease inhibitors produced by plants. The first phytocystatin described was isolated from Oryza sativa and, since then, cystatins from several plant species were reported, including from sugarcane. Sugarcane cystatins were unraveled in Sugarcane EST project database, after sequencing of cDNA libraries from various sugarcane tissues at different developmental stages and six sugarcane cystatins were cloned, expressed and characterized (CaneCPI-1 to CaneCPI-6). These recombinant proteins were produced in different expression systems and inhibited several cysteine proteases, including human cathepsins B and L, which can be involved in pathologies, such as cancer. In this review, we summarize a comprehensive history of all sugarcane cystatins, presenting an updated phylogenetic analysis; chromosomal localization, and genomic organization. We also present protein docking of CaneCPI-5 in the active site of human cathepsin B, insights about canecystatins structures; recombinant expression in different systems, comparison of their inhibitory activities against human cysteine cathepsins B, K, L, S, V, falcipains from Plasmodium falciparum and a cathepsin L-like from the sugarcane weevil Sphenophorus levis; and enlighten their potential and current applications in agriculture and health.
Collapse
Affiliation(s)
- Priscila Yumi Tanaka Shibao
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Célio Dias Santos-Júnior
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, China
| | | | - Chakravarthi Mohan
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Mariana Cardoso Miguel
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Danyelle Toyama
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | | - Subramonian Narayanan
- Genetic Transformation Laboratory, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Antonio Figueira
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Adriana K Carmona
- Department of Biophysics, Federal University of São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Andrea Soares-Costa
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Flavio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil.
| |
Collapse
|
9
|
Padilla CS, Damaj MB, Yang ZN, Molina J, Berquist BR, White EL, Solís-Gracia N, Da Silva J, Mandadi KK. High-Level Production of Recombinant Snowdrop Lectin in Sugarcane and Energy Cane. Front Bioeng Biotechnol 2020; 8:977. [PMID: 33015000 PMCID: PMC7461980 DOI: 10.3389/fbioe.2020.00977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
Sugarcane and energy cane (Saccharum spp. hybrids) are ideal for plant-based production of recombinant proteins because their high resource-use efficiency, rapid growth and efficient photosynthesis enable extensive biomass production and protein accumulation at a cost-effective scale. Here, we aimed to develop these species as efficient platforms to produce recombinant Galanthus nivalis L. (snowdrop) agglutinin (GNA), a monocot-bulb mannose-specific lectin with potent antiviral, antifungal and antitumor activities. Initially, GNA levels of 0.04% and 0.3% total soluble protein (TSP) (0.3 and 3.8 mg kg–1 tissue) were recovered from the culms and leaves, respectively, of sugarcane lines expressing recombinant GNA under the control of the constitutive maize ubiquitin 1 (Ubi) promoter. Co-expression of recombinant GNA from stacked multiple promoters (pUbi and culm-regulated promoters from sugarcane dirigent5-1 and Sugarcane bacilliform virus) on separate expression vectors increased GNA yields up to 42.3-fold (1.8% TSP or 12.7 mg kg–1 tissue) and 7.7-fold (2.3% TSP or 29.3 mg kg–1 tissue) in sugarcane and energy cane lines, respectively. Moreover, inducing promoter activity in the leaves of GNA transgenic lines with stress-regulated hormones increased GNA accumulation to 2.7% TSP (37.2 mg kg–1 tissue). Purification by mannose-agarose affinity chromatography yielded a functional sugarcane recombinant GNA with binding substrate specificity similar to that of native snowdrop-bulb GNA, as shown by enzyme-linked lectin and mannose-binding inhibition assays. The size and molecular weight of recombinant GNA were identical to those of native GNA, as determined by size-exclusion chromatography and MALDI-TOF mass spectrometry. This work demonstrates the feasibility of producing recombinant GNA at high levels in Saccharum species, with the long-term goal of using it as a broad-spectrum antiviral carrier molecule for hemopurifiers and in related therapeutic applications.
Collapse
Affiliation(s)
- Carmen S Padilla
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Mona B Damaj
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Zhong-Nan Yang
- Institute for Plant Gene Function, Department of Biology, Shanghai Normal University, Shanghai, China
| | - Joe Molina
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | | | - Earl L White
- MDx BioAnalytical Laboratory, Inc., College Station, TX, United States
| | - Nora Solís-Gracia
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States
| | - Jorge Da Silva
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States.,Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, United States.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Damaj MB, Jifon JL, Woodard SL, Vargas-Bautista C, Barros GOF, Molina J, White SG, Damaj BB, Nikolov ZL, Mandadi KK. Unprecedented enhancement of recombinant protein production in sugarcane culms using a combinatorial promoter stacking system. Sci Rep 2020; 10:13713. [PMID: 32792533 PMCID: PMC7426418 DOI: 10.1038/s41598-020-70530-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
Plants represent a safe and cost-effective platform for producing high-value proteins with pharmaceutical properties; however, the ability to accumulate these in commercially viable quantities is challenging. Ideal crops to serve as biofactories would include low-input, fast-growing, high-biomass species such as sugarcane. The objective of this study was to develop an efficient expression system to enable large-scale production of high-value recombinant proteins in sugarcane culms. Bovine lysozyme (BvLz) is a potent broad-spectrum antimicrobial enzyme used in the food, cosmetics and agricultural industries. Here, we report a novel strategy to achieve high-level expression of recombinant proteins using a combinatorial stacked promoter system. We demonstrate this by co-expressing BvLz under the control of multiple constitutive and culm-regulated promoters on separate expression vectors and combinatorial plant transformation. BvLz accumulation reached 1.4% of total soluble protein (TSP) (10.0 mg BvLz/kg culm mass) in stacked multiple promoter:BvLz lines, compared to 0.07% of TSP (0.56 mg/kg) in single promoter:BvLz lines. BvLz accumulation was further boosted to 11.5% of TSP (82.5 mg/kg) through event stacking by re-transforming the stacked promoter:BvLz lines with additional BvLz expression vectors. The protein accumulation achieved with the combinatorial promoter stacking expression system was stable in multiple vegetative propagations, demonstrating the feasibility of using sugarcane as a biofactory for producing high-value proteins and bioproducts.
Collapse
Affiliation(s)
- Mona B Damaj
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
| | - John L Jifon
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843-2133, USA
| | - Susan L Woodard
- National Center for Therapeutics Manufacturing, Texas A&M University, 100 Discovery Drive, College Station, TX, 77843-4482, USA
| | - Carol Vargas-Bautista
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- College of Medicine, Texas A&M University, 8447 Riverside Parkway, Bryan, TX, 77807, USA
| | - Georgia O F Barros
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Joe Molina
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
| | - Steven G White
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Bassam B Damaj
- Innovus Pharmaceuticals, Inc., 8845 Rehco Road, San Diego, CA, 92121, USA
| | - Zivko L Nikolov
- BioSeparation Laboratory, Biological and Agricultural Engineering Department, College Station, TX, 77843-2117, USA
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA.
| |
Collapse
|
11
|
Shivalingamurthy SG, Anangi R, Kalaipandian S, Glassop D, King GF, Rae AL. Identification and Functional Characterization of Sugarcane Invertase Inhibitor ( ShINH1): A Potential Candidate for Reducing Pre- and Post-harvest Loss of Sucrose in Sugarcane. FRONTIERS IN PLANT SCIENCE 2018; 9:598. [PMID: 29774044 PMCID: PMC5944049 DOI: 10.3389/fpls.2018.00598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/16/2018] [Indexed: 05/19/2023]
Abstract
In sugarcane, invertase enzymes play a key role in sucrose accumulation and are also involved in futile reactions where sucrose is continuously degraded during the pre- and post-harvest period, thereby reducing sugar yield and recovery. Invertase inhibitor (INVINH) proteins play a key role in post-translation regulation of plant invertases through which sucrose hydrolysis is controlled. INVINH proteins are small (18 kDa) members of the pectin methylesterase inhibitor superfamily and they are moderately conserved across plants. In the present study, we identified two INVINH genes from sugarcane, ShINH1 and ShINH2. In silico characterization of the encoded proteins revealed 43% sequence identity at the amino acid level, confirming the non-allelic nature of the proteins. The presence of putative signal peptide and subcellular targeting sequences revealed that ShINH1 and ShINH2 likely have apoplasmic and vacuolar localization, respectively. Experimental visualization of ShINH1-GFP revealed that ShINHI is indeed exported to the apoplast. Differential tissue-specific and developmental expression of ShINH1 between leaf, stalk, flower and root suggest that it plays a role in controlling source-sink metabolic regulation during sucrose accumulation in sugarcane. ShINH1 is expressed at relatively high levels in leaves and stalk compared to flowers and roots, and expression decreases significantly toward internodal maturity during stalk development. ShINH1 is expressed at variable levels in flowers with no specific association to floral maturity. Production of recombinant ShINH1 enabled experimental validation of protein function under in vitro conditions. Recombinant ShINH1 potently inhibited acid invertase (IC50 22.5 nM), making it a candidate for controlling pre- and post-harvest deterioration of sucrose in sugarcane. Our results indicate that ShINH1 and ShINH2 are likely to play a regulatory role in sucrose accumulation and contribute to the improvement of sugar yield and recovery in sugarcane.
Collapse
Affiliation(s)
| | - Raveendra Anangi
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | | | - Donna Glassop
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
| | - Glenn F. King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Anne L. Rae
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
- *Correspondence: Anne L. Rae
| |
Collapse
|
12
|
Lin CY, Jakes JE, Donohoe BS, Ciesielski PN, Yang H, Gleber SC, Vogt S, Ding SY, Peer WA, Murphy AS, McCann MC, Himmel ME, Tucker MP, Wei H. Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:225. [PMID: 27777626 PMCID: PMC5073452 DOI: 10.1186/s13068-016-0639-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/08/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cell walls (referred to here as FerEX). RESULTS The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. CONCLUSIONS This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. The results are attributed to the intimate colocation of the iron co-catalyst and the cellulose and hemicellulose within the plant cell-wall region, supporting the genetic modification strategy for incorporating conversion catalysts into energy crops prior to harvesting or processing at the biorefinery.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Joseph E. Jakes
- Forest Biopolymer Science and Engineering, USDA Forest Service, Forest Products Laboratory, Madison, WI 53726 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Peter N. Ciesielski
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Haibing Yang
- Department of Biological Science, Purdue University, West Lafayette, IN 47907 USA
| | - Sophie-Charlotte Gleber
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Shi-You Ding
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Wendy A. Peer
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742 USA
| | - Angus S. Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742 USA
| | - Maureen C. McCann
- Department of Biological Science, Purdue University, West Lafayette, IN 47907 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Melvin P. Tucker
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| |
Collapse
|