1
|
Zhong W, Wu L, Li Y, Li X, Wang J, Pan J, Zhu S, Fang S, Yao J, Zhang Y, Chen W. GhSBI1, a CUP-SHAPED COTYLEDON 2 homologue, modulates branch internode elongation in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3175-3193. [PMID: 39058556 PMCID: PMC11500989 DOI: 10.1111/pbi.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
Branch length is an important plant architecture trait in cotton (Gossypium) breeding. Development of cultivars with short branch has been proposed as a main object to enhance cotton yield potential, because they are suitable for high planting density. Here, we report the molecular cloning and characterization of a semi-dominant quantitative trait locus, Short Branch Internode 1(GhSBI1), which encodes a NAC transcription factor homologous to CUP-SHAPED COTYLEDON 2 (CUC2) and is regulated by microRNA ghr-miR164. We demonstrate that a point mutation found in sbi1 mutants perturbs ghr-miR164-directed regulation of GhSBI1, resulting in an increased expression level of GhSBI1. The sbi1 mutant was sensitive to exogenous gibberellic acid (GA) treatments. Overexpression of GhSBI1 inhibited branch internode elongation and led to the decreased levels of bioactive GAs. In addition, gene knockout analysis showed that GhSBI1 is required for the maintenance of the boundaries of multiple tissues in cotton. Transcriptome analysis revealed that overexpression of GhSBI1 affects the expression of plant hormone signalling-, axillary meristems initiation-, and abiotic stress response-related genes. GhSBI1 interacted with GAIs, the DELLA repressors of GA signalling. GhSBI1 represses expression of GA signalling- and cell elongation-related genes by directly targeting their promoters. Our work thus provides new insights into the molecular mechanisms for branch length and paves the way for the development of elite cultivars with suitable plant architecture in cotton.
Collapse
Affiliation(s)
- Weiping Zhong
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lanxin Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Xiaxuan Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Junyi Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingwen Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Shentao Fang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Nie H, Zhao N, Li B, Jiang K, Li H, Zhang J, Guo A, Hua J. Evolutionary comparison of lncRNAs in four cotton species and functional identification of LncR4682-PAS2-KCS19 module in fiber elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1421-1437. [PMID: 39376043 DOI: 10.1111/tpj.17058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in various biological processes in plants. However, there have been few reports on the evolutionary signatures of lncRNAs in closely related cotton species. The lncRNA transcription patterns in two tetraploid cotton species and their putative diploid ancestors were compared in this paper. By performing deep RNA sequencing, we identified 280 429 lncRNAs from 21 tissues in four cotton species. lncRNA transcription evolves more rapidly than mRNAs, and exhibits more severe turnover phenomenon in diploid species compared to that in tetraploid species. Evolutionarily conserved lncRNAs exhibit higher expression levels, and lower tissue specificity compared with species-specific lncRNAs. Remarkably, tissue expression of homologous lncRNAs in Gossypium hirsutum and G. barbadense exhibited similar patterns, suggesting that these lncRNAs may be functionally conserved and selectively maintained during domestication. An orthologous lncRNA, lncR4682, was identified and validated in fibers of G. hirsutum and G. barbadense with the highest conservatism and expression abundance. Through virus-induced gene silencing in upland cotton, we found that lncR4682 and its target genes GHPAS2 and GHKCS19 positively regulated fiber elongation. In summary, the present study provides a systematic analysis of lncRNAs in four closely related cotton species, extending the understanding of transcriptional conservation of lncRNAs across cotton species. In addition, LncR4682-PAS2-KCS19 contributes to cotton fiber elongation by participating in the biosynthesis of very long-chain fatty acids.
Collapse
Affiliation(s)
- Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Kaiyun Jiang
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Jingrou Zhang
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| |
Collapse
|
3
|
Zahra LT, Qadir F, Khan MN, Kamal H, Zahra N, Ali A, Zafar MM, Razzaq A, Jiang X. Seed treatment: an alternative and sustainable approach to cotton seed delinting. Front Bioeng Biotechnol 2024; 12:1376353. [PMID: 39267907 PMCID: PMC11390598 DOI: 10.3389/fbioe.2024.1376353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
This review article delves into the vital aspects of cotton, emphasizing its global significance as a crucial agricultural commodity. The paper comprehensively explores the composition of cotton and surveys the diverse methods employed for the removal of cotton lint from seeds. Conventional delinting methods, including mechanical and chemical approaches, are scrutinized in terms of their advantages and drawbacks. However, the primary focus of this review is on highlighting the emerging significance of biological delinting methods. By harnessing the power of microbial enzymes and organisms, biological approaches offer a promising alternative for efficient lint removal. The authors discuss the environmental advantages associated with biological delinting, positioning it as a sustainable solution that mitigates the ecological impact of traditional methods. Furthermore, the article contextualizes these delinting methods within the framework of Sustainable Development Goals (SDGs) and underscores the importance of adopting eco-friendly practices in the cotton industry to align with SDG goals. By accentuating the potential of biological delinting in contributing to sustainable agriculture and responsible production, the review advocates for a paradigm shift towards more environmentally conscious approaches in the cotton sector. Overall, the article aims to provide a comprehensive perspective on cotton delinting methods, emphasizing the pivotal role of biological alternatives in fostering a sustainable and goal-oriented future for the cotton industry.
Collapse
Affiliation(s)
- Laviza Tuz Zahra
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Fariha Qadir
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Mohammad Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, Saudi Arabia
| | - Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Nosheen Zahra
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Arfan Ali
- FB Genetics Four Brothers Group Pvt. Limited, Lahore, Pakistan
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| |
Collapse
|
4
|
Zhao G, Le Y, Sun M, Xu J, Qin Y, Men S, Ye Z, Tan H, Hu H, You J, Li J, Jin S, Wang M, Zhang X, Lin Z, Tu L. A dominant negative mutation of GhMYB25-like alters cotton fiber initiation, reducing lint and fuzz. THE PLANT CELL 2024; 36:2759-2777. [PMID: 38447960 PMCID: PMC11289660 DOI: 10.1093/plcell/koae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 03/08/2024]
Abstract
Cotton (Gossypium hirsutum) fibers, vital natural textile materials, are single-cell trichomes that differentiate from the ovule epidermis. These fibers are categorized as lint (longer fibers useful for spinning) or fuzz (shorter, less useful fibers). Currently, developing cotton varieties with high lint yield but without fuzz remains challenging due to our limited knowledge of the molecular mechanisms underlying fiber initiation. This study presents the identification and characterization of a naturally occurring dominant negative mutation GhMYB25-like_AthapT, which results in a reduced lint and fuzzless phenotype. The GhMYB25-like_AthapT protein exerts its dominant negative effect by suppressing the activity of GhMYB25-like during lint and fuzz initiation. Intriguingly, the negative effect of GhMYB25-like_AthapT could be alleviated by high expression levels of GhMYB25-like. We also uncovered the role of GhMYB25-like in regulating the expression of key genes such as GhPDF2 (PROTODERMAL FACTOR 2), CYCD3; 1 (CYCLIN D3; 1), and PLD (Phospholipase D), establishing its significance as a pivotal transcription factor in fiber initiation. We identified other genes within this regulatory network, expanding our understanding of the determinants of fiber cell fate. These findings offer valuable insights for cotton breeding and contribute to our fundamental understanding of fiber development.
Collapse
Affiliation(s)
- Guannan Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yu Le
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mengling Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Jiawen Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yuan Qin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - She Men
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Haozhe Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
5
|
Zhao G, Li W, Xu M, Shao L, Sun M, Tu L. GhWER controls fiber initiation and early elongation by regulating ethylene signaling pathway in cotton ( Gossypium hirsutum). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:38. [PMID: 38766511 PMCID: PMC11096147 DOI: 10.1007/s11032-024-01477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024]
Abstract
Cotton fibers are specialized single-cell trichomes derived from epidermal cells, similar to root hairs and trichomes in Arabidopsis. While the MYB-bHLH-WD40 (MBW) complex has been shown to regulate initiation of both root hairs and trichomes in Arabidopsis, the role of their homologous gene in cotton fiber initiation remains unknown. In this study, we identified a R2R3 MYB transcription factor (TF), GhWER, which exhibited a significant increase in expression within the outer integument of ovule at -1.5 DPA (days post anthesis). Its expression peaked at -1 DPA and then gradually decreased. Knockout of GhWER using CRISPR technology inhibited the initiation and early elongation of fiber initials, resulting in the shorter mature fiber length. Additionally, GhWER interacted with two bHLH TF, GhDEL65 and GhbHLH121, suggesting a potential regulatory complex for fiber development. RNA-seq analysis of the outer integument of the ovule at -1.5 DPA revealed that the signal transduction pathways of ethylene, auxin and gibberellin were affected in the GhWER knockout lines. Further examination demonstrated that GhWER directly activated ethylene signaling genes, including ACS1 and ETR2. These findings highlighted the biological function of GhWER in regulating cotton fiber initiation and early elongation, which has practical significance for improving fiber quality and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01477-6.
Collapse
Affiliation(s)
- Guannan Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Weiwen Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Mingqi Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Lei Shao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Mengling Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| |
Collapse
|
6
|
Wu N, Lu B, Muhammad Y, Cao Y, Rong J. Characterization and expression analysis of GLABRA3 (GL3) genes in cotton: insights into trichome development and hormonal regulation. Mol Biol Rep 2024; 51:479. [PMID: 38578511 DOI: 10.1007/s11033-024-09412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) genes encode a typical helix-loop-helix (bHLH) transcription factors that primarily regulate trichome branching and root hair development, DNA endoreduplication, trichoblast size, and stomatal formation. The functions of GL3 genes in cotton crop have been poorly characterized. In this study, we performed comprehensive genome-wide scans for GL3 and EGL3 homologs to enhance our comprehension of their potential roles in trichome and fiber development in cotton crop. METHODS AND RESULTS Our findings paraded that Gossypium hirsutum and G. barbadense have 6 GL3s each, unevenly distributed on 4 chromosomes whereas, G. arboreum, and G. raimondii have 3 GL3s each, unevenly distributed on 2 chromosomes. Gh_A08G2088 and Gb_A09G2187, despite having the same bHLH domain as the other GL3 genes, were excluded due to remarkable short sequences and limited number of motifs, indicating a lack of potential functional activity. The phylogenetic analysis categorized remaining 16 GL3s into three subfamilies (Group I-III) closely related to A. thaliana. The 16 GL3s have complete bHLH domain, encompassing 590-631 amino acids, with molecular weights (MWs) ranging from 65.92 to 71.36 kDa. Within each subfamily GL3s depicted shared similar gene structures and motifs, indicating conserved characteristics within respective groups. Promoter region analysis revealed 27 cis-acting elements, these elements were responsive to salicylic acid, abscisic acid (ABA), methyl jasmonate (MeJA), and gibberellin. The expression of GL3 genes was analyzed across 12 tissues in both G. barbadense and G. hirsutum using the publicly available RNA-seq data. Among GL3s, Gb_D11G0219, Gb_D11G0214, and Gb_D08G2182, were identified as relatively highly expressed across different tissues, consequently selected for hormone treatment and expression validation in G. barbadense. RT-qPCR results demonstrated significant alterations in the expression levels of Gb_D11G0219 and Gb_D11G0214 following MeJA, GA, and ABA treatment. Subcellular localization prediction revealed that most GL3 proteins were predominantly expressed in the nucleus, while a few were localized in the cytoplasm and chloroplasts. CONCLUSIONS In summary, this study lays the foundation for subsequent functional validation of GL3 genes by identifying hormonal regulation patterns and probable sites of action in cotton trichome formation and fiber development. The results stipulate a rationale to elucidate the roles and regulatory mechanisms of GL3 genes in the intricate process of cotton fibre and trichome development.
Collapse
Affiliation(s)
- Naisi Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China
| | - Benyi Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China
| | - YaSir Muhammad
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China
| | - Yaofen Cao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China.
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
7
|
Wang R, Zhang M, Wang H, Chen L, Zhang X, Guo L, Qi T, Tang H, Shahzad K, Wang H, Qiao X, Wu J, Xing C. Identification and characterization of circular RNAs involved in the fertility stability of cotton CMS-D2 restorer line under heat stress. BMC PLANT BIOLOGY 2024; 24:32. [PMID: 38183049 PMCID: PMC10768462 DOI: 10.1186/s12870-023-04706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress. RESULTS In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rf1rf1)] and SH [S(Rf1rf1)] with obvious differences in fertility stability under HT stress at two environments. A total of 967 circRNAs were identified, with 250 differentially expressed under HT stress. We confirmed the back-splicing sites of eight selected circRNAs using divergent primers and Sanger sequencing. Tissue-specific expression patterns of five differentially expressed circRNAs (DECs) were also verified by RT-PCR and qRT-PCR. Functional enrichment and metabolic pathway analysis revealed that the parental genes of DECs were significantly enriched in fertility-related biological processes such as pollen tube guidance and cell wall organization, as well as the Pentose and glucuronate interconversions, Steroid biosynthesis, and N-Glycan biosynthesis pathways. Moreover, we also constructed a putative circRNA-mediated competing endogenous RNA (ceRNA) network consisting of 21 DECs, eight predicted circRNA-binding miRNAs, and their corresponding 22 mRNA targets, especially the two ceRNA modules circRNA346-miR159a-MYB33 and circRNA484-miR319e-MYB33, which might play important biological roles in regulating pollen fertility stability of cotton CMS-D2 restorer line under HT stress. CONCLUSIONS Through systematic analysis of the abundance, characteristics and expression patterns of circRNAs, as well as the potential functions of their parent genes, our findings suggested that circRNAs and their mediated ceRNA networks acted vital biological roles in cotton pollen development, and might be also essential regulators for fertility stability of CMS-D2 restorer line under heat stress. This study will open a new door for further unlocking complex regulatory mechanisms underpinning the fertility restoration stability for CMS-D2 in cotton.
Collapse
Affiliation(s)
- Ruijie Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Hui Wang
- Xiangyang Vocational and Technical College, Xiangyang, 441050, Hubei, China
| | - Liangliang Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Kashif Shahzad
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
8
|
Zhai Z, Zhang K, Fang Y, Yang Y, Cao X, Liu L, Tian Y. Systematically and Comprehensively Understanding the Regulation of Cotton Fiber Initiation: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3771. [PMID: 37960127 PMCID: PMC10648247 DOI: 10.3390/plants12213771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Cotton fibers provide an important source of raw materials for the textile industry worldwide. Cotton fiber is a kind of single cell that differentiates from the epidermis of the ovule and provides a perfect research model for the differentiation and elongation of plant cells. Cotton fiber initiation is the first stage throughout the entire developmental process. The number of fiber cell initials on the seed ovule epidermis decides the final fiber yield. Thus, it is of great significance to clarify the mechanism underlying cotton fiber initiation. Fiber cell initiation is controlled by complex and interrelated regulatory networks. Plant phytohormones, transcription factors, sugar signals, small signal molecules, functional genes, non-coding RNAs, and histone modification play important roles during this process. Here, we not only summarize the different kinds of factors involved in fiber cell initiation but also discuss the mechanisms of these factors that act together to regulate cotton fiber initiation. Our aim is to synthesize a systematic and comprehensive review of different factors during fiber initiation that will provide the basics for further illustrating these mechanisms and offer theoretical guidance for improving fiber yield in future molecular breeding work.
Collapse
Affiliation(s)
- Zeyang Zhai
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Kaixin Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yao Fang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yujie Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Xu Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Li Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yue Tian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| |
Collapse
|
9
|
Bao Y, Wei Y, Liu Y, Gao J, Cheng S, Liu G, You Q, Liu P, Lu Q, Li P, Zhang S, Hu N, Han Y, Liu S, Wu Y, Yang Q, Li Z, Ao G, Liu F, Wang K, Jiang J, Zhang T, Zhang W, Peng R. Genome-wide chromatin accessibility landscape and dynamics of transcription factor networks during ovule and fiber development in cotton. BMC Biol 2023; 21:165. [PMID: 37525156 PMCID: PMC10391996 DOI: 10.1186/s12915-023-01665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The development of cotton fiber is regulated by the orchestrated binding of regulatory proteins to cis-regulatory elements associated with developmental genes. The cis-trans regulatory dynamics occurred throughout the course of cotton fiber development are elusive. Here we generated genome-wide high-resolution DNase I hypersensitive sites (DHSs) maps to understand the regulatory mechanisms of cotton ovule and fiber development. RESULTS We generated DNase I hypersensitive site (DHS) profiles from cotton ovules at 0 and 3 days post anthesis (DPA) and fibers at 8, 12, 15, and 18 DPA. We obtained a total of 1185 million reads and identified a total of 199,351 DHSs through ~ 30% unique mapping reads. It should be noted that more than half of DNase-seq reads mapped multiple genome locations and were not analyzed in order to achieve a high specificity of peak profile and to avoid bias from repetitive genomic regions. Distinct chromatin accessibilities were observed in the ovules (0 and 3 DPA) compared to the fiber elongation stages (8, 12, 15, and 18 DPA). Besides, the chromatin accessibility during ovules was particularly elevated in genomic regions enriched with transposable elements (TEs) and genes in TE-enriched regions were involved in ovule cell division. We analyzed cis-regulatory modules and revealed the influence of hormones on fiber development from the regulatory divergence of transcription factor (TF) motifs. Finally, we constructed a reliable regulatory network of TFs related to ovule and fiber development based on chromatin accessibility and gene co-expression network. From this network, we discovered a novel TF, WRKY46, which may shape fiber development by regulating the lignin content. CONCLUSIONS Our results not only reveal the contribution of TEs in fiber development, but also predict and validate the TFs related to fiber development, which will benefit the research of cotton fiber molecular breeding.
Collapse
Affiliation(s)
- Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Jingjing Gao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China
| | - Shuang Cheng
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Qi You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Peng Liu
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Quanwei Lu
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Pengtao Li
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Shulin Zhang
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Nan Hu
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Shuo Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Qingqing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhaoguo Li
- Anyang Institute of Technology, Anyang, Henan, 455000, China
- Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guowei Ao
- Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Fang Liu
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Kunbo Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Michigan State University AgBioResearch, East Lansing, MI, USA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Wenli Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry (CIC-MCP), Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, Jiangsu, China.
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, Henan, 455000, China.
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, China.
- Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
10
|
Liu Z, Sun Z, Ke H, Chen B, Gu Q, Zhang M, Wu N, Chen L, Li Y, Meng C, Wang G, Wu L, Zhang G, Ma Z, Zhang Y, Wang X. Transcriptome, Ectopic Expression and Genetic Population Analysis Identify Candidate Genes for Fiber Quality Improvement in Cotton. Int J Mol Sci 2023; 24:8293. [PMID: 37175999 PMCID: PMC10179096 DOI: 10.3390/ijms24098293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Comparative transcriptome analysis of fiber tissues between Gossypium barbadense and Gossypium hirsutum could reveal the molecular mechanisms underlying high-quality fiber formation and identify candidate genes for fiber quality improvement. In this study, 759 genes were found to be strongly upregulated at the elongation stage in G. barbadense, which showed four distinct expression patterns (I-IV). Among them, the 346 genes of group IV stood out in terms of the potential to promote fiber elongation, in which we finally identified 42 elongation-related candidate genes by comparative transcriptome analysis between G. barbadense and G. hirsutum. Subsequently, we overexpressed GbAAR3 and GbTWS1, two of the 42 candidate genes, in Arabidopsis plants and validated their roles in promoting cell elongation. At the secondary cell wall (SCW) biosynthesis stage, 2275 genes were upregulated and exhibited five different expression profiles (I-V) in G. barbadense. We highlighted the critical roles of the 647 genes of group IV in SCW biosynthesis and further picked out 48 SCW biosynthesis-related candidate genes by comparative transcriptome analysis. SNP molecular markers were then successfully developed to distinguish the SCW biosynthesis-related candidate genes from their G. hirsutum orthologs, and the genotyping and phenotyping of a BC3F5 population proved their potential in improving fiber strength and micronaire. Our results contribute to the better understanding of the fiber quality differences between G. barbadense and G. hirsutum and provide novel alternative genes for fiber quality improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China; (Z.L.); (Z.S.); (H.K.); (B.C.); (Q.G.); (M.Z.); (N.W.); (G.Z.); (Z.M.)
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China; (Z.L.); (Z.S.); (H.K.); (B.C.); (Q.G.); (M.Z.); (N.W.); (G.Z.); (Z.M.)
| |
Collapse
|
11
|
Qin Y, Sun M, Li W, Xu M, Shao L, Liu Y, Zhao G, Liu Z, Xu Z, You J, Ye Z, Xu J, Yang X, Wang M, Lindsey K, Zhang X, Tu L. Single-cell RNA-seq reveals fate determination control of an individual fibre cell initiation in cotton (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2372-2388. [PMID: 36053965 PMCID: PMC9674311 DOI: 10.1111/pbi.13918] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 05/13/2023]
Abstract
Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor determines fibre yield. However, the mechanisms controlling fibre initiation from ovule epidermis are not understood well enough. Here, with single-cell RNA sequencing (scRNA-seq), a total of 14 535 cells were identified from cotton ovule outer integument of Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day of anthesis). Three major cell types, fibre, non-fibre epidermis and outer pigment layer were identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA-seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages revealed the spatiotemporal pattern of core transcription factors, and MYB25-like and HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip-biased diffuse growth respectively. A model for early development of a single fibre cell was proposed here, which sheds light on further deciphering mechanism of plant trichome and the improvement of cotton fibre yield.
Collapse
Affiliation(s)
- Yuan Qin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Mengling Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Weiwen Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Mingqi Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Lei Shao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yuqi Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Guannan Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Jiawen Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| |
Collapse
|
12
|
Wang X, Zhang X, Fan D, Gong J, Li S, Gao Y, Liu A, Liu L, Deng X, Shi Y, Shang H, Zhang Y, Yuan Y. AAQSP increases mapping resolution of stable QTLs through applying NGS-BSA in multiple genetic backgrounds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3223-3235. [PMID: 35904626 DOI: 10.1007/s00122-022-04181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In this study, we present AAQSP as an extension of existing NGS-BSA applications for identifying stable QTLs at high resolution. GhPAP16 and GhIQD14 fine mapped on chromosome D09 of upland cotton are identified as important candidate genes for lint percentage (LP). Bulked segregant analysis combined with next generation sequencing (NGS-BSA) allows rapid identification of genome sequence differences responsible for phenotypic variation. The NGS-BSA approach applied to crops mainly depends on comparing two bulked DNA samples of individuals from an F2 population. Since some F2 individuals still maintain high heterozygosity, heterosis will exert complications in pursuing NGS-BSA in such populations. In addition, the genetic background influences the stability of gene expression in crops, so some QTLs mapped in one segregating population may not be widely applied in crop improvement. The AAQSP (Association Analysis of QTL-seq on Semi-homologous Populations) reported in our study combines the optimized scheme of constructing BSA bulks with NGS-BSA analysis in two (or more) different parental genetic backgrounds for isolating the stable QTLs. With application of AAQSP strategy and construction of a high-density linkage map, we have successfully identified a QTL significantly related to lint percentage (LP) in cultivated upland cotton, followed by map-based cloning to dissect two candidate genes, GhPAP16 and GhIQD14. This study demonstrated that AAQSP can efficiently identify stable QTLs for complex traits of interest, and thus accelerate the genetic improvement of upland cotton and other crop plants.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Institute of Millet Research, Shanxi Agricultural University, Changzhi, China
| | - Xiaowei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daoran Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yujie Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Linjie Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuanming Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| |
Collapse
|
13
|
Chen L, Shen E, Zhao Y, Wang H, Wilson I, Zhu QH. The Conservation of Long Intergenic Non-Coding RNAs and Their Response to Verticillium dahliae Infection in Cotton. Int J Mol Sci 2022; 23:ijms23158594. [PMID: 35955726 PMCID: PMC9368808 DOI: 10.3390/ijms23158594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) have been demonstrated to be vital regulators of diverse biological processes in both animals and plants. While many lincRNAs have been identified in cotton, we still know little about the repositories and conservativeness of lincRNAs in different cotton species or about their role in responding to biotic stresses. Here, by using publicly available RNA-seq datasets from diverse sources, including experiments of Verticillium dahliae (Vd) infection, we identified 24,425 and 17,713 lincRNAs, respectively, in Gossypium hirsutum (Ghr) and G. barbadense (Gba), the two cultivated allotetraploid cotton species, and 6933 and 5911 lincRNAs, respectively, in G. arboreum (Gar) and G. raimondii (Gra), the two extant diploid progenitors of the allotetraploid cotton. While closely related subgenomes, such as Ghr_At and Gba_At, tend to have more conserved lincRNAs, most lincRNAs are species-specific. The majority of the synthetic and transcribed lincRNAs (78.2%) have a one-to-one orthologous relationship between different (sub)genomes, although a few of them (0.7%) are retained in all (sub)genomes of the four species. The Vd responsiveness of lincRNAs seems to be positively associated with their conservation level. The major functionalities of the Vd-responsive lincRNAs seem to be largely conserved amongst Gra, Ghr, and Gba. Many Vd-responsive Ghr-lincRNAs overlap with Vd-responsive QTL, and several lincRNAs were predicted to be endogenous target mimicries of miR482/2118, with a pair being highly conserved between Ghr and Gba. On top of the confirmation of the feature characteristics of the lincRNAs previously reported in cotton and other species, our study provided new insights into the conservativeness and divergence of lincRNAs during cotton evolution and into the relationship between the conservativeness and Vd responsiveness of lincRNAs. The study also identified candidate lincRNAs with a potential role in disease response for functional characterization.
Collapse
Affiliation(s)
- Li Chen
- School of Life Sciences, Westlake University, Hangzhou 310024, China;
| | - Enhui Shen
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China;
| | - Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.Z.); (H.W.)
| | - Hongmei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.Z.); (H.W.)
| | - Iain Wilson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
- Correspondence:
| |
Collapse
|
14
|
Wang G, Yue X, Feng Z, Cai L, Li N, Geng F, Xu C, Wang L, Wang D, Fahad S. Identification of
AtSND1
homologous
NAC
genes related to cotton fiber development, in silico analyses, and gene expression patterns. Food Energy Secur 2022. [DOI: 10.1002/fes3.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Guifeng Wang
- School of Resources and Environmental Engineering Wuhan University of Technology Wuhan Hubei China
- Shandong Cotton Production Technical Guidance Station Jinan Shandong China
| | - Xiaomin Yue
- College of Life Science Linyi University Linyi Shandong China
| | - Zongqin Feng
- College of Life Science Linyi University Linyi Shandong China
| | - Lijuan Cai
- College of Life Science Linyi University Linyi Shandong China
| | - Na Li
- College of Life Science Linyi University Linyi Shandong China
| | - Fang Geng
- College of Life Science Linyi University Linyi Shandong China
| | - Chuanjie Xu
- College of Life Science Linyi University Linyi Shandong China
| | - Lichen Wang
- College of Life Science Linyi University Linyi Shandong China
| | - Depeng Wang
- College of Life Science Linyi University Linyi Shandong China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops Hainan University Haikou China
- Department of Agronomy The University of Haripur Haripur Pakistan
| |
Collapse
|
15
|
Wang H, Umer MJ, Liu F, Cai X, Zheng J, Xu Y, Hou Y, Zhou Z. Genome-Wide Identification and Characterization of CPR5 Genes in Gossypium Reveals Their Potential Role in Trichome Development. Front Genet 2022; 13:921096. [PMID: 35754813 PMCID: PMC9213653 DOI: 10.3389/fgene.2022.921096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
Trichomes protect plants against insects, microbes, herbivores, and abiotic damages and assist seed dispersal. The function of CPR5 genes have been found to be involved in the trichome development but the research on the underlying genetic and molecular mechanisms are extremely limited. Herein, genome wide identification and characterization of CPR5 genes was performed. In total, 26 CPR5 family members were identified in Gossypium species. Phylogenetic analysis, structural characteristics, and synteny analysis of CPR5s showed the conserved evolution relationships of CPR5. The promoter analysis of CPR5 genes revealed hormone, stress, and development-related cis-elements. Gene ontology (GO) enrichment analysis showed that the CPR5 genes were largely related to biological regulation, developmental process, multicellular organismal process. Protein-protein interaction analysis predicted several trichome development related proteins (SIM, LGO, and GRL) directly interacting with CPR5 genes. Further, nine putative Gossypium-miRNAs were also identified, targeting Gossypium CPR5 genes. RNA-Seq data of G. arboreum (with trichomes) and G. herbaceum (with no trichomes) was used to perform the co-expression network analysis. GheCPR5.1 was identified as a hub gene in a co-expression network analysis. RT-qPCR of GheCPR5.1 gene in different tissues suggests that this gene has higher expressions in the petiole and might be a key candidate involved in the trichome development. Virus induced gene silencing of GheCPR5.1 (Ghe02G17590) confirms its role in trichome development and elongation. Current results provide proofs of the possible role of CPR5 genes and provide preliminary information for further studies of GheCPR5.1 functions in trichome development.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Jie Zheng
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China.,Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology /Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| |
Collapse
|
16
|
Han G, Li Y, Yang Z, Wang C, Zhang Y, Wang B. Molecular Mechanisms of Plant Trichome Development. FRONTIERS IN PLANT SCIENCE 2022; 13:910228. [PMID: 35720574 PMCID: PMC9198495 DOI: 10.3389/fpls.2022.910228] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
Plant trichomes, protrusions formed from specialized aboveground epidermal cells, provide protection against various biotic and abiotic stresses. Trichomes can be unicellular, bicellular or multicellular, with multiple branches or no branches at all. Unicellular trichomes are generally not secretory, whereas multicellular trichomes include both secretory and non-secretory hairs. The secretory trichomes release secondary metabolites such as artemisinin, which is valuable as an antimalarial agent. Cotton trichomes, also known as cotton fibers, are an important natural product for the textile industry. In recent years, much progress has been made in unraveling the molecular mechanisms of trichome formation in Arabidopsis thaliana, Gossypium hirsutum, Oryza sativa, Cucumis sativus, Solanum lycopersicum, Nicotiana tabacum, and Artemisia annua. Here, we review current knowledge of the molecular mechanisms underlying fate determination and initiation, elongation, and maturation of unicellular, bicellular and multicellular trichomes in several representative plants. We emphasize the regulatory roles of plant hormones, transcription factors, the cell cycle and epigenetic modifications in different stages of trichome development. Finally, we identify the obstacles and key points for future research on plant trichome development, and speculated the development relationship between the salt glands of halophytes and the trichomes of non-halophytes, which provides a reference for future studying the development of plant epidermal cells.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
17
|
Wang Y, Zhou Q, Meng Z, Abid MA, Wang Y, Wei Y, Guo S, Zhang R, Liang C. Multi-Dimensional Molecular Regulation of Trichome Development in Arabidopsis and Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:892381. [PMID: 35463426 PMCID: PMC9021843 DOI: 10.3389/fpls.2022.892381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Plant trichomes are specialized epidermal cells that are widely distributed on plant aerial tissues. The initiation and progression of trichomes are controlled in a coordinated sequence of multiple molecular events. During the past decade, major breakthroughs in the molecular understanding of trichome development were achieved through the characterization of various trichomes defective mutants and trichome-associated genes, which revealed a highly complex molecular regulatory network underlying plant trichome development. This review focuses on the recent millstone in plant trichomes research obtained using genetic and molecular studies, as well as 'omics' analyses in model plant Arabidopsis and fiber crop cotton. In particular, we discuss the latest understanding and insights into the underlying molecular mechanisms of trichomes formation at multiple dimensions, including at the chromatin, transcriptional, post-transcriptional, and post-translational levels. We summarize that the integration of multi-dimensional trichome-associated genes will enable us to systematically understand the molecular regulation network that landscapes the development of the plant trichomes. These advances will enable us to address the unresolved questions regarding the molecular crosstalk that coordinate concurrent and ordered the changes in cotton fiber initiation and progression, together with their possible implications for genetic improvement of cotton fiber.
Collapse
|
18
|
Niu H, Ge Q, Shang H, Yuan Y. Inheritance, QTLs, and Candidate Genes of Lint Percentage in Upland Cotton. Front Genet 2022; 13:855574. [PMID: 35450216 PMCID: PMC9016478 DOI: 10.3389/fgene.2022.855574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cotton (Gossypium spp.) is an important natural fiber plant. Lint percentage (LP) is one of the most important determinants of cotton yield and is a typical quantitative trait with high variation and heritability. Many cotton LP genetic linkages and association maps have been reported. This work summarizes the inheritance, quantitative trait loci (QTLs), and candidate genes of LP to facilitate LP genetic study and molecular breeding. More than 1439 QTLs controlling LP have been reported. Excluding replicate QTLs, 417 unique QTLs have been identified on 26 chromosomes, including 243 QTLs identified at LOD >3. More than 60 are stable, major effective QTLs that can be used in marker-assisted selection (MAS). More than 90 candidate genes for LP have been reported. These genes encode MYB, HOX, NET, and other proteins, and most are preferentially expressed during fiber initiation and elongation. A putative molecular regulatory model of LP was constructed and provides the foundation for the genetic study and molecular breeding of LP.
Collapse
Affiliation(s)
- Hao Niu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Haihong Shang, ; Youlu Yuan,
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Haihong Shang, ; Youlu Yuan,
| |
Collapse
|
19
|
Guo Y, Chen F, Luo J, Qiao M, Zeng W, Li J, Xu W. The DUF288 domain containing proteins GhSTLs participate in cotton fiber cellulose synthesis and impact on fiber elongation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111168. [PMID: 35151452 DOI: 10.1016/j.plantsci.2021.111168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Cotton is one of the most important economic crops in the world, with over 90 % cellulose in the mature fiber. However, the cellulose synthesis mechanism in cotton fibers is poorly understood. Here, we identified four DUF288 domain containing proteins, which we designated GhSTL1-4. These four GhSTL genes are highly expressed in 6 days post anthesis (dpa) and 20 dpa cotton fibers. They are localized to the Golgi apparatus, and can rescue the growth defects in primary cell wall (PCW) and secondary cell wall (SCW) of cellulose synthesis of the Arabidopsis stl1stl2 double mutant at varying degrees. Silencing of GhSTLs resulted in reduced cellulose content and shorter fibers. In addition, split-ubiquitin membrane yeast two-hybrid analysis showed that GhSTL1 and GhSTL4 can interact with PCW-related GhCesA6-1/6-3 and SCW-associated GhCesA7-1/7-2. GhSTL3 can interact with SCW-related GhCesA4-3. These interactions are further confirmed by firefly luciferase complementation imaging assay. Together, we demonstrate that GhSTLs can selectively interact with both the PCW and SCW-associated GhCesAs and impact on cellulose synthesis and fiber development. Our findings provide insights into the mechanism underlying cellulose biosynthesis in cotton fibers, and offer potential candidate genes to coordinate PCW and SCW cellulose synthesis of cotton fibers for developing elite cotton varieties with enhanced fiber quality.
Collapse
Affiliation(s)
- Yanjun Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Feng Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jingwen Luo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Mengfei Qiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wei Zeng
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Juan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wenliang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
20
|
Prasad P, Khatoon U, Verma RK, Aalam S, Kumar A, Mohapatra D, Bhattacharya P, Bag SK, Sawant SV. Transcriptional Landscape of Cotton Fiber Development and Its Alliance With Fiber-Associated Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:811655. [PMID: 35283936 PMCID: PMC8908376 DOI: 10.3389/fpls.2022.811655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Cotton fiber development is still an intriguing question to understand fiber commitment and development. At different fiber developmental stages, many genes change their expression pattern and have a pivotal role in fiber quality and yield. Recently, numerous studies have been conducted for transcriptional regulation of fiber, and raw data were deposited to the public repository for comprehensive integrative analysis. Here, we remapped > 380 cotton RNAseq data with uniform mapping strategies that span ∼400 fold coverage to the genome. We identified stage-specific features related to fiber cell commitment, initiation, elongation, and Secondary Cell Wall (SCW) synthesis and their putative cis-regulatory elements for the specific regulation in fiber development. We also mined Exclusively Expressed Transcripts (EETs) that were positively selected during cotton fiber evolution and domestication. Furthermore, the expression of EETs was validated in 100 cotton genotypes through the nCounter assay and correlated with different fiber-related traits. Thus, our data mining study reveals several important features related to cotton fiber development and improvement, which were consolidated in the "CottonExpress-omics" database.
Collapse
Affiliation(s)
- Priti Prasad
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uzma Khatoon
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Rishi Kumar Verma
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shahre Aalam
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | - Ajay Kumar
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
| | | | | | - Sumit K. Bag
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samir V. Sawant
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
21
|
Zou X, Ali F, Jin S, Li F, Wang Z. RNA-Seq with a novel glabrous-ZM24fl reveals some key lncRNAs and the associated targets in fiber initiation of cotton. BMC PLANT BIOLOGY 2022; 22:61. [PMID: 35114937 PMCID: PMC8815142 DOI: 10.1186/s12870-022-03444-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/24/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cotton fiber is an important natural resource for textile industry and an excellent model for cell biology study. Application of glabrous mutant cotton and high-throughput sequencing facilitates the identification of key genes and pathways for fiber development and cell differentiation and elongation. LncRNA is a type of ncRNA with more than 200 nt in length and functions in the ways of chromatin modification, transcriptional and post-transcriptional modification, and so on. However, the detailed lncRNA and associated mechanisms for fiber initiation are still unclear in cotton. RESULTS In this study, we used a novel glabrous mutant ZM24fl, which is endowed with higher somatic embryogenesis, and functions as an ideal receptor for cotton genetic transformation. Combined with the high-throughput sequencing, fatty acid pathway and some transcription factors such as MYB, ERF and bHLH families were identified the important roles in fiber initiation; furthermore, 3,288 lncRNAs were identified, and some differentially expressed lncRNAs were also analyzed. From the comparisons of ZM24_0 DPA vs ZM24_-2 DPA and fl_0 DPA vs ZM24_0 DPA, one common lncRNA MSTRG 2723.1 was found that function upstream of fatty acid metabolism, MBY25-mediating pathway, and pectin metabolism to regulate fiber initiation. In addition, other lncRNAs MSTRG 3390.1, MSTRG 48719.1, and MSTRG 31176.1 were also showed potential important roles in fiber development; and the co-expression analysis between lncRNAs and targets showed the distinct models of different lncRNAs and complicated interaction between lncRNAs in fiber development of cotton. CONCLUSIONS From the above results, a key lncRNA MSTRG 2723.1 was identified that might mediate some key genes transcription of fatty acid metabolism, MYB25-mediating pathway, and pectin metabolism to regulate fiber initiation of ZM24 cultivar. Co-expression analysis implied that some other important lncRNAs (e.g., MSTRG 3390.1, MSTRG 48719.1, and MSTRG 31176.1) were also showed the different regulatory model and interaction between them, which proposes some valuable clues for the lncRNAs associated mechanisms in fiber development.
Collapse
Affiliation(s)
- Xianyan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faiza Ali
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
22
|
Wu N, Yang J, Wang G, Ke H, Zhang Y, Liu Z, Ma Z, Wang X. Novel insights into water-deficit-responsive mRNAs and lncRNAs during fiber development in Gossypium hirsutum. BMC PLANT BIOLOGY 2022; 22:6. [PMID: 34979912 PMCID: PMC8722198 DOI: 10.1186/s12870-021-03382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The fiber yield and quality of cotton are greatly and periodically affected by water deficit. However, the molecular mechanism of the water deficit response in cotton fiber cells has not been fully elucidated. RESULTS In this study, water deficit caused a significant reduction in fiber length, strength, and elongation rate but a dramatic increase in micronaire value. To explore genome-wide transcriptional changes, fibers from cotton plants subjected to water deficit (WD) and normal irrigation (NI) during fiber development were analyzed by transcriptome sequencing. Analysis showed that 3427 mRNAs and 1021 long noncoding RNAs (lncRNAs) from fibers were differentially expressed between WD and NI plants. The maximum number of differentially expressed genes (DEGs) and lncRNAs (DERs) was identified in fibers at the secondary cell wall biosynthesis stage, suggesting that this is a critical period in response to water deficit. Twelve genes in cotton fiber were differentially and persistently expressed at ≥ five time points, suggesting that these genes are involved in both fiber development and the water-deficit response and could potentially be used in breeding to improve cotton resistance to drought stress. A total of 540 DEGs were predicted to be potentially regulated by DERs by analysis of coexpression and genomic colocation, accounting for approximately 15.76% of all DEGs. Four DERs, potentially acting as target mimics for microRNAs (miRNAs), indirectly regulated their corresponding DEGs in response to water deficit. CONCLUSIONS This work provides a comprehensive transcriptome analysis of fiber cells and a set of protein-coding genes and lncRNAs implicated in the cotton response to water deficit, significantly affecting fiber quality during the fiber development stage.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
23
|
Yang J, Gao L, Liu X, Zhang X, Wang X, Wang Z. Comparative transcriptome analysis of fiber and nonfiber tissues to identify the genes preferentially expressed in fiber development in Gossypium hirsutum. Sci Rep 2021; 11:22833. [PMID: 34819523 PMCID: PMC8613186 DOI: 10.1038/s41598-021-01829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cotton is an important natural fiber crop and economic crop worldwide. The quality of cotton fiber directly determines the quality of cotton textiles. Identifying cotton fiber development-related genes and exploring their biological functions will not only help to better understand the elongation and development mechanisms of cotton fibers but also provide a theoretical basis for the cultivation of new cotton varieties with excellent fiber quality. In this study, RNA sequencing technology was used to construct transcriptome databases for different nonfiber tissues (root, leaf, anther and stigma) and fiber developmental stages (7 days post-anthesis (DPA), 14 DPA, and 26 DPA) of upland cotton Coker 312. The sizes of the seven transcriptome databases constructed ranged from 4.43 to 5.20 Gb, corresponding to approximately twice the genome size of Gossypium hirsutum (2.5 Gb). Among the obtained clean reads, 83.32% to 88.22% could be compared to the upland cotton TM-1 reference genome. By analyzing the differential gene expression profiles of the transcriptome libraries of fiber and nonfiber tissues, we obtained 1205, 1135 and 937 genes with significantly upregulated expression at 7 DPA, 14 DPA and 26 DPA, respectively, and 124, 179 and 213 genes with significantly downregulated expression. Subsequently, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analyses were performed, which revealed that these genes were mainly involved in catalytic activity, carbohydrate metabolism, the cell membrane and organelles, signal transduction and other functions and metabolic pathways. Through gene annotation analysis, many transcription factors and genes related to fiber development were screened. Thirty-six genes were randomly selected from the significantly upregulated genes in fiber, and expression profile analysis was performed using qRT-PCR. The results were highly consistent with the gene expression profile analyzed by RNA-seq, and all of the genes were specifically or predominantly expressed in fiber. Therefore, our RNA sequencing-based comparative transcriptome analysis will lay a foundation for future research to provide new genetic resources for the genetic engineering of improved cotton fiber quality and for cultivating new transgenic cotton germplasms for fiber quality improvement.
Collapse
Affiliation(s)
- Jiangtao Yang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihua Gao
- School of Life Sciences, Langfang Normal University, Langfang, 065000, China
| | - Xiaojing Liu
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaochun Zhang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xujing Wang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhixing Wang
- Biotechnology Research Institute, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
24
|
Gao Y, Chen Y, Song Z, Zhang J, Lv W, Zhao H, Huo X, Zheng L, Wang F, Zhang J, Zhang T. Comparative Dynamic Transcriptome Reveals the Delayed Secondary-Cell-Wall Thickening Results in Altered Lint Percentage and Fiber Elongation in a Chromosomal Segment Substitution Line of Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:756434. [PMID: 34759948 PMCID: PMC8573213 DOI: 10.3389/fpls.2021.756434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Lint percentage (LP) is an important yield component in cotton that is usually affected by initial fiber number and cell wall thickness. To explore how fiber cell wall development affects LP, phenotypic identification and dynamic transcriptome analysis were conducted using a single segment substitution line of chromosome 15 (SL15) that harbors a major quantitative trait locus (QTL) for LP. Compared to its recurrent parent LMY22, SL15 did not differ in initial fiber number, but the fiber cell wall thickness and single-fiber weight decreased significantly, altering LP. The comparative transcriptome profiles revealed that the secondary cell wall (SCW) development phase of SL15 was relatively delayed. Meanwhile, the expression of genes related to cell expansion decreased more slightly in SL15 with fiber development, resulting in relatively higher expression at SL15_25D than at LMY22_25D. SCW development-related genes, such as GhNACs and GhMYBs, in the putative NAC-MYB-CESA network differentially expressed at SL15_25D, along with the lower expression of CESA6, CSLC12, and CSLA2. The substituted chromosomal interval was further investigated, and found 6 of 146 candidate genes were differentially expressed in all four cell development periods including 10, 15, 20 and 25 DPA. Genetic variation and co-expression analysis showed that GH_D01G0052, GH_D01G0099, GH_D01G0100, and GH_D01G0140 may be important candidate genes associated with qLP-C15-1. Our results provide novel insights into cell wall development and its relationship with LP, which is beneficial for lint yield and fiber quality improvement.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhangqiang Song
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wanyu Lv
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Han Zhao
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xuehan Huo
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ling Zheng
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Furong Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Plant Precision Breeding Academy, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Wang Q, Meng Q, Xu F, Chen Q, Ma C, Huang L, Li G, Luo M. Comparative Metabolomics Analysis Reveals Sterols and Sphingolipids Play a Role in Cotton Fiber Cell Initiation. Int J Mol Sci 2021; 22:ijms222111438. [PMID: 34768870 PMCID: PMC8583818 DOI: 10.3390/ijms222111438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023] Open
Abstract
Cotton fiber is a seed trichome that protrudes from the outer epidermis of cotton ovule on the day of anthesis (0 day past anthesis, 0 DPA). The initial number and timing of fiber cells are closely related to fiber yield and quality. However, the mechanism underlying fiber initiation is still unclear. Here, we detected and compared the contents and compositions of sphingolipids and sterols in 0 DPA ovules of Xuzhou142 lintless-fuzzless mutants (Xufl) and Xinxiangxiaoji lintless-fuzzless mutants (Xinfl) and upland cotton wild-type Xuzhou142 (XuFL). Nine classes of sphingolipids and sixty-six sphingolipid molecular species were detected in wild-type and mutants. Compared with the wild type, the contents of Sphingosine-1-phosphate (S1P), Sphingosine (Sph), Glucosylceramide (GluCer), and Glycosyl-inositol-phospho-ceramides (GIPC) were decreased in the mutants, while the contents of Ceramide (Cer) were increased. Detail, the contents of two Cer molecular species, d18:1/22:0 and d18:1/24:0, and two Phyto-Cer molecular species, t18:0/22:0 and t18:0/h22:1 were significantly increased, while the contents of all GluCer and GIPC molecular species were decreased. Consistent with this result, the expression levels of seven genes involved in GluCer and GIPC synthesis were decreased in the mutants. Furthermore, exogenous application of a specific inhibitor of GluCer synthase, PDMP (1-phenyl-2-decanoylamino-3-morpholino-1-propanol), in ovule culture system, significantly inhibited the initiation of cotton fiber cells. In addition, five sterols and four sterol esters were detected in wild-type and mutant ovules. Compared with the wild type, the contents of total sterol were not significantly changed. While the contents of stigmasterol and campesterol were significantly increased, the contents of cholesterol were significantly decreased, and the contents of total sterol esters were significantly increased. In particular, the contents of campesterol esters and stigmasterol esters increased significantly in the two mutants. Consistently, the expression levels of some sterol synthase genes and sterol ester synthase genes were also changed in the two mutants. These results suggested that sphingolipids and sterols might have some roles in the initiation of fiber cells. Our results provided a novel insight into the regulatory mechanism of fiber cell initiation.
Collapse
Affiliation(s)
- Qiaoling Wang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Qian Meng
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Fan Xu
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Qian Chen
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400716, China
| | - Caixia Ma
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Li Huang
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Guiming Li
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing 400716, China; (Q.W.); (Q.M.); (F.X.); (Q.C.); (C.M.); (L.H.); (G.L.)
- Correspondence: or
| |
Collapse
|
26
|
NGS Methodologies and Computational Algorithms for the Prediction and Analysis of Plant Circular RNAs. Methods Mol Biol 2021; 2362:119-145. [PMID: 34195961 DOI: 10.1007/978-1-0716-1645-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs derived from exonic, intronic, and intergenic regions from precursor messenger RNAs (pre-mRNA), where a noncanonical back-splicing event occurs, in which the 5' and 3' ends are attached by covalent bond. CircRNAs participate in the regulation of gene expression at the transcriptional and posttranscriptional level primarily as miRNA and RNA-binding protein (RBP) sponges, but also involved in the regulation of alternative RNA splicing and transcription. CircRNAs are widespread and abundant in plants where they have been involved in stress responses and development. Through the analysis of all publications in this field in the last five years, we can summarize that the identification of these molecules is carried out through next generation sequencing studies, where samples have been previously treated to eliminate DNA, rRNA, and linear RNAs as a means to enrich circRNAs. Once libraries are prepared, they are sequenced and subsequently studied from a bioinformatics point of view. Among the different tools for identifying circRNAs, we can highlight CIRI as the most used (in 60% of the published studies), as well as CIRCExplorer (20%) and find_circ (20%). Although it is recommended to use more than one program in combination, and preferably developed specifically to treat with plant samples, this is not always the case. It should also be noted that after identifying these circular RNAs, most of the authors validate their findings in the laboratory in order to obtain bona fide results.
Collapse
|
27
|
Huang G, Huang JQ, Chen XY, Zhu YX. Recent Advances and Future Perspectives in Cotton Research. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:437-462. [PMID: 33428477 DOI: 10.1146/annurev-arplant-080720-113241] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cotton is not only the world's most important natural fiber crop, but it is also an ideal system in which to study genome evolution, polyploidization, and cell elongation. With the assembly of five different cotton genomes, a cotton-specific whole-genome duplication with an allopolyploidization process that combined the A- and D-genomes became evident. All existing A-genomes seemed to originate from the A0-genome as a common ancestor, and several transposable element bursts contributed to A-genome size expansion and speciation. The ethylene production pathway is shown to regulate fiber elongation. A tip-biased diffuse growth mode and several regulatory mechanisms, including plant hormones, transcription factors, and epigenetic modifications, are involved in fiber development. Finally, we describe the involvement of the gossypol biosynthetic pathway in the manipulation of herbivorous insects, the role of GoPGF in gland formation, and host-induced gene silencing for pest and disease control. These new genes, modules, and pathways will accelerate the genetic improvement of cotton.
Collapse
Affiliation(s)
- Gai Huang
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China;
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jin-Quan Huang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Xian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
28
|
Zhu L, Dou L, Shang H, Li H, Yu J, Xiao G. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience 2021; 24:102199. [PMID: 33718844 PMCID: PMC7921840 DOI: 10.1016/j.isci.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
Inositol-1,4,5-trisphosphate (IP3) is an important second messenger and one of the products of phosphoinositide-specific phospholipase C (PIPLC)-mediated phosphatidylinositol (4,5) bisphosphate (PIP2) hydrolysis. However, the function of IP3 in cotton is unknown. Here, we characterized the function of GhPIPLC2D in cotton fiber elongation. GhPIPLC2D was preferentially expressed in elongating fibers. Suppression of GhPIPLC2D transcripts resulted in shorter fibers and decreased IP3 accumulation and ethylene biosynthesis. Exogenous application of linolenic acid (C18:3) and phosphatidylinositol (PI), the precursor of IP3, improved IP3 and myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6) accumulation, as well as ethylene biosynthesis. Moreover, fiber length in GhPIPLC2D-silenced plant was reduced after exogenous application of IP6 and ethylene. These results indicate that GhPIPLC2D positively regulates fiber elongation and IP3 promotes fiber elongation by enhancing ethylene biosynthesis. Our study broadens our understanding of the function of IP3 in cotton fiber elongation and highlights the possibility of cultivating better cotton varieties by manipulating GhPIPLC2D in the future. GhPIPLC2D positively regulates cotton fiber elongation GhPIPLC2D cleaves PIP2 into IP3, which could be phosphorylated to IP6 IP6 enhances fiber elongation via improving ethylene biosynthesis
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
29
|
Zheng X, Chen Y, Zhou Y, Shi K, Hu X, Li D, Ye H, Zhou Y, Wang K. Full-length annotation with multistrategy RNA-seq uncovers transcriptional regulation of lncRNAs in cotton. PLANT PHYSIOLOGY 2021; 185:179-195. [PMID: 33631798 PMCID: PMC8133545 DOI: 10.1093/plphys/kiaa003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 05/11/2023]
Abstract
Long noncoding RNAs (lncRNAs) are crucial factors during plant development and environmental responses. To build an accurate atlas of lncRNAs in the diploid cotton Gossypium arboreum, we combined Isoform-sequencing, strand-specific RNA-seq (ssRNA-seq), and cap analysis gene expression (CAGE-seq) with PolyA-seq and compiled a pipeline named plant full-length lncRNA to integrate multi-strategy RNA-seq data. In total, 9,240 lncRNAs from 21 tissue samples were identified. 4,405 and 4,805 lncRNA transcripts were supported by CAGE-seq and PolyA-seq, respectively, among which 6.7% and 7.2% had multiple transcription start sites (TSSs) and transcription termination sites (TTSs). We revealed that alternative usage of TSS and TTS of lncRNAs occurs pervasively during plant growth. Besides, we uncovered that many lncRNAs act in cis to regulate adjacent protein-coding genes (PCGs). It was especially interesting to observe 64 cases wherein the lncRNAs were involved in the TSS alternative usage of PCGs. We identified lncRNAs that are coexpressed with ovule- and fiber development-associated PCGs, or linked to GWAS single-nucleotide polymorphisms. We mapped the genome-wide binding sites of two lncRNAs with chromatin isolation by RNA purification sequencing. We also validated the transcriptional regulatory role of lnc-Ga13g0352 via virus-induced gene suppression assay, indicating that this lncRNA might act as a dual-functional regulator that either activates or inhibits the transcription of target genes.
Collapse
Affiliation(s)
- Xiaomin Zheng
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Yanjun Chen
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Yifan Zhou
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Keke Shi
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Xiao Hu
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Danyang Li
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Hanzhe Ye
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Yu Zhou
- College of Life Sciences, Wuhan University, Wuhan 430000, China
- Institute for Advanced Studies, Wuhan University, Wuhan 430000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan 430000, China
- Author for communication:
| |
Collapse
|
30
|
Wang G, Wang X, Zhang Y, Yang J, Li Z, Wu L, Wu J, Wu N, Liu L, Liu Z, Zhang M, Wu L, Zhang G, Ma Z. Dynamic characteristics and functional analysis provide new insights into long non-coding RNA responsive to Verticillium dahliae infection in Gossypium hirsutum. BMC PLANT BIOLOGY 2021; 21:68. [PMID: 33526028 PMCID: PMC7852192 DOI: 10.1186/s12870-021-02835-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Verticillium wilt is a widespread and destructive disease, which causes serious loss of cotton yield and quality. Long non-coding RNA (lncRNA) is involved in many biological processes, such as plant disease resistance response, through a variety of regulatory mechanisms, but their possible roles in cotton against Verticillium dahliae infection remain largely unclear. RESULTS Here, we measured the transcriptome of resistant G. hirsutum following infection by V. dahliae and 4277 differentially expressed lncRNAs (delncRNAs) were identified. Localization and abundance analysis revealed that delncRNAs were biased distribution on chromosomes. We explored the dynamic characteristics of disease resistance related lncRNAs in chromosome distribution, induced expression profiles, biological function, and these lncRNAs were divided into three categories according to their induced expression profiles. For the delncRNAs, 687 cis-acting pairs and 14,600 trans-acting pairs of lncRNA-mRNA were identified, which indicated that trans-acting was the main way of Verticillium wilt resistance-associated lncRNAs regulating target mRNAs in cotton. Analyzing the regulation pattern of delncRNAs revealed that cis-acting and trans-acting lncRNAs had different ways to influence target genes. Gene Ontology (GO) enrichment analysis revealed that the regulatory function of delncRNAs participated significantly in stimulus response process, kinase activity and plasma membrane components. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that delncRNAs participated in some important disease resistance pathways, such as plant-pathogen interaction, alpha-linolenic acid metabolism and plant hormone signal transduction. Additionally, 21 delncRNAs and 10 target genes were identified as being involved in alpha-linolenic acid metabolism associated with the biosynthesis of jasmonic acid (JA). Subsequently, we found that GhlncLOX3 might regulate resistance to V. dahliae through modulating the expression of GhLOX3 implicated in JA biosynthesis. Further functional analysis showed that GhlncLOX3-silenced seedlings displayed a reduced resistance to V. dahliae, with down-regulated expression of GhLOX3 and decreased content of JA. CONCLUSION This study shows the dynamic characteristics of delncRNAs in multiaspect, and suggests that GhlncLOX3-GhLOX3-JA network participates in response to V. dahliae invasion. Our results provide novel insights for genetic improvement of Verticillium wilt resistance in cotton using lncRNAs.
Collapse
Affiliation(s)
- Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Lizhu Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jinhua Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Nan Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Lixia Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Man Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
31
|
Chen W, Li Y, Zhu S, Fang S, Zhao L, Guo Y, Wang J, Yuan L, Lu Y, Liu F, Yao J, Zhang Y. A Retrotransposon Insertion in GhMML3_D12 Is Likely Responsible for the Lintless Locus li3 of Tetraploid Cotton. FRONTIERS IN PLANT SCIENCE 2020; 11:593679. [PMID: 33324436 PMCID: PMC7725795 DOI: 10.3389/fpls.2020.593679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/09/2020] [Indexed: 05/31/2023]
Abstract
Cotton (Gossypium) seed fibers can be divided into lint (long) or fuzz (very short). Using fiberless (fuzzless-lintless) mutants, the lint initiation gene Li3 was identified by map-based cloning. The gene is an R2R3-MYB transcription factor located on chromosome D12 (GhMML3_D12). Sequence analysis revealed that li3 is a loss-of-function allele containing a retrotransposon insertion in the second exon that completely blocks the gene’s expression. The genetic loci n2 and n3 underlying the recessive fuzzless phenotype in Gossypium hirsutum were also mapped. The genomic location of n3 overlapped with that of the dominant fuzzless locus N1, and n3 appeared to be a loss-of-function allele caused by a single nucleotide polymorphism (SNP) mutation in the coding region of GhMML3_A12. The n2 allele was found to be co-located with li3 and originated from G. babardense. n2 and li3 are possibly the multiple alleles of the GhMML3_D12 gene. Genetic analysis showed that Li3 and N3 are a pair of homologs with additive effects for the initiation of fibers (fuzz or lint). In addition, the presence of another locus was speculated, and it appeared to show an inhibitory effect on the expression of GhMML3. These findings provide new information about the genetic factors affecting the initiation of fibers in cotton.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lanjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junyi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Youjun Lu
- School of Biological Science and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
32
|
Cheng G, Zhang L, Wei H, Wang H, Lu J, Yu S. Transcriptome Analysis Reveals a Gene Expression Pattern Associated with Fuzz Fiber Initiation Induced by High Temperature in Gossypium barbadense. Genes (Basel) 2020; 11:genes11091066. [PMID: 32927688 PMCID: PMC7565297 DOI: 10.3390/genes11091066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/27/2022] Open
Abstract
Gossypium barbadense is an important source of natural textile fibers, as is Gossypium hirsutum. Cotton fiber development is often affected by various environmental factors, such as abnormal temperature. However, little is known about the underlying mechanisms of temperature regulating the fuzz fiber initiation. In this study, we reveal that high temperatures (HT) accelerate fiber development, improve fiber quality, and induced fuzz initiation of a thermo-sensitive G. barbadense variety L7009. It was proved that fuzz initiation was inhibited by low temperature (LT), and 4 dpa was the stage most susceptible to temperature stress during the fuzz initiation period. A total of 43,826 differentially expressed genes (DEGs) were identified through comparative transcriptome analysis. Of these, 9667 were involved in fiber development and temperature response with 901 transcription factor genes and 189 genes related to plant hormone signal transduction. Further analysis of gene expression patterns revealed that 240 genes were potentially involved in fuzz initiation induced by high temperature. Functional annotation revealed that the candidate genes related to fuzz initiation were significantly involved in the asparagine biosynthetic process, cell wall biosynthesis, and stress response. The expression trends of sixteen genes randomly selected from the RNA-seq data were almost consistent with the results of qRT-PCR. Our study revealed several potential candidate genes and pathways related to fuzz initiation induced by high temperature. This provides a new view of temperature-induced tissue and organ development in Gossypium barbadense.
Collapse
Affiliation(s)
- Gongmin Cheng
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Longyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
- College of Agronomy, Hebei Agricultural University, Baoding 071001, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
| | - Shuxun Yu
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (L.Z.); (H.W.); (H.W.); (J.L.)
- Correspondence: ; Tel.: +86-188-0372-9718
| |
Collapse
|
33
|
Chan H, Nai-He Y. A pretreatment method of wastewater based on artificial intelligence and fuzzy neural network system. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020. [DOI: 10.3233/jifs-179945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A pretreatment method of industrial saline wastewater based on Artificial Intelligence based fuzzy neural network analysis was proposed to improve the pretreatment accuracy of industrial saline wastewater. This method uses a four-layer AI fuzzy neural network model and proposes a graded fuzzy neural network model for pretreatment method of industrial saline wastewater, it includes input layer, fuzzification layer, fuzzy logical layer and output layer, and designs the framework and calculation mode of the fuzzy function block and the neural network module. Finally, the dynamic simulation experiments of dissolved oxygen control in the fifth zone and nitrate nitrogen control in the second zone are carried out based on the simulation benchmark model (BSM1) platform. The experimental results show that this approach can effectively raise the adaptive control accuracy of the system compared with PID, feed forward neural network and conventional recurrent neural network.
Collapse
Affiliation(s)
- He Chan
- Department of Food and Biochemical Engineering, Yantai Vocational College, Yantai, Shandong, China
| | - Yan Nai-He
- Office of Quality Management, Yantai Vocational College, Yantai, Shandong, China
| |
Collapse
|
34
|
Wang L, Wang G, Long L, Altunok S, Feng Z, Wang D, Khawar KM, Mujtaba M. Understanding the role of phytohormones in cotton fiber development through omic approaches; recent advances and future directions. Int J Biol Macromol 2020; 163:1301-1313. [PMID: 32679330 DOI: 10.1016/j.ijbiomac.2020.07.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/27/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023]
Abstract
Cotton is among the most important fiber crops for the textile-based industry, thanks to its cellulose-rich mature fibers. The fiber initiation and elongation are one of the best models for deciphering mechanisms of single-cell differentiation and growth, that also target of fiber development programs. During the last couple of decades, high yielding omics approaches (genomics, transcriptomics, and proteomics), have helped in the identification of several genes and gene products involved in fiber development along with functional relationship to phytohormones. For example, MYB transcription factor family and Sus gene family have been evidenced by controlling cotton fiber initiation. Most importantly, the biosynthesis, responses, and transporting of phytohormones is documented to participate in the initiation of cotton fibers. Herein, in this review, the reliable genetic evidence by manipulating the above genes in cotton have been summarized to describe the relationships among key phytohormones, transcription factors, proteins, and downstream fiber growth-related genes such as Sus. The effect of other important factors such as ROS, fatty acid metabolism, and actin (globular multi-functional proteins) over fiber development has also been discussed. The challenges and deficiencies in the research of cotton fiber development have been mentioned along with a future perspective to discover new crucial genes using multiple omics analysis.
Collapse
Affiliation(s)
- Lichen Wang
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Guifeng Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China; Shandong Cotton Production Technical Guidance Station, Jinan, Shandong 250100, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, Henan 475004, China
| | - Sumeyye Altunok
- Institute of Biotechnology, Ankara University, 06110 Ankara, Turkey
| | - Zongqin Feng
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Depeng Wang
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Khalid Mahmood Khawar
- Department of Field Crops, Faculty of Agriculture, Ankara University, 06100 Ankara, Turkey
| | - Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, 06110 Ankara, Turkey.
| |
Collapse
|
35
|
Gao W, Xu F, Long L, Li Y, Zhang J, Chong L, Botella JR, Song C. The gland localized CGP1 controls gland pigmentation and gossypol accumulation in cotton. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1573-1584. [PMID: 31883409 PMCID: PMC7292540 DOI: 10.1111/pbi.13323] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 05/21/2023]
Abstract
Pigment glands, also known as black glands or gossypol glands, are specific for Gossypium spp. These glands strictly confine large amounts of secondary metabolites to the lysigenous cavity, leading to the glands' intense colour and providing defence against pests and pathogens. This study performed a comparative transcriptome analysis of glanded versus glandless cotton cultivars. Twenty-two transcription factors showed expression patterns associated with pigment glands and were characterized. Phenotypic screening of the genes, via virus-induced gene silencing, showed an apparent disappearance of pigmented glands after the silencing of a pair of homologous MYB-encoding genes in the A and D genomes (designated as CGP1). Further study showed that CGP1a encodes an active transcription factor, which is specifically expressed in the gland structure, while CGP1d encodes a non-functional protein due to a fragment deletion, which causes premature termination. RNAi-mediated silencing and CRISPR knockout of CGP1 in glanded cotton cultivars generated a glandless-like phenotype, similar to the dominant glandless mutant Gl2e . Microscopic analysis showed that CGP1 knockout did not affect gland structure or density, but affected gland pigmentation. The levels of gossypol and related terpenoids were significantly decreased in cgp1 mutants, and a number of gossypol biosynthetic genes were strongly down-regulated. CGP1 is located in the nucleus where it interacts with GoPGF, a critical transcription factor for gland development and gossypol synthesis. Our data suggest that CGP1 and GoPGF form heterodimers to control the synthesis of gossypol and other secondary metabolites in cotton.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Cotton BiologySchool of Life ScienceHenan UniversityKaifengChina
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Fu‐Chun Xu
- State Key Laboratory of Cotton BiologySchool of Life ScienceHenan UniversityKaifengChina
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Lu Long
- State Key Laboratory of Cotton BiologySchool of Life ScienceHenan UniversityKaifengChina
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Yang Li
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Jun‐Li Zhang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Jose Ramon Botella
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
- School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneQldAustralia
| | - Chun‐Peng Song
- State Key Laboratory of Cotton BiologySchool of Life ScienceHenan UniversityKaifengChina
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| |
Collapse
|
36
|
Patel JD, Huang X, Lin L, Das S, Chandnani R, Khanal S, Adhikari J, Shehzad T, Guo H, Roy-Zokan EM, Rong J, Paterson AH. The Ligon lintless -2 Short Fiber Mutation Is Located within a Terminal Deletion of Chromosome 18 in Cotton. PLANT PHYSIOLOGY 2020; 183:277-288. [PMID: 32102829 PMCID: PMC7210651 DOI: 10.1104/pp.19.01531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/28/2020] [Indexed: 05/06/2023]
Abstract
Extreme elongation distinguishes about one-fourth of cotton (Gossypium sp.) seed epidermal cells as "lint" fibers, useful for the textile industry, from "fuzz" fibers (<5 mm). Ligon lintless-2 (Li 2 ), a dominant mutation that results in no lint fiber but normal fuzz fiber, offers insight into pathways and mechanisms that differentiate spinnable cotton from its progenitors. A genetic map developed using 1,545 F2 plants showed that marker CISP15 was 0.4 cM from Li 2 , and "dominant" simple sequence repeat (SSR) markers (i.e. with null alleles in the Li 2 genotype) SSR7 and SSR18 showed complete linkage with Li 2 Nonrandom distribution of markers with null alleles suggests that the Li 2 phenotype results from a 176- to 221-kb deletion of the terminal region of chromosome 18 that may have been masked in prior pooled-sample mapping strategies. The deletion includes 10 genes with putative roles in fiber development. Two Glycosyltransferase Family 1 genes showed striking expression differences during elongation of wild-type versus Li 2 fiber, and virus-induced silencing of these genes in the wild type induced Li 2 -like phenotypes. Further, at least 7 of the 10 putative fiber development genes in the deletion region showed higher expression in the wild type than in Li 2 mutants during fiber development stages, suggesting coordinated regulation of processes in cell wall development and cell elongation, consistent with the hypothesis that some fiber-related quantitative trait loci comprise closely spaced groups of functionally diverse but coordinately regulated genes.
Collapse
Affiliation(s)
- Jinesh D Patel
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Xianzhong Huang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
- Plant Genomics Laboratory, College of Life Sciences, Shihezi University, 832003 Shihezi, China
| | - Lifeng Lin
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Sayan Das
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Rahul Chandnani
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Sameer Khanal
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Jeevan Adhikari
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Tariq Shehzad
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Eileen M Roy-Zokan
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| | - Junkang Rong
- Zhejiang A&F University, Linan, Hangzhou 311300, Zhejiang, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
37
|
Zaidi SS, Naqvi RZ, Asif M, Strickler S, Shakir S, Shafiq M, Khan AM, Amin I, Mishra B, Mukhtar MS, Scheffler BE, Scheffler JA, Mueller LA, Mansoor S. Molecular insight into cotton leaf curl geminivirus disease resistance in cultivated cotton (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:691-706. [PMID: 31448544 PMCID: PMC7004920 DOI: 10.1111/pbi.13236] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Cultivated cotton (Gossypium hirsutum) is the most important fibre crop in the world. Cotton leaf curl disease (CLCuD) is the major limiting factor and a threat to textile industry in India and Pakistan. All the local cotton cultivars exhibit moderate to no resistance against CLCuD. In this study, we evaluated an exotic cotton accession Mac7 as a resistance source to CLCuD by challenging it with viruliferous whiteflies and performing qPCR to evaluate the presence/absence and relative titre of CLCuD-associated geminiviruses/betasatellites. The results indicated that replication of pathogenicity determinant betasatellite is significantly attenuated in Mac7 and probably responsible for resistance phenotype. Afterwards, to decipher the genetic basis of CLCuD resistance in Mac7, we performed RNA sequencing on CLCuD-infested Mac7 and validated RNA-Seq data with qPCR on 24 independent genes. We performed co-expression network and pathway analysis for regulation of geminivirus/betasatellite-interacting genes. We identified nine novel modules with 52 hubs of highly connected genes in network topology within the co-expression network. Analysis of these hubs indicated the differential regulation of auxin stimulus and cellular localization pathways in response to CLCuD. We also analysed the differential regulation of geminivirus/betasatellite-interacting genes in Mac7. We further performed the functional validation of selected candidate genes via virus-induced gene silencing (VIGS). Finally, we evaluated the genomic context of resistance responsive genes and found that these genes are not specific to A or D sub-genomes of G. hirsutum. These results have important implications in understanding CLCuD resistance mechanism and developing a durable resistance in cultivated cotton.
Collapse
Affiliation(s)
- Syed Shan‐e‐Ali Zaidi
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Boyce Thompson InstituteIthacaNYUSA
- Plant Genetics LabTERRA Teaching and Research CenterGembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Boyce Thompson InstituteIthacaNYUSA
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | | | - Sara Shakir
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Boyce Thompson InstituteIthacaNYUSA
- Plant Genetics LabTERRA Teaching and Research CenterGembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
| | - Muhammad Shafiq
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
- Present address:
Department of BiotechnologyUniversity of OkaraOkaraPakistan
| | - Abdul Manan Khan
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| | - Bharat Mishra
- Department of BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - M. Shahid Mukhtar
- Department of BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Brian E. Scheffler
- Genomics and Bioinformatics Research UnitUnited States Department of Agriculture‐Agricultural Research Service (USDA‐ARS)StonevilleMSUSA
| | - Jodi A. Scheffler
- Crop Genetics Research UnitUnited States Department of Agriculture‐Agricultural Research Service (USDA‐ARS)StonevilleMSUSA
| | | | - Shahid Mansoor
- National Institute for Biotechnology and Genetic EngineeringFaisalabadPakistan
| |
Collapse
|
38
|
Integrative Analysis of the lncRNA and mRNA Transcriptome Revealed Genes and Pathways Potentially Involved in the Anther Abortion of Cotton ( Gossypium hirsutum L.). Genes (Basel) 2019; 10:genes10120947. [PMID: 31756984 PMCID: PMC6947465 DOI: 10.3390/genes10120947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Cotton plays an important role in the economy of many countries. Many studies have revealed that numerous genes and various metabolic pathways are involved in anther development. In this research, we studied the differently expressed mRNA and lncRNA during the anther development of cotton between the cytoplasmic male sterility (CMS) line, C2P5A, and the maintainer line, C2P5B, using RNA-seq analysis. We identified 17,897 known differentially expressed (DE) mRNAs, and 865 DE long noncoding RNAs (lncRNAs) that corresponded to 1172 cis-target genes at three stages of anther development using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of DE mRNAs; and cis-target genes of DE lncRNAs probably involved in the degradation of tapetum cells, microspore development, pollen development, and in the differentiation, proliferation, and apoptosis of the anther cell wall in cotton. Of these DE genes, LTCONS_00105434, LTCONS_00004262, LTCONS_00126105, LTCONS_00085561, and LTCONS_00085561, correspond to cis-target genes Ghir_A09G011050.1, Ghir_A01G005150.1, Ghir_D05G003710.2, Ghir_A03G016640.1, and Ghir_A12G005100.1, respectively. They participate in oxidative phosphorylation, flavonoid biosynthesis, pentose and glucuronate interconversions, fatty acid biosynthesis, and MAPK signaling pathway in plants, respectively. In summary, the transcriptomic data indicated that DE lncRNAs and DE mRNAs were related to the anther development of cotton at the pollen mother cell stage, tetrad stage, and microspore stage, and abnormal expression could lead to anther abortion, resulting in male sterility of cotton.
Collapse
|
39
|
Zhang B, Zhang X, Zhang M, Guo L, Qi T, Wang H, Tang H, Qiao X, Shahzad K, Xing C, Wu J. Transcriptome Analysis Implicates Involvement of Long Noncoding RNAs in Cytoplasmic Male Sterility and Fertility Restoration in Cotton. Int J Mol Sci 2019; 20:ijms20225530. [PMID: 31698756 PMCID: PMC6888562 DOI: 10.3390/ijms20225530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
The cytoplasmic male sterility (CMS)/restorer-of-fertility system is an important tool to exploit heterosis during commercially hybrid seed production. The importance of long noncoding RNAs (lncRNAs) in plant development is recognized, but few analyses of lncRNAs during anther development of three-line hybrid cotton (CMS-D2 line A, maintainer line B, restorer-of-fertility line R) have been reported. Here, we performed transcriptome sequencing during anther development in three-line hybrid cotton. A total of 80,695 lncRNAs were identified, in which 43,347 and 44,739 lncRNAs were differentially expressed in A–B and A–R comparisons, respectively. These lncRNAs represent functional candidates involved in CMS and fertility restoration. GO analysis indicated that cellular hormone metabolic processes and oxidation–reduction reaction processes might be involved in CMS, and cellular component morphogenesis and small molecular biosynthetic processes might participate in fertility restoration. Additionally, 63 lncRNAs were identified as putative precursors of 35 miRNAs, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed a similar expression pattern to RNA-seq data. Furthermore, construction of lncRNA regulatory networks indicated that several miRNA–lncRNA–mRNA networks might be involved in CMS and fertility restoration. Our findings provide systematic identification of lncRNAs during anther development and lays a solid foundation for the regulatory mechanisms and utilization in hybrid cotton breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chaozhu Xing
- Correspondence: (C.X.); (J.W.); Tel.: +86-372-256-2371 (C.X.); +86-372-256-2288 (J.W.)
| | - Jianyong Wu
- Correspondence: (C.X.); (J.W.); Tel.: +86-372-256-2371 (C.X.); +86-372-256-2288 (J.W.)
| |
Collapse
|
40
|
Zhang X, Dong J, Deng F, Wang W, Cheng Y, Song L, Hu M, Shen J, Xu Q, Shen F. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC PLANT BIOLOGY 2019; 19:459. [PMID: 31666019 PMCID: PMC6822370 DOI: 10.1186/s12870-019-2088-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/20/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Long non-coding (lnc) RNAs are a class of functional RNA molecules greater than 200 nucleotides in length, and lncRNAs play important roles in various biological regulatory processes and response to the biotic and abiotic stresses. LncRNAs associated with salt stress in cotton have been identified through RNA sequencing, but the function of lncRNAs has not been reported. We previously identified salt stress-related lncRNAs in cotton (Gossypium spp.), and discovered the salt-related lncRNA-lncRNA973. RESULTS In this study, we identified the expression level, localization, function, and preliminary mechanism of action of lncRNA973. LncRNA973, which was localized in the nucleus, was expressed at a low level under nonstress conditions but can be significantly increased by salt treatments. Here lncRNA973 was transformed into Arabidopsis and overexpressed. Along with the increased expression compared with wild type under salt stress conditions in transgenic plants, the seed germination rate, fresh weights and root lengths of the transgenic plants increased. We also knocked down the expression of lncRNA973 using virus-induced gene silencing technology. The lncRNA973 knockdown plants wilted, and the leaves became yellowed and dropped under salt-stress conditions, indicating that the tolerance to salt stress had decreased compared with wild type. LncRNA973 may be involved in the regulation of reactive oxygen species-scavenging genes, transcription factors and genes involved in salt stress-related processes in response to cotton salt stress. CONCLUSIONS LncRNA973 was localized in the nucleus and its expression was increased by salt treatment. The lncRNA973-overexpression lines had increased salt tolerance compared with the wild type, while the lncRNA973 knockdown plants had reduced salt tolerance. LncRNA973 regulated cotton responses to salt stress by modulating the expression of a series of salt stress-related genes. The data provides a basis for further studies on the mechanisms of lncRNA973-associated responses to salt stress in cotton.
Collapse
Affiliation(s)
- Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Fenni Deng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Lirong Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Mengjiao Hu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Jian Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Qingjiang Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
41
|
Zhu L, Zheng B, Song W, Tao C, Jin X, Li H. Comparative Proteomic Analysis of Molecular Differences between Leaves of Wild-Type Upland Cotton and Its Fuzzless- Lintless Mutant. Molecules 2019; 24:molecules24203769. [PMID: 31635060 PMCID: PMC6832260 DOI: 10.3390/molecules24203769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023] Open
Abstract
Fuzzless-lintless mutant (fl) ovules of upland cotton have been used to investigate cotton fiber development for decades. However, the molecular differences of green tissues between fl and wild-type (WT) cotton were barely reported. Here, we found that gossypol content, the most important secondary metabolite of cotton leaves, was higher in Gossypium hirsutum L. cv Xuzhou-142 (Xu142) WT than in fl. Then, we performed comparative proteomic analysis of the leaves from Xu142 WT and its fl. A total of 4506 proteins were identified, of which 103 and 164 appeared to be WT- and fl-specific, respectively. In the 4239 common-expressed proteins, 80 and 74 were preferentially accumulated in WT and fl, respectively. Pathway enrichment analysis and protein–protein interaction network analysis of both variety-specific and differential abundant proteins showed that secondary metabolism and chloroplast-related pathways were significantly enriched. Quantitative real-time PCR confirmed that the expression levels of 12 out of 16 selected genes from representative pathways were consistent with their protein accumulation patterns. Further analyses showed that the content of chlorophyll a in WT, but not chlorophyll b, was significantly increased compared to fl. This work provides the leaf proteome profiles of Xu142 and its fl mutant, indicating the necessity of further investigation of molecular differences between WT and fl leaves.
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Bowen Zheng
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Wangyang Song
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Chengcheng Tao
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
42
|
Wang Z, Yang Z, Li F. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1706-1722. [PMID: 31111642 PMCID: PMC6686129 DOI: 10.1111/pbi.13167] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 05/11/2023]
Abstract
Trichomes are specialized epidermal cells and a vital plant organ that protect plants from various harms and provide valuable resources for plant development and use. Some key genes related to trichomes have been identified in the model plant Arabidopsis thaliana through glabrous mutants and gene cloning, and the hub MYB-bHLH-WD40, consisting of several factors including GLABRA1 (GL1), GL3, TRANSPARENT TESTA GLABRA1 (TTG1), and ENHANCER OF GLABRA3 (EGL3), has been established. Subsequently, some upstream transcription factors, phytohormones and epigenetic modification factors have also been studied in depth. In cotton, a very important fibre and oil crop globally, in addition to the key MYB-like factors, more important regulators and potential molecular mechanisms (e.g. epigenetic modifiers, distinct metabolic pathways) are being exploited during different fibre developmental stages. This occurs due to increased cotton research, resulting in the discovery of more complex regulation mechanisms from the allotetraploid genome of cotton. In addition, some conservative as well as specific mediators are involved in trichome development in other species. This study summarizes molecular mechanisms in trichome development and provides a detailed comparison of the similarities and differences between Arabidopsis and cotton, analyses the possible reasons for the discrepancy in identification of regulators, and raises future questions and foci for understanding trichome development in more detail.
Collapse
Affiliation(s)
- Zhi Wang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zuoren Yang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Fuguang Li
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
43
|
Datta R, Paul S. Long non-coding RNAs: Fine-tuning the developmental responses in plants. J Biosci 2019; 44:77. [PMID: 31502555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant developmental biology is associated with various gene regulatory pathways involved in different phases of their life cycle. In course of development, growth and differentiation of different organs in plants are regulated by specific sets of gene expression. With the advances in genomic and bioinformatic techniques, particularly high-throughput sequencing technology, many transcriptional units with no protein-coding potential have been discovered. Previously thought to be the dark matters of genome, long non-coding RNAs (lncRNAs) are gradually gaining importance as crucial players in gene regulation during different developmental phases. Some lncRNAs, showing complementarity to microRNAs (miRNAs), are used as endogenous target mimics of specific miRNA family. A number of lncRNAs can also act as natural antisense transcripts to attenuate the expression of coding genes. Although lncRNA-mediated regulations have extensively been studied in animals, plant lncRNA research is still in its initial phase. The present review highlights the regulatory mechanism and different physiological aspects of lncRNAs in plant development. In plants, lncRNAs are found to be associated with a number of plant developmental functions such as lateral root development, vernalization, photomorphogenesis, pollen development, fiber development and nodulation. Understanding these potent roles of lncRNAs in plant development can further provide novel tools for crop improvement programs in future.
Collapse
Affiliation(s)
- Riddhi Datta
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, Rajarhat, Kolkata 700 157, India
| | | |
Collapse
|
44
|
Qin Y, Sun H, Hao P, Wang H, Wang C, Ma L, Wei H, Yu S. Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long- and short-fiber cotton (Gossypium hirsutum L.) lines. BMC Genomics 2019; 20:633. [PMID: 31382896 PMCID: PMC6683361 DOI: 10.1186/s12864-019-5986-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
Background Improving the yield and fiber quality of upland cotton is a goal of plant breeders. However, increasing the yield and quality of cotton fibers is becoming more urgent. While the growing human population needs more cotton fiber, climate change is reducing the amount of land on which cotton can be planted, or making it difficult to ensure that water and other resources will be available in optimal quantities. The most logical means of improving yield and quality is understanding and manipulating the genes involved. Here, we used comparative transcriptomics to explore differences in gene expression between long- and short-fiber cotton lines to identify candidate genes useful for cotton improvement. Results Light and electron microscopy revealed that the initial fiber density was significantly greater in our short-fiber group (SFG) than in our long-fiber group (LFG). Compared with the SFG fibers, the LFG fibers were longer at all developmental stages. Comparison of the LFG and SFG transcriptomes revealed a total of 3538 differentially expressed genes (DEGs). Notably, at all three developmental stages examined, two expression patterns, consistently downregulated (profile 0) and consistently upregulated (profile 7), were identified, and both were significantly enriched in the SFG and LFG. Twenty-two DEGs known to be involved in fiber initiation were detected in profile 0, while 31 DEGs involved in fiber elongation were detected in profile 7. Functional annotation suggested that these DEGs, which included ERF1, TUA2, TUB1, and PER64, affect fiber elongation by participating in the ethylene response, microtubule synthesis, and/or the peroxidase (POD) catalytic pathway. qRT-PCR was used to confirm the RNA sequencing results for select genes. Conclusions A comparison of SFG and LFG transcription profiles revealed modest but important differences in gene expression between the groups. Notably, our results confirm those of previous studies suggesting that genes involved in ethylene, tubulin, and POD pathways play important roles in fiber development. The 22 consistently downregulated DEGs involved in fiber initiation and the 31 consistently upregulated genes involved in fiber elongation are seemingly good candidate genes for improving fiber initiation and elongation in cotton. Electronic supplementary material The online version of this article (10.1186/s12864-019-5986-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Huiru Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Congcong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China.
| |
Collapse
|
45
|
|
46
|
Long L, Guo DD, Gao W, Yang WW, Hou LP, Ma XN, Miao YC, Botella JR, Song CP. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. PLANT METHODS 2018; 14:85. [PMID: 30305839 PMCID: PMC6169012 DOI: 10.1186/s13007-018-0353-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND When developing CRISPR/Cas9 systems for crops, it is crucial to invest time characterizing the genome editing efficiency of the CRISPR/Cas9 cassettes, especially if the transformation system is difficult or time-consuming. Cotton is an important crop for the production of fiber, oil, and biofuel. However, the cotton stable transformation is usually performed using Agrobacterium tumefaciens taking between 8 and 12 months to generate T0 plants. Furthermore, cotton is a heterotetraploid and targeted mutagenesis is considered to be difficult as many genes are duplicated in this complex genome. The application of CRISPR/Cas9 in cotton is severely hampered by the long and technically challenging genetic transformation process, making it imperative to maximize its efficiency. RESULTS In this study, we provide a new system to evaluate and validate the efficiency of CRISPR/Cas9 cassettes in cotton using a transient expression system. By using this system, we could select the most effective CRISPR/Cas9 cassettes before the stable transformation. We have also optimized the existing cotton CRISPR/Cas9 system to achieve vastly improved mutagenesis efficiency by incorporating an endogenous GhU6 promoter that increases sgRNA expression levels over the Arabidopsis AtU6-29 promoter. The 300 bp GhU6.3 promoter was cloned and validated using the transient expression system. When sgRNAs were expressed under the control of the GhU6.3 promoter in CRISPR/Cas9 cassettes, expression levels were 6-7 times higher than those provided by the AtU6-29 promoter and CRISPR/Cas9-mediated mutation efficiency was improved 4-6 times. CONCLUSIONS This study provides essential improvements to maximize CRISPR/Cas9-mediated mutation efficiency by reducing risk and workload for the application of CRISPR/Cas9 approaches in the targeted mutagenesis of cotton.
Collapse
Affiliation(s)
- Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Dan-Dan Guo
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Wen-Wen Yang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Li-Pan Hou
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Xiao-Nan Ma
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Yu-Chen Miao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| | - Jose Ramon Botella
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072 Australia
| | - Chun-Peng Song
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004 Henan People’s Republic of China
| |
Collapse
|