1
|
Liu X, Ji P, Liao J, Duan X, Luo Z, Yu X, Jiang C, Xu C, Yang H, Peng B, Jiang K. CRISPR/Cas knockout of the NADPH oxidase gene OsRbohB reduces ROS overaccumulation and enhances heat stress tolerance in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:336-351. [PMID: 39485884 PMCID: PMC11772341 DOI: 10.1111/pbi.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/26/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Heat stress (HS) has become a major factor limiting crop yields worldwide. HS inhibits plant growth by ROS accumulation, and NADPH oxidases (Rbohs) are major ROS producers in plants. Here, we show that CRISPR/Cas knockout of the OsRbohB (OsRbohB-KO) significantly increased rice tolerance to HS imposed at various different growth stages. We produced OsRbohB-KO and OsRbohB-overexpression (OsRbohB-OE) lines in a japonica cultivar, Nipponbare. Compared with nontransgenic wild-type (WT) plants, the OsRbohB-KO lines showed a significant increase in chlorophyll contents (5.2%-58.0%), plant growth (48.2%-65.6%) and grain yield (8.9%-20.5%), while reducing HS-induced ROS accumulation in seeds (21.3%-33.0%), seedlings (13.0%-30.4%), anthers (13.1%-20.3%) and grains (9.7%-22.1%), under HS conditions. Analysis of yield components revealed that the increased yield of OsRbohB-KO plants was due to increased starch synthetase activity, spikelets per panicle (2.0%-9.3%), filled spikelets (4.8%-15.5%), percentage of filled spikelets (2.4%-6.8%) and 1000-grain weight (2.9%-7.4%) under HS conditions during the reproductive stage. Grain milling and appearance quality, and starch content were also significantly increased in OsRbohB-KO plants under HS conditions during the mature stage. Furthermore, OsRbohB-KO significantly upregulated the expression levels of heat shock-related genes, OsHSP23.7, OsHSP17.7, OsHSF7 and OsHsfA2a, in rice seedlings and grains under long-term HS conditions. Conversely, OsRbohB-OE resulted in phenotypes that were opposite to OsRbohB-KO in most cases. Our results suggest that suppression of OsRbohB provides an effective approach for alleviating heat damage and improving grain yield and quality of rice under long-term HS conditions.
Collapse
Affiliation(s)
- Xiaolong Liu
- College of Life Science and Resources and EnvironmentYichun UniversityYichunJiangxiChina
| | - Ping Ji
- College of Life Science and Resources and EnvironmentYichun UniversityYichunJiangxiChina
| | - Jingpeng Liao
- College of Life Science and Resources and EnvironmentYichun UniversityYichunJiangxiChina
| | - Ximiao Duan
- College of Life Science and Resources and EnvironmentYichun UniversityYichunJiangxiChina
| | - Zhiyang Luo
- College of Life Science and Resources and EnvironmentYichun UniversityYichunJiangxiChina
| | - Xin Yu
- College of Chemistry and Bio‐engineeringYichun UniversityYichunJiangxiChina
| | - Chang‐Jie Jiang
- Shandong Rice Research InstituteShandong Academy of Agricultural SciencesJinanShandongChina
| | - Chen Xu
- Institute of Agricultural Resources and EnvironmentJilin Academy of Agriculture SciencesChangchunJilinChina
| | - Hongtao Yang
- College of Life Science and Resources and EnvironmentYichun UniversityYichunJiangxiChina
| | - Bo Peng
- College of Life Science and Resources and EnvironmentYichun UniversityYichunJiangxiChina
| | - Kai Jiang
- College of Life Science and Resources and EnvironmentYichun UniversityYichunJiangxiChina
| |
Collapse
|
2
|
Saha D, Panda AK, Datta S. Critical considerations and computational tools in plant genome editing. Heliyon 2025; 11:e41135. [PMID: 39807514 PMCID: PMC11728886 DOI: 10.1016/j.heliyon.2024.e41135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Recent advances in genome editing tools and CRISPR-Cas technologies have enabled plant genome engineering reach new heights. The current regulatory exemptions for certain categories of genome edited products, such as those derived from SDN-1 and SDN-2, which are free of any transgene, have significantly accelerated genome editing research in a number of agricultural crop plants in different countries. Although CRISPR-Cas technology is becoming increasingly popular, it is still important to carefully consider a number of factors before planning and carrying conducting CRISPR-Cas studies. To attempt genome editing in a plant, a high-quality genome sequence and a repeatable tissue culture protocol for in vitro regeneration are essential. One of the most important steps in plant genome editing is the designing of a CRISPR construct, which involves selecting the appropriate Cas protein, sgRNA sequence, and appropriate regulatory sequence to trigger expression. Computational tools and algorithms play a crucial role in construct design and gRNA selection to minimize off-target effects and also to optimize their delivery techniques. Researchers may need to select appropriate software tools capable of analyzing post-editing detection of mutation events and other DNA sequence abnormalities to identify off-target effects. To fully fulfill the potential of plant genome editing, continued advances in computational biology are essential to meet the challenges it faces today.
Collapse
Affiliation(s)
- Dipnarayan Saha
- Biotechnology Unit, ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, West Bengal, 700121, India
| | - Alok Kumar Panda
- Biotechnology Unit, ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, West Bengal, 700121, India
| | - Subhojit Datta
- Biotechnology Unit, ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, West Bengal, 700121, India
| |
Collapse
|
3
|
He C, Bi S, Li Y, Song C, Zhang H, Xu X, Li Q, Saeed S, Chen W, Zhao C, Lan C, Su H, Mao H, Yan W. Dynamic atlas of histone modifications and gene regulatory networks in endosperm of bread wheat. Nat Commun 2024; 15:9572. [PMID: 39505871 PMCID: PMC11542021 DOI: 10.1038/s41467-024-53300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Dissecting the genetic basis of seed traits in wheat is impeded by limited genetic polymorphisms and significant variations caused by environmental conditions and seed position in a spikelet. Seed performance is largely determined by endosperm development controlled by spatiotemporal variation in gene activities, which is greatly affected by chromatin status. Here, we map genome-wide dynamic distributions of H3K27me3, H3K4me3 and H3K9ac modifications and profile gene transcription across wheat endosperm development. The combinatorial effects of active and repressive marks ensure spatiotemporal dynamic gene expression, especially for starch biosynthesis. By scanning the transcription factor binding motifs in the ATAC-seq peaks, hub regulators are identified from the regulatory network. In addition, we observe significant correlations between sequence polymorphisms of hub regulators and variations in seed traits in a germplasm population. Thus, the analysis of genomic regulatory activities together with genetic variation provides a robust approach to dissect seed traits in bread wheat.
Collapse
Affiliation(s)
- Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siteng Bi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengxiang Song
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heping Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xintong Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sulaiman Saeed
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunjie Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Přibylová A, Fischer L. How to use CRISPR/Cas9 in plants: from target site selection to DNA repair. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5325-5343. [PMID: 38648173 PMCID: PMC11389839 DOI: 10.1093/jxb/erae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
A tool for precise, target-specific, efficient, and affordable genome editing is a dream for many researchers, from those who conduct basic research to those who use it for applied research. Since 2012, we have tool that almost fulfils such requirements; it is based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems. However, even CRISPR/Cas has limitations and obstacles that might surprise its users. In this review, we focus on the most frequently used variant, CRISPR/Cas9 from Streptococcus pyogenes, and highlight key factors affecting its mutagenesis outcomes: (i) factors affecting the CRISPR/Cas9 activity, such as the effect of the target sequence, chromatin state, or Cas9 variant, and how long it remains in place after cleavage; and (ii) factors affecting the follow-up DNA repair mechanisms including mostly the cell type and cell cycle phase, but also, for example, the type of DNA ends produced by Cas9 cleavage (blunt/staggered). Moreover, we note some differences between using CRISPR/Cas9 in plants, yeasts, and animals, as knowledge from individual kingdoms is not fully transferable. Awareness of these factors can increase the likelihood of achieving the expected results of plant genome editing, for which we provide detailed guidelines.
Collapse
Affiliation(s)
- Adéla Přibylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| |
Collapse
|
5
|
Zhou X, Zhao Y, Ni P, Ni Z, Sun Q, Zong Y. CRISPR-mediated acceleration of wheat improvement: advances and perspectives. J Genet Genomics 2023; 50:815-834. [PMID: 37741566 DOI: 10.1016/j.jgg.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.
Collapse
Affiliation(s)
- Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Pei Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Simirenko L, Cheng JF, Blaby I. gRNA-SeqRET: a universal tool for targeted and genome-scale gRNA design and sequence extraction for prokaryotes and eukaryotes. Front Bioeng Biotechnol 2023; 11:1217811. [PMID: 37720317 PMCID: PMC10502169 DOI: 10.3389/fbioe.2023.1217811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
High-throughput genetic screening is frequently employed to rapidly associate gene with phenotype and establish sequence-function relationships. With the advent of CRISPR technology, and the ability to functionally interrogate previously genetically recalcitrant organisms, non-model organisms can be investigated using pooled guide RNA (gRNA) libraries and sequencing-based assays to quantitatively assess fitness of every targeted locus in parallel. To aid the construction of pooled gRNA assemblies, we have developed an in silico design workflow for gRNA selection using the gRNA Sequence Region Extraction Tool (gRNA-SeqRET). Built upon the previously developed CCTop, gRNA-SeqRET enables automated, scalable design of gRNA libraries that target user-specified regions or whole genomes of any prokaryote or eukaryote. Additionally, gRNA-SeqRET automates the bulk extraction of any regions of sequence relative to genes or other features, aiding in the design of homology arms for insertion or deletion constructs. We also assess in silico the application of a designed gRNA library to other closely related genomes and demonstrate that for very closely related organisms Average Nucleotide Identity (ANI) > 95% a large fraction of the library may be of relevance. The gRNA-SeqRET web application pipeline can be accessed at https://grna.jgi.doe.gov. The source code is comprised of freely available software tools and customized Python scripts, and is available at https://bitbucket.org/berkeleylab/grnadesigner/src/master/ under a modified BSD open-source license (https://bitbucket.org/berkeleylab/grnadesigner).
Collapse
Affiliation(s)
- Lisa Simirenko
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ian Blaby
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
7
|
Xu Y, Bai L, Liu M, Liu Y, Peng S, Hu P, Wang D, Liu Q, Yan S, Gao L, Wang X, Ning Y, Zuo S, Zheng W, Liu S, Xiang W, Wang G, Kang H. Identification of two novel rice S genes through combination of association and transcription analyses with gene-editing technology. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1628-1641. [PMID: 37154202 PMCID: PMC10363757 DOI: 10.1111/pbi.14064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 05/10/2023]
Abstract
Traditional rice blast resistance breeding largely depends on utilizing typical resistance (R) genes. However, the lack of durable R genes has prompted rice breeders to find new resistance resources. Susceptibility (S) genes are potential new targets for resistance genetic engineering using genome-editing technologies, but identifying them is still challenging. Here, through the integration of genome-wide association study (GWAS) and transcriptional analysis, we identified two genes, RNG1 and RNG3, whose polymorphisms in 3'-untranslated regions (3'-UTR) affected their expression variations. These polymorphisms could serve as molecular markers to identify rice blast-resistant accessions. Editing the 3'-UTRs using CRISPR/Cas9 technology affected the expression levels of two genes, which were positively associated with rice blast susceptibility. Knocking out either RNG1 or RNG3 in rice enhanced the rice blast and bacterial blight resistance, without impacting critical agronomic traits. RNG1 and RNG3 have two major genotypes in diverse rice germplasms. The frequency of the resistance genotype of these two genes significantly increased from landrace rice to modern cultivars. The obvious selective sweep flanking RNG3 suggested it has been artificially selected in modern rice breeding. These results provide new targets for S gene identification and open avenues for developing novel rice blast-resistant materials.
Collapse
Affiliation(s)
- Yuchen Xu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Lu Bai
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Minghao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yanchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shasha Peng
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Pei Hu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Dan Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Qi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetic BreedingTianjin Crop Research Institute, Tianjin Academy of Agriculture SciencesTianjinChina
| | - Lijun Gao
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Wenjing Zheng
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural SciencesShenyangChina
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Guo‐Liang Wang
- Department of Plant PathologyOhio State UniversityColumbusOhioUSA
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
8
|
Ni P, Zhao Y, Zhou X, Liu Z, Huang Z, Ni Z, Sun Q, Zong Y. Efficient and versatile multiplex prime editing in hexaploid wheat. Genome Biol 2023; 24:156. [PMID: 37386475 PMCID: PMC10308706 DOI: 10.1186/s13059-023-02990-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Prime editing is limited by low efficiency in plants. Here, we develop an upgraded engineered plant prime editor in hexaploid wheat, ePPEplus, by introducing a V223A substitution into reverse transcriptase in the ePPEmax* architecture. ePPEplus enhances the efficiency by an average 33.0-fold and 6.4-fold compared to the original PPE and ePPE, respectively. Importantly, a robust multiplex prime editing platform is established for simultaneous editing of four to ten genes in protoplasts and up to eight genes in regenerated wheat plants at frequencies up to 74.5%, thus expanding the applicability of prime editors for stacking of multiple agronomic traits.
Collapse
Affiliation(s)
- Pei Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zehua Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhengwei Huang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Lu Y, Zhong Q, Xiao S, Wang B, Ke X, Zhang Y, Yin F, Zhang D, Jiang C, Liu L, Li J, Yu T, Wang L, Cheng Z, Chen L. A new NLR disease resistance gene Xa47 confers durable and broad-spectrum resistance to bacterial blight in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1037901. [PMID: 36507384 PMCID: PMC9730417 DOI: 10.3389/fpls.2022.1037901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
Bacterial blight (BB) induced by Xanthomonas oryzae pv. oryzae (Xoo) is a devastating bacterial disease in rice. The use of disease resistance (R) genes is the most efficient method to control BB. Members of the nucleotide-binding domain and leucine-rich repeat containing protein (NLR) family have significant roles in plant defense. In this study, Xa47, a new bacterial blight R gene encoding a typical NLR, was isolated from G252 rice material, and XA47 was localized in the nucleus and cytoplasm. Among 180 rice materials tested, Xa47 was discovered in certain BB-resistant materials. Compared with the wild-type G252, the knockout mutants of Xa47 was more susceptible to Xoo. By contrast, overexpression of Xa47 in the susceptible rice material JG30 increased BB resistance. The findings indicate that Xa47 positively regulates the Xoo stress response. Consequently, Xa47 may have application potential in the genetic improvement of plant disease resistance. The molecular mechanism of Xa47 regulation merits additional examination.
Collapse
Affiliation(s)
- Yuanda Lu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Qiaofang Zhong
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Suqin Xiao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Bo Wang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Xue Ke
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Yun Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Fuyou Yin
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Dunyu Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Cong Jiang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Li Liu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Jinlu Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Tengqiong Yu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Lingxian Wang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Zaiquan Cheng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| | - Ling Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China
| |
Collapse
|
10
|
Zhang R, Zhang C, Yu C, Dong J, Hu J. Integration of multi-omics technologies for crop improvement: Status and prospects. FRONTIERS IN BIOINFORMATICS 2022; 2:1027457. [PMID: 36438626 PMCID: PMC9689701 DOI: 10.3389/fbinf.2022.1027457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 08/03/2023] Open
Abstract
With the rapid development of next-generation sequencing (NGS), multi-omics techniques have been emerging as effective approaches for crop improvement. Here, we focus mainly on addressing the current status and future perspectives toward omics-related technologies and bioinformatic resources with potential applications in crop breeding. Using a large amount of omics-level data from the functional genome, transcriptome, proteome, epigenome, metabolome, and microbiome, clarifying the interaction between gene and phenotype formation will become possible. The integration of multi-omics datasets with pan-omics platforms and systems biology could predict the complex traits of crops and elucidate the regulatory networks for genetic improvement. Different scales of trait predictions and decision-making models will facilitate crop breeding more intelligent. Potential challenges that integrate the multi-omics data with studies of gene function and their network to efficiently select desirable agronomic traits are discussed by proposing some cutting-edge breeding strategies for crop improvement. Multi-omics-integrated approaches together with other artificial intelligence techniques will contribute to broadening and deepening our knowledge of crop precision breeding, resulting in speeding up the breeding process.
Collapse
|
11
|
Deng F, Zeng F, Shen Q, Abbas A, Cheng J, Jiang W, Chen G, Shah AN, Holford P, Tanveer M, Zhang D, Chen ZH. Molecular evolution and functional modification of plant miRNAs with CRISPR. TRENDS IN PLANT SCIENCE 2022; 27:890-907. [PMID: 35165036 DOI: 10.1016/j.tplants.2022.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Gene editing using clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) has revolutionized biotechnology and provides genetic tools for medicine and life sciences. However, the application of this technology to miRNAs, with the function as negative gene regulators, has not been extensively reviewed in plants. Here, we summarize the evolution, biogenesis, and structure of miRNAs, as well as their interactions with mRNAs and computational models for predicting target genes. In addition, we review current advances in CRISPR/Cas for functional analysis and for modulating miRNA genes in plants. Extending our knowledge of miRNAs and their manipulation with CRISPR will provide fundamental understanding of the functions of plant miRNAs and facilitate more sustainable and publicly acceptable genetic engineering of crops.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qiufang Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jianhui Cheng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7004, Australia.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|