1
|
Chen X, Hu X, Li G, Grover CE, You J, Wang R, Liu Z, Qi Z, Luo X, Peng Y, Zhu M, Zhang Y, Lu S, Zhang Y, Lin Z, Wendel JF, Zhang X, Wang M. Genetic Regulatory Perturbation of Gene Expression Impacted by Genomic Introgression in Fiber Development of Allotetraploid Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401549. [PMID: 39196795 PMCID: PMC11515910 DOI: 10.1002/advs.202401549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/23/2024] [Indexed: 08/30/2024]
Abstract
Interspecific genomic introgression is an important evolutionary process with respect to the generation of novel phenotypic diversity and adaptation. A key question is how gene flow perturbs gene expression networks and regulatory interactions. Here, an introgression population of two species of allopolyploid cotton (Gossypium) to delineate the regulatory perturbations of gene expression regarding fiber development accompanying fiber quality change is utilized. De novo assembly of the recipient parent (G. hirsutum Emian22) genome allowed the identification of genomic variation and introgression segments (ISs) in 323 introgression lines (ILs) from the donor parent (G. barbadense 3-79). It documented gene expression dynamics by sequencing 1,284 transcriptomes of developing fibers and characterized genetic regulatory perturbations mediated by genomic introgression using a multi-locus model. Introgression of individual homoeologous genes exhibiting extreme low or high expression bias can lead to a parallel expression bias in their non-introgressed duplicates, implying a shared yet divergent regulatory fate of duplicated genes following allopolyploidy. Additionally, the IL N182 with improved fiber quality is characterized, and the candidate gene GhFLAP1 related to fiber length is validated. This study outlines a framework for understanding introgression-mediated regulatory perturbations in polyploids, and provides insights for targeted breeding of superior upland cotton fiber.
Collapse
Affiliation(s)
- Xinyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Guo Li
- Crop Information Center, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Yabin Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Mengmeng Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Yuan‐ming Zhang
- Crop Information Center, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
2
|
Huang C, Cheng Y, Hu Y, Zhang X, Chen J, Zhao T, Si Z, Cao Y, Li Y, Fang L, Guan X, Zhang T. Impacts of parental genomic divergence in non-syntenic regions on cotton heterosis. J Adv Res 2024:S2090-1232(24)00331-X. [PMID: 39111623 DOI: 10.1016/j.jare.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION Heterosis has revolutionized crop breeding, enhancing global agricultural production. However, the mechanisms underlying heterosis remain obscure. Xiangzamian 2# (XZM2), a super hybrid upland cotton (Gossypium hirsutum L.) characterized by high-yield heterosis, has been developed and extensively planted in China. OBJECTIVES We conducted a systematic analysis of CRI12 and J8891, two parents of XZM2. We aimed to reveal the precise genetic information and the role of non-syntenic divergence in shaping heterosis, laying a foundation for advancing understanding of heterosis. METHODS We de novo assembled high-quality genomes of CRI12 and J8891, and further uncovered abundant genetic variations and non-syntenic regions between the parents. Whole-genome comparison, association analysis, transcriptomic analysis and relative identity-by-descent (rIBD) estimation were conducted to identify structural variations (SVs) and introgressions within non-syntenic blocks and to analyze their impacts on promoting heterosis. RESULTS Parental genetic divergence increased in non-syntenic regions. Furthermore, these regions, accounting for only 16.71% of the total genome, contained more loci with significantly higher heterotic effects, far exceeding the syntenic background. SVs covered 97.26% of non-syntenic sequences and caused widespread gene expression differences in these regions, driving dynamic complementation of gene expression in the hybrid. A set of SVs were responsible for trait improvement and had positive effects on heterosis, contributing larger heritability than short variations. We characterized numerous parental-specific introgressions from G. barbadense. Specifically, a functional introgression segment within non-syntenic blocks introduced an elite haplotype, which significantly increased lint yield and enhanced heterosis. CONCLUSION Our study clarified non-syntenic regions to harbor more loci with higher heterotic effects, revealed their importance in promoting heterosis and supported the crucial role of genetic complementation in heterosis. SVs and introgressions were identified as key factors responsible for non-syntenic divergence between the parents. They had important effects on gene expression and trait improvement, positively contributing to heterosis.
Collapse
Affiliation(s)
- Chujun Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yu Cheng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yiqian Li
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
3
|
Zhao N, Guo A, Wang W, Li B, Wang M, Zhou Z, Jiang K, Aierxi A, Wang B, Adjibolosoo D, Xia Z, Li H, Cui Y, Kong J, Hua J. GbPP2C80 Interacts with GbWAKL14 to Negatively Co-Regulate Resistance to Fusarium and Verticillium wilt via MPK3 and ROS Signaling in Sea Island Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309785. [PMID: 38889299 PMCID: PMC11321686 DOI: 10.1002/advs.202309785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/21/2024] [Indexed: 06/20/2024]
Abstract
Fusarium wilt (FW) is widespread in global cotton production, but the mechanism underlying FW resistance in superior-fiber-quality Sea Island cotton is unclear. This study reveals that FW resistance has been the target of genetic improvement of Sea Island cotton in China since the 2010s. The key nonsynonymous single nucleotide polymorphism (SNP, T/C) of gene Gbar_D03G001670 encoding protein phosphatase 2C 80 (PP2C80) results in an amino acid shift (L/S), which is significantly associated with FW resistance of Sea Island cotton. Silencing GbPP2C80 increases FW resistance in Sea Island cotton, whereas overexpressing GbPP2C80 reduces FW resistance in Arabidopsis. GbPP2C80 and GbWAKL14 exist synergistically in Sea Island cotton accessions with haplotype forms "susceptible-susceptible" (TA) and "resistant-resistant" (CC), and interact with each other. CRISPR/Cas9-mediated knockout of GbWAKL14 enhances FW and Verticillium wilt (VW) resistance in upland cotton and overexpression of GbWAKL14 and GbPP2C80 weakens FW and VW resistance in Arabidopsis. GbPP2C80 and GbWAKL14 respond to FW and VW by modulating reactive oxygen species (ROS) content via affecting MPK3 expression. In summary, two tandem genes on chromosome D03, GbPP2C80, and GbWAKL14, functions as cooperative negative regulators in cotton wilt disease defense, providing novel genetic resources and molecular markers for the development of resistant cotton cultivars.
Collapse
Affiliation(s)
- Nan Zhao
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Anhui Guo
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Weiran Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesUrumqiXinjiang830091China
| | - Bin Li
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Meng Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesUrumqiXinjiang830091China
| | - Zixin Zhou
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesUrumqiXinjiang830091China
| | - Kaiyun Jiang
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Alifu Aierxi
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesUrumqiXinjiang830091China
| | - Baoliang Wang
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Daniel Adjibolosoo
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Zhanghao Xia
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Huijing Li
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Yanan Cui
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Jie Kong
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesUrumqiXinjiang830091China
| | - Jinping Hua
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of EducationCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
4
|
Gu Q, Lv X, Zhang D, Zhang Y, Wang X, Ke H, Yang J, Chen B, Wu L, Zhang G, Wang X, Sun Z, Ma Z. Deepening genomic sequences of 1081 Gossypium hirsutum accessions reveals novel SNPs and haplotypes relevant for practical breeding utility. Genomics 2024; 116:110848. [PMID: 38663523 DOI: 10.1016/j.ygeno.2024.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 06/03/2024]
Abstract
Fiber quality is a major breeding goal in cotton, but phenotypically direct selection is often hindered. In this study, we identified fiber quality and yield related loci using GWAS based on 2.97 million SNPs obtained from 10.65× resequencing data of 1081 accessions. The results showed that 585 novel fiber loci, including two novel stable SNP peaks associated with fiber length on chromosomes At12 and Dt05 and one novel genome regions linked with fiber strength on chromosome Dt12 were identified. Furthermore, by means of gene expression analysis, GhM_A12G0090, GhM_D05G1692, GhM_D12G3135 were identified and GhM_D11G2208 function was identified in Arabidopsis. Additionally, 14 consistent and stable superior haplotypes were identified, and 25 accessions were detected as possessing these 14 superior haplotype in breeding. This study providing fundamental insight relevant to identification of genes associated with fiber quality and yield will enhance future efforts toward improvement of upland cotton.
Collapse
Affiliation(s)
- Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Xing Lv
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Xingyi Wang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation / North China Key Laboratory for Crop Germplasm Resources of Education Ministry / Key Laboratory for Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding, China.
| |
Collapse
|
5
|
Song X, Zhu G, Su X, Yu Y, Duan Y, Wang H, Shang X, Xu H, Chen Q, Guo W. Combined genome and transcriptome analysis of elite fiber quality in Gossypium barbadense. PLANT PHYSIOLOGY 2024; 195:2158-2175. [PMID: 38513701 DOI: 10.1093/plphys/kiae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Gossypium barbadense, which is one of several species of cotton, is well known for its superior fiber quality. However, the genetic basis of its high-quality fiber remains largely unexplored. Here, we resequenced 269 G. barbadense accessions. Phylogenetic structure analysis showed that the set of accessions was clustered into 3 groups: G1 and G2 mainly included modern cultivars from Xinjiang, China, and G3 was related to widely introduced accessions in different regions worldwide. A genome-wide association study of 5 fiber quality traits across multiple field environments identified a total of 512 qtls (main-effect QTLs) and 94 qtlEs (QTL-by-environment interactions) related to fiber quality, of which 292 qtls and 57 qtlEs colocated with previous studies. We extracted the genes located in these loci and performed expression comparison, local association analysis, and introgression segment identification. The results showed that high expression of hormone-related genes during fiber development, introgressions from Gossypium hirsutum, and the recombination of domesticated elite allelic variation were 3 major contributors to improve the fiber quality of G. barbadense. In total, 839 candidate genes with encoding region variations associated with elite fiber quality were mined. We confirmed that haplotype GB_D03G0092H traced to G. hirsutum introgression, with a 1-bp deletion leading to a frameshift mutation compared with GB_D03G0092B, significantly improved fiber quality. GB_D03G0092H is localized in the plasma membrane, while GB_D03G0092B is in both the nucleus and plasma membrane. Overexpression of GB_D03G0092H in Arabidopsis (Arabidopsis thaliana) significantly improved the elongation of longitudinal cells. Our study systematically reveals the genetic basis of the superior fiber quality of G. barbadense and provides elite segments and gene resources for breeding high-quality cotton cultivars.
Collapse
Affiliation(s)
- Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiujuan Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yujia Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujia Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijiang Xu
- Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Ye Q, Zhang L, Li Q, Ji Y, Zhou Y, Wu Z, Hu Y, Ma Y, Wang J, Zhang C. Genome and GWAS analysis identified genes significantly related to phenotypic state of Rhododendron bark. HORTICULTURE RESEARCH 2024; 11:uhae008. [PMID: 38487544 PMCID: PMC10939351 DOI: 10.1093/hr/uhae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/01/2024] [Indexed: 03/17/2024]
Abstract
As an important horticultural plant, Rhododendron is often used in urban greening and landscape design. However, factors such as the high rate of genetic recombination, frequent outcrossing in the wild, weak linkage disequilibrium, and the susceptibility of gene expression to environmental factors limit further exploration of functional genes related to important horticultural traits, and make the breeding of new varieties require a longer time. Therefore, we choose bark as the target trait which is not easily affected by environmental factors, but also has ornamental properties. Genome-wide association study (GWAS) of Rhododendron delavayi (30 samples), R. irroratum (30 samples) and their F1 generation R. agastum (200 samples) was conducted on the roughness of bark phenotypes. Finally, we obtained 2416.31 Gbp of clean data and identified 5 328 800 high-quality SNPs. According to the P-value and the degree of linkage disequilibrium of SNPs, we further identified 4 out of 11 candidate genes that affect bark roughness. The results of gene differential expression analysis further indicated that the expression levels of Rhdel02G0243600 and Rhdel08G0220700 in different bark phenotypes were significantly different. Our study identified functional genes that influence important horticultural traits of Rhododendron, and illustrated the powerful utility and great potential of GWAS in understanding and exploiting wild germplasm genetic resources of Rhododendron.
Collapse
Affiliation(s)
- Qiannan Ye
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Yunnan Academy of Agricultural Sciences Kunming 650000, China
| | - Qing Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaliang Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yanli Zhou
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
| | - Zhenzhen Wu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Hu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Yunnan Academy of Agricultural Sciences Kunming 650000, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- Haiyan Engineering & Technology Center, Zhejiang Institute of Advanced Technology, Jiaxing 314022, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Sun Y, Yuan Y, He S, Stiller W, Wilson I, Du X, Zhu QH. Dissecting the major genetic components underlying cotton lint development. Genetics 2024; 226:iyad219. [PMID: 38147531 PMCID: PMC10847716 DOI: 10.1093/genetics/iyad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/05/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023] Open
Abstract
Numerous genetic loci and several functionally characterized genes have been linked to determination of lint percentage (lint%), one of the most important cotton yield components, but we still know little about the major genetic components underlying lint%. Here, we first linked the genetic loci containing MYB25-like_At and HD1_At to the fiberless seed trait of 'SL1-7-1' and found that MYB25-like_At and HD1_At were very lowly expressed in 'SL1-7-1' ovules during fiber initiation. We then dissected the genetic components involved in determination of lint% using segregating populations derived from crosses of fuzzless mutants and intermediate segregants with different lint%, which not only confirmed the HD1_At locus but identified the HD1_Dt locus as being the major genetic components contributing to fiber initiation and lint%. The segregating populations also allowed us to evaluate the relative contributions of MYB25-like_At, MYB25-like_Dt, HD1_At, and HD1_Dt to lint%. Haplotype analysis of an Upland cotton (Gossypium hirsutum) population with 723 accessions (including 81 fuzzless seed accessions) showed that lint% of the accessions with the LP allele (higher lint%) at MYB25-like_At, MYB25-like_Dt, or HD1_At was significantly higher than that with the lp allele (lower lint%). The lint% of the Upland cotton accessions with 3 or 4 LP alleles at MYB25-like and HD1 was significantly higher than that with 2 LP alleles. The results prompted us to propose a strategy for breeding high-yielding cotton varieties, i.e. pyramiding the LP alleles of MYB25-like and HD1 with new lint% LP alleles without negative impact on seed size and fiber quality.
Collapse
Affiliation(s)
- Yali Sun
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuman Yuan
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Shoupu He
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Warwick Stiller
- CSIRO Agriculture and Food, Locked Bag 59, Narrabri, NSW 2390, Australia
| | - Iain Wilson
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Wang N, Li Y, Meng Q, Chen M, Wu M, Zhang R, Xu Z, Sun J, Zhang X, Nie X, Yuan D, Lin Z. Genome and haplotype provide insights into the population differentiation and breeding improvement of Gossypium barbadense. J Adv Res 2023; 54:15-27. [PMID: 36775017 DOI: 10.1016/j.jare.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Sea-island cotton (Gossypium barbadense, Gb) is one of the major sources of high-grade natural fiber. Besides the common annual Gb cotton, perennial Gb cotton is also cultivated, but studies on perennial Gb cotton are rare. OBJECTIVES We aimed to make a systematic analysis of perennial sea-island cotton and lay a foundation for its utilization in breeding, and try to identify the representative structural variations (SVs) in sea-island cotton, and to reveal the population differentiation and adaptive improvement of sea-island cotton. METHODS Through genome assembly of one perennial Gb cotton accession (named Gb_M210936) and comparative genome analysis, variations during Gb cotton domestication were identified by comparing Gb_M210936 with annual Gb accession 3-79 and with wild allotetraploid cotton G. darwinii. Six perennial Gb accessions combining with the resequenced 1,129 cotton accessions were used to conduct population and genetic analysis. Large haplotype blocks (haploblocks), generated from interspecific introgressions and intraspecific inversions, were identified and were used to analyze their effects on population differentiation and agronomic traits of sea-island cotton. RESULTS One reference genome of perennial sea-island cotton was assembled. Representative SVs in sea-island cotton were identified, and 31 SVs were found to be associated with agronomic traits. Perennial Gb cotton had a closer kinship with the wild-to-landrace continuum Gb cotton from south America where Gb cotton is originally domesticated. Haploblocks were associated with agronomic traits improvement of sea-island cotton, promoted sea-island cotton differentiation into three subgroups, were suffered from breeding selection, and may drive Gb cotton to be adapted to central Asian. CONCLUSION Our study made up the lack of perennial Gb cotton genome, and clarified that exotic introgressions improved the traits of sea-island cotton, promoted the population differentiation, and drove sea-island cotton adaptive to central Asia, which will provide new insights for the genetic breeding improvement of sea-island cottons.
Collapse
Affiliation(s)
- Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yuanxue Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Qingying Meng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Meilin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Mi Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ruiting Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhiyong Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Jie Sun
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
9
|
Zhang J, Zhu Y, Wheeler T, Dever JK. Development and validation of allele-specific PCR-based SNP typing in a gene on chromosome D03 conferring resistance to Fusarium wilt race 4 in Upland cotton (Gossypium hirsutum). Mol Genet Genomics 2023; 298:1579-1589. [PMID: 37923792 DOI: 10.1007/s00438-023-02079-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
Upland cotton (Gossypium hirsutum) is the most important fiber crop for the global textile industry. Fusarium oxysporum f. sp. vasinfectum (FOV) is one of the most destructive soil-borne fungal pathogens in cotton. Among eight pathogenic races and other strains, FOV race 4 (FOV4) is the most virulent race in US cotton production. A single nucleotide polymorphism (SNP) in a glutamate receptor-like gene (GhGLR4.8) on chromosome D03 was previously identified and validated to confer resistance to FOV race 7, and targeted genome sequencing demonstrated that it was also associated with resistance to FOV4. The objective of this study was to develop an easy and convenient PCR-based marker assay. To target the resistance SNP, a forward primer for the SNP with a mismatch in the 3rd position was designed for both the resistance (R) and susceptibility (S) alleles, respectively, with addition of 20-mer T7 promoter primer to the 5' end of the forward primer for the R allele. The two forward primers, in combination with each of five common reverse primers, were targeted to amplify amplicons of 50-260 bp in size with R and S alleles differing in 20 bp. Results showed that each of three common reverse primers in combination with the two forward primers produced polymorphic markers between R and S plants that were consistent with the targeted genome sequencing results. The polymorphism was distinctly resolved using both polyacrylamide and agarose gel electrophoreses. In addition, a sequence comparative analysis between the resistance gene and homologous sequences in sequenced tetraploid and diploid A and D genome species showed that none of the species possessed the resistance gene allele, suggesting its recent origin from a natural point mutation. The allele-specific PCR-based SNP typing method based on a three-primer combination provides a fast and convenient marker-assisted selection method to search and select for FOV4-resistant Upland cotton.
Collapse
Affiliation(s)
- Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Yi Zhu
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Terry Wheeler
- Texas A&M AgriLife Research, 1102 E. Drew Street, Lubbock, TX, 79403, USA
| | - Jane K Dever
- Texas A&M AgriLife Research, 1102 E. Drew Street, Lubbock, TX, 79403, USA
| |
Collapse
|
10
|
Zheng K, Cai Y, Qu Y, Teng L, Wang C, Gao J, Chen Q. Effect of the HCT Gene on Lignin Synthesis and Fiber Development in Gossypium barbadense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 338:111914. [PMID: 39492445 DOI: 10.1016/j.plantsci.2023.111914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/07/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
As one of the key enzymes in the metabolic pathway of phenylpropane, shikimate hydroxycinnamoyl transferase (HCT) is mainly involved in the biosynthesis of the plant secondary cell wall, which is closely related to cotton fiber quality. In this study, whole-genome identification and bioinformatics analysis of the HCT gene family were performed in G. barbadense. In the whole genome, we identified 136 GbHCT genes encoding 309-504 amino acids. Phylogenetic analysis divided the genome into 5 subfamilies, which were located on 25 chromosomes. Collinear analysis of polyploidization and tandem duplication events were the main driving forces for the rapid expansion and evolution of this family, and the genes underwent loose purifying selection constraints after duplication. Gene promoters identified a variety of cis-acting elements related to plant hormones and the stress response. Several members of the GbHCT family were highly expressed during the development of cotton fiber, and different members had different expression patterns in cotton fiber. After GbHCT114 gene silencing in cotton, the amount of stem surface trichomes and lignin content decreased, and the cell morphology and arrangement changed. After the GbHCT114 gene was overexpressed in Arabidopsis thaliana (L.) Heynh., the number of stem and leaf surface trichomes and the cross-sectional area of the secondary xylem duct cell wall increased. In addition, utilizing transcriptomic analysis, differentially expressed genes associated with lignin synthesis and fiber development were identified. Taken together, the results obtained in this study confirm that the GbHCT114 gene regulates plant trichome development, which lays a theoretical foundation for future studies on the function of GbHCT114 in cotton.
Collapse
Affiliation(s)
- Kai Zheng
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572000, China; Postdoctoral Research Station, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Yongsheng Cai
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Yanying Qu
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Lu Teng
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Chaoyue Wang
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Jie Gao
- Postdoctoral Research Station, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Quanjia Chen
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
11
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
12
|
Ye Y, Wang P, Zhang M, Abbas M, Zhang J, Liang C, Wang Y, Wei Y, Meng Z, Zhang R. UAV-based time-series phenotyping reveals the genetic basis of plant height in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:937-951. [PMID: 37154288 DOI: 10.1111/tpj.16272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Plant height (PH) is an important agronomic trait affecting crop architecture, biomass, resistance to lodging and mechanical harvesting. Elucidating the genetic governance of plant height is crucial because of the global demand for high crop yields. However, during the rapid growth period of plants the PH changes a lot on a daily basis, which makes it difficult to accurately phenotype the trait by hand on a large scale. In this study, an unmanned aerial vehicle (UAV)-based remote-sensing phenotyping platform was applied to obtain time-series PHs of 320 upland cotton accessions in three different field trials. The results showed that the PHs obtained from UAV images were significantly correlated with ground-based manual measurements, for three trials (R2 = 0.96, 0.95 and 0.96). Two genetic loci on chromosomes A01 and A11 associated with PH were identified by genome-wide association studies (GWAS). GhUBP15 and GhCUL1 were identified to influence PH in further analysis. We obtained a time series of PH values for three field conditions based on remote sensing with UAV. The key genes identified in this study are of great value for the breeding of ideal plant architecture in cotton.
Collapse
Affiliation(s)
- Yulu Ye
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Man Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaxin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
13
|
Yan L, Song W, Wang Z, Yu D, Sudini H, Kang Y, Lei Y, Huai D, Chen Y, Wang X, Wang Q, Liao B. Dissection of the Genetic Basis of Resistance to Stem Rot in Cultivated Peanuts ( Arachis hypogaea L.) through Genome-Wide Association Study. Genes (Basel) 2023; 14:1447. [PMID: 37510351 PMCID: PMC10378806 DOI: 10.3390/genes14071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Peanut (Arachis hypogaea) is an important oilseed and cash crop worldwide, contributing an important source of edible oil and protein for human nutrition. However, the incidence of stem rot disease caused by Athelia rolfsii poses a major challenge to peanut cultivation, resulting in significant yield losses. In this study, a panel of 202 peanut accessions was evaluated for their resistance to stem rot by inoculating plants in the field with A. rolfsii-infested oat grains in three environments. The mean disease index value of each environment for accessions in subsp. fasitigiate and subsp. hypogaea showed no significant difference. Accessions from southern China displayed the lowest disease index value compared to those from other ecological regions. We used whole-genome resequencing to analyze the genotypes of the accessions and to identify significant SNPs associated with stem rot resistance through genome-wide association study (GWAS). A total of 121 significant SNPs associated with stem rot resistance in peanut were identified, with phenotypic variation explained (PVE) ranging from 12.23% to 15.51%. A total of 27 candidate genes within 100 kb upstream and downstream of 23 significant SNPs were annotated, which have functions related to recognition, signal transduction, and defense response. These significant SNPs and candidate genes provide valuable information for further validation and molecular breeding to improve stem rot resistance in peanut.
Collapse
Affiliation(s)
- Liying Yan
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Wanduo Song
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhihui Wang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dongyang Yu
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hari Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Yanping Kang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yong Lei
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Dongxin Huai
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yuning Chen
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xin Wang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianqian Wang
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Boshou Liao
- Key Laboratory of Oil Crops Biology and Genetic Improvement, Ministry of Agricultural and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
14
|
Abid MA, Zhou Q, Abbas M, He H, Meng Z, Wang Y, Wei Y, Guo S, Zhang R, Liang C. Natural variation in Beauty Mark is associated with UV-based geographical adaptation in Gossypium species. BMC Biol 2023; 21:106. [PMID: 37173786 PMCID: PMC10176956 DOI: 10.1186/s12915-023-01591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Anthocyanins, a class of specialized metabolites that are ubiquitous among plant species, have attracted a great deal of attention from plant biologists due to their chemical diversity. They confer purple, pink, and blue colors that attract pollinators, protect plants from ultraviolet (UV) radiation, and scavenge reactive oxygen species (ROS) to facilitate plant survival during abiotic stress. In a previous study, we identified Beauty Mark (BM) in Gossypium barbadense as an activator of the anthocyanin biosynthesis pathway; this gene also directly led to the formation of a pollinator-attracting purple spot. RESULTS Here, we found that a single nucleotide polymorphism (SNP) (C/T) within the BM coding sequence was responsible for variations in this trait. Transient expression assays of BM from G. barbadense and G. hirsutum in Nicotiana benthamiana using luciferase reporter gene also suggested that SNPs in the coding sequence could be responsible for the absent beauty mark phenotype observed in G. hirsutum. We next demonstrated that the beauty mark and UV floral patterns are associated phenotypes and that UV exposure resulted in increased ROS generation in floral tissues; BM thus contributed to ROS scavenging in G. barbadense and wild cotton plants with flowers containing the beauty mark. Furthermore, a nucleotide diversity analysis and Tajima's D Test suggested that there have been strong selective sweeps in the GhBM locus during G. hirsutum domestication. CONCLUSIONS Taken together, these results suggest that cotton species differ in their approaches to absorbing or reflecting UV light and thus exhibit variations in floral anthocyanin biosynthesis to scavenge reactive ROS; furthermore, these traits are related to the geographic distribution of cotton species.
Collapse
Affiliation(s)
- Muhammad Ali Abid
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qi Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiyan He
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
15
|
Zang F, Ma Y, Wu Q, Tu X, Xie X, Huang P, Tong B, Zheng Y, Zang D. Resequencing of Rosa rugosa accessions revealed the history of population dynamics, breed origin, and domestication pathways. BMC PLANT BIOLOGY 2023; 23:235. [PMID: 37142995 PMCID: PMC10158352 DOI: 10.1186/s12870-023-04244-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rosa rugosa is a shrub that originated in China and has economic and ecological value. However, during the development of R. rugosa, the genetic background was chaotic, and the genetic structure among different wild populations was unclear, as well as wild and cultivated accessions. Here, we report whole-genome resequencing of wild and cultivated R. rugosa accessions. RESULTS A total of 19,041,284 SNPs were identified in 188 R. rugosa accessions and 3 R. chinensis accessions by resequencing. Population genetic analysis revealed that cultivated and wild groups were separated very early. All R. rugosa accessions were divided into 8 categories based on genetic structure: (1) Weihai, Yantai, and Liaoning category, (2) Jilin category, and (3) Hammonasset category (above three are wild); (4) traditional varieties, (5) hybrids between R. rugosa and R. chinensis, (6) Zizhi Rose, (7) Kushui Rose, (8) hybrids between R. rugosa and R. multiflora. We found that the heterozygosity and genetic diversity of wild accessions were generally lower than those of cultivated individuals. The genes that were selected during cultivation were identified, and it was found that these genes were mainly related to environmental adaptation and growth. CONCLUSIONS The Jilin population was the oldest population and later migrated to Liaoning and then migrated to Yantai and Weihai by sea regression in the Bohai Basin. The Hammonasset naturalized population probably originated from the Jilin population and then experienced separate differentiation. The long-term asexual reproduction pattern of R. rugosa decreased genetic diversity in the wild population. During R. rugosa cultivation, the ancestors of the Jilin population were involved in breeding traditional varieties, after which almost no wild individuals were engaged in breeding. However, in recent decades, cross breeding of R. rugosa started the utilization of wild germplasms. In comparison, some other species play important roles in variety formation. Few genes related to economic traits were selected, suggesting no directional domestication in the R. rugosa cultivation process.
Collapse
Affiliation(s)
- Fengqi Zang
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, P. R. China
| | - Yan Ma
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Qichao Wu
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China
| | - Xiaolong Tu
- State Key Laboratory of Genetic Resources and Evolution, Center for excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, P. R. China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan, 650204, P. R. China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, P. R. China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, P. R. China
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, 250102, P. R. China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, P. R. China.
| | - Dekui Zang
- College of Forestry, Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, Shandong Agricultural University, Tai'an, 271018, Shandong, P. R. China.
| |
Collapse
|
16
|
Zhang J, Zhu Y, Wheeler T, Dever JK, Hake K. Targeted development of diagnostic SNP markers for resistance to Fusarium wilt race 4 in Upland cotton (Gossypium hirsutum). Mol Genet Genomics 2023; 298:895-903. [PMID: 37120777 DOI: 10.1007/s00438-023-02024-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 05/01/2023]
Abstract
Fusarium wilt caused by the soil-borne fungus Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) has become one of the most important emerging diseases in US cotton production. Numerous QTLs have been reported for resistance to FOV; however, no major FOV4-resistance QTL or gene has been identified and used in breeding Upland cotton (Gossypium hirsutum) for FOV4 resistance. In this study, a panel of 223 Chinese Upland cotton accessions was evaluated for FOV4 resistance based on seedling mortality rate (MR) and stem and root vascular discoloration (SVD and RVD). SNP markers were developed based on targeted genome sequencing using AgriPlex Genomics. The chromosome region at 2.130-2.292 Mb on D03 was significantly correlated with both SVD and RVD but not with MR. Based on the two most significant SNP markers, accessions homozygous for AA or TT SNP genotype averaged significantly lower SVD (0.88 vs. 2.54) and RVD (1.46 vs. 3.02) than those homozygous for CC or GG SNP genotype. The results suggested that a gene or genes within the region conferred resistance to vascular discoloration caused by FOV4. The Chinese Upland accessions had 37.22% homozygous AA or TT SNP genotype and 11.66% heterozygous AC or TG SNP genotype, while 32 US elite public breeding lines all had the CC or GG SNP genotype. Among 463 obsolete US Upland accessions, only 0.86% possessed the AA or TT SNP genotype. This study, for the first time, has developed diagnostic SNPs for marker-assisted selection and identified FOV4-resistant Upland germplasms with the SNPs.
Collapse
Affiliation(s)
- Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Yi Zhu
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Terry Wheeler
- Texas A&M AgriLife Research, 1102 E. Drew Street, Lubbock, TX, 79403, USA
| | - Jane K Dever
- Texas A&M AgriLife Research, 1102 E. Drew Street, Lubbock, TX, 79403, USA
| | - Kater Hake
- Cotton Incorporated, 6399 Weston Parkway, Cary, NC, 27513, USA
| |
Collapse
|
17
|
Jin S, Han Z, Hu Y, Si Z, Dai F, He L, Cheng Y, Li Y, Zhao T, Fang L, Zhang T. Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons. MOLECULAR PLANT 2023; 16:678-693. [PMID: 36760124 DOI: 10.1016/j.molp.2023.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Structural variations (SVs) have long been described as being involved in the origin, adaption, and domestication of species. However, the underlying genetic and genomic mechanisms are poorly understood. Here, we report a high-quality genome assembly of Gossypium barbadense acc. Tanguis, a landrace that is closely related to formation of extra-long-staple (ELS) cultivated cotton. An SV-based pan-genome (Pan-SV) was then constructed using a total of 182 593 non-redundant SVs, including 2236 inversions, 97 398 insertions, and 82 959 deletions from 11 assembled genomes of allopolyploid cotton. The utility of this Pan-SV was then demonstrated through population structure analysis and genome-wide association studies (GWASs). Using segregation mapping populations produced through crossing ELS cotton and the landrace along with an SV-based GWAS, certain SVs responsible for speciation, domestication, and improvement in tetraploid cottons were identified. Importantly, some of the SVs presently identified as associated with the yield and fiber quality improvement had not been identified in previous SNP-based GWAS. In particular, a 9-bp insertion or deletion was found to associate with elimination of the interspecific reproductive isolation between Gossypium hirsutum and G. barbadense. Collectively, this study provides new insights into genome-wide, gene-scale SVs linked to important agronomic traits in a major crop species and highlights the importance of SVs during the speciation, domestication, and improvement of cultivated crop species.
Collapse
Affiliation(s)
- Shangkun Jin
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zegang Han
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yan Hu
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhanfeng Si
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fan Dai
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lu He
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu Cheng
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiqian Li
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Zhao
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lei Fang
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Tianzhen Zhang
- Zhejiang Provincial Engineering Center for Crop Precision Breeding, Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
18
|
Xiao X, Liu R, Gong J, Li P, Li Z, Gong W, Liu A, Ge Q, Deng X, Li S, Chen Q, Zhang H, Peng R, Peng Y, Shang H, Pan J, Shi Y, Lu Q, Yuan Y. Fine mapping and candidate gene analysis of qFL-A12-5: a fiber length-related QTL introgressed from Gossypium barbadense into Gossypium hirsutum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:48. [PMID: 36912959 DOI: 10.1007/s00122-023-04247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/21/2022] [Indexed: 06/18/2023]
Abstract
The fiber length-related qFL-A12-5 identified in CSSLs introgressed from Gossypium barbadense into Gossypium hirsutum was fine-mapped to an 18.8 kb region on chromosome A12, leading to the identification of the GhTPR gene as a potential regulator of cotton fiber length. Fiber length is a key determinant of fiber quality in cotton, and it is a key target of artificial selection for breeding and domestication. Although many fiber length-related quantitative trait loci have been identified, there are few reports on their fine mapping or candidate gene validation, thus hampering efforts to understand the mechanistic basis of cotton fiber development. Our previous study identified the qFL-A12-5 associated with superior fiber quality on chromosome A12 in the chromosome segment substitution line (CSSL) MBI7747 (BC4F3:5). A single segment substitution line (CSSL-106) screened from BC6F2 was backcrossed to construct a larger segregation population with its recurrent parent CCRI45, thus enabling the fine mapping of 2852 BC7F2 individuals using denser simple sequence repeat markers to narrow the qFL-A12-5 to an 18.8 kb region of the genome, in which six annotated genes were identified in Gossypium hirsutum. Quantitative real-time PCR and comparative analyses led to the identification of GH_A12G2192 (GhTPR) encoding a tetratricopeptide repeat-like superfamily protein as a promising candidate gene for qFL-A12-5. A comparative analysis of the protein-coding regions of GhTPR among Hai1, MBI7747, and CCRI45 revealed two non-synonymous mutations. The overexpression of GhTPR resulted in longer roots in Arabidopsis, suggesting that GhTPR may regulate cotton fiber development. These results provide a foundation for future efforts to improve cotton fiber length.
Collapse
Affiliation(s)
- Xianghui Xiao
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ruixian Liu
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Juwu Gong
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Pengtao Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Ziyin Li
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Hua Zhang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yan Peng
- Third Division of the Xinjiang Production and Construction Corps Agricultural Research Institute, Tumushuke, 843900, Xinjiang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Quanwei Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| | - Youlu Yuan
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
19
|
Shen Q, Zhang S, Ge C, Liu S, Chen J, Liu R, Ma H, Song M, Pang C. Genome-wide association study identifies GhSAL1 affects cold tolerance at the seedling emergence stage in upland cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:27. [PMID: 36810826 DOI: 10.1007/s00122-023-04317-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Genomic analysis of upland cotton revealed that cold tolerance was associated with ecological distribution. GhSAL1 on chromosome D09 negatively regulated cold tolerance of upland cotton. Cotton can undergo low-temperature stress at the seedling emergence stage, which adversely affects growth and yield; however, the regulatory mechanism underlying cold tolerance remains nebulous. Here, we analyze the phenotypic and physiological parameters in 200 accessions from 5 ecological distributions under constant chilling (CC) and diurnal variation of chilling (DVC) stresses at the seedling emergence stage. All accessions were clustered into four groups, of which Group IV, with most germplasms from the northwest inland region (NIR), had better phenotypes than Groups I-III under the two kinds of chilling stresses. A total of 575 significantly associated single-nucleotide polymorphism (SNP) were identified, and 35 stable genetic quantitative trait loci (QTL) were obtained, of which 5 were associated with traits under CC and DVC stress, respectively, while the remaining 25 were co-associated. The accumulation of dry weight (DW) of seedling was associated with the flavonoid biosynthesis process regulated by Gh_A10G0500. The emergence rate (ER), DW, and total length of seedling (TL) under CC stress were associated with the SNPs variation of Gh_D09G0189 (GhSAL1). GhSAL1HapB was the elite haplotype, which increased ER, DW, and TL by 19.04%, 11.26%, and 7.69%, respectively, compared with that of GhSAL1HapA. The results of virus-induced gene silencing (VIGS) experiment and determination of metabolic substrate content preliminarily illustrated that GhSAL1 negatively regulated cotton cold tolerance through IP3-Ca2+ signaling pathway. The elite haplotypes and candidate genes identified in this study could be used to improve cold tolerance at the seedling emergence stage in future upland cotton breeding.
Collapse
Affiliation(s)
- Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- MOA Key Laboratory of Crop Eco-physiology and Farming system in the Middle Reaches of Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, Hubei, China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruihua Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Station, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
20
|
Zhao H, Chen Y, Liu J, Wang Z, Li F, Ge X. Recent advances and future perspectives in early-maturing cotton research. THE NEW PHYTOLOGIST 2023; 237:1100-1114. [PMID: 36352520 DOI: 10.1111/nph.18611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Cotton's fundamental requirements for long periods of growth and specific seasonal temperatures limit the global arable areas that can be utilized to cultivate cotton. This constraint can be alleviated by breeding for early-maturing varieties. By delaying the sowing dates without impacting the boll-opening time, early-maturing varieties not only mitigate the yield losses brought on by unfavorable weathers in early spring and late autumn but also help reducing the competition between cotton and other crops for arable land, thereby optimizing the cropping system. This review presents studies and breeding efforts for early-maturing cotton, which efficiently pyramid early maturity, high-quality, multiresistance traits, and suitable plant architecture by leveraging pleiotropic genes. Attempts are also made to summarize our current understanding of the molecular mechanisms underlying early maturation, which involves many pathways such as epigenetic, circadian clock, and hormone signaling pathways. Moreover, new avenues and effective measures are proposed for fine-scale breeding of early-maturing crops to ensure the healthy development of the agricultural industry.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yanli Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, Hainan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572000, Hainan, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
21
|
Yang Z, Gao C, Zhang Y, Yan Q, Hu W, Yang L, Wang Z, Li F. Recent progression and future perspectives in cotton genomic breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:548-569. [PMID: 36226594 DOI: 10.1111/jipb.13388] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 05/26/2023]
Abstract
Upland cotton is an important global cash crop for its long seed fibers and high edible oil and protein content. Progress in cotton genomics promotes the advancement of cotton genetics, evolutionary studies, functional genetics, and breeding, and has ushered cotton research and breeding into a new era. Here, we summarize high-impact genomics studies for cotton from the last 10 years. The diploid Gossypium arboreum and allotetraploid Gossypium hirsutum are the main focus of most genetic and genomic studies. We next review recent progress in cotton molecular biology and genetics, which builds on cotton genome sequencing efforts, population studies, and functional genomics, to provide insights into the mechanisms shaping abiotic and biotic stress tolerance, plant architecture, seed oil content, and fiber development. We also suggest the application of novel technologies and strategies to facilitate genome-based crop breeding. Explosive growth in the amount of novel genomic data, identified genes, gene modules, and pathways is now enabling researchers to utilize multidisciplinary genomics-enabled breeding strategies to cultivate "super cotton", synergistically improving multiple traits. These strategies must rise to meet urgent demands for a sustainable cotton industry.
Collapse
Affiliation(s)
- Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chenxu Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yihao Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Qingdi Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Lan Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
22
|
Yasir M, Kanwal HH, Hussain Q, Riaz MW, Sajjad M, Rong J, Jiang Y. Status and prospects of genome-wide association studies in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1019347. [PMID: 36330239 PMCID: PMC9623101 DOI: 10.3389/fpls.2022.1019347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Over the last two decades, the use of high-density SNP arrays and DNA sequencing have allowed scientists to uncover the majority of the genotypic space for various crops, including cotton. Genome-wide association study (GWAS) links the dots between a phenotype and its underlying genetics across the genomes of populations. It was first developed and applied in the field of human disease genetics. Many areas of crop research have incorporated GWAS in plants and considerable literature has been published in the recent decade. Here we will provide a comprehensive review of GWAS studies in cotton crop, which includes case studies on biotic resistance, abiotic tolerance, fiber yield and quality traits, current status, prospects, bottlenecks of GWAS and finally, thought-provoking question. This review will serve as a catalog of GWAS in cotton and suggest new frontiers of the cotton crop to be studied with this important tool.
Collapse
Affiliation(s)
- Muhammad Yasir
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Hafiza Hamrah Kanwal
- School of Computer Science, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Muhammad Sajjad
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yurong Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
23
|
Wang Y, Zhao J, Deng X, Wang P, Geng S, Gao W, Guo P, Chen Q, Li C, Qu Y. Genome-wide analysis of serine carboxypeptidase-like protein (SCPL) family and functional validation of Gh_SCPL42 unchromosome conferring cotton Verticillium der Verticillium wilt stress in Gossypium hirsutum. BMC PLANT BIOLOGY 2022; 22:421. [PMID: 36045341 PMCID: PMC9434971 DOI: 10.1186/s12870-022-03804-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Serine carboxypeptidase-like protein (SCPL) plays an important role in response to stress in plant. However, our knowledge of the function of the SCPL gene family is limited. RESULTS In this study, a comprehensive and systematic analysis of SCPL gene family was conducted to explore the phylogeny and evolution of the SCPL gene in Gossypium hirsutum. The phenotype and molecular mechanism of silencing of the Gh_SCPL42 under Verticillium wilt stress was also studied. Our results showed that 96 SCPL genes were observed in genome of G. hirsutum, which distributed on 25 chromosomes and most of them were located in the nucleus. The phylogenetic tree analysis showed that members of SCPL gene family can be divided into three subgroups in G. hirsutum, which are relatively conservative in evolution. SCPL gene has a wide range of tissue expression types in G. hirsutum. Promoter analysis showed that the most cis-acting elements related to MeJA and ABA were contained. Through RNA-seq combined with genotyping, it was found that 11 GhSCPL genes not only had significant expression changes during Verticillium wilt stress but also had differential SNPs in the upstream, downstream, exonic or intronic regions. The expression of these 11 genes in the resistant (Zhongzhimian 2) and susceptible (Junmian 1) materials was further analyzed by qRT-PCR, it was found that 6 genes showed significant expression differences in the two materials. Among them, Gh_SCPL42 has the most obvious expression change. Furthermore, virus-induced gene silencing (VIGS) showed necrosis and yellowing of leaves and significantly higher disease severity index (DSI) and disease severity rate (DSR) values in VIGS plants than in control silenced Gh_SCPL42 plants. Moreover, the expression levels of genes related to the SA and JA pathways were significantly downregulated. These results show that Gh_SCPL42 might improve resistance to Verticillium wilt through the SA and JA pathways in G. hirsutum. CONCLUSION In conclusion, our findings indicated that Gh_SCPL42 gene plays an important role in resistance to Verticillium wilt in cotton. It was provided an important theoretical basis for further research on the function of SCPL gene family and the molecular mechanism of resistance to Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Yuxiang Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Jieyin Zhao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Xiaojuan Deng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Peng Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Shiwei Geng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Wenju Gao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Peipei Guo
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Chunping Li
- Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830052, China.
| | - Yanying Qu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
24
|
Gb_ANR-47 Enhances the Resistance of Gossypium barbadense to Fusarium oxysporum f. sp. vasinfectum (FOV) by Regulating the Content of Proanthocyanidins. PLANTS 2022; 11:plants11151902. [PMID: 35893607 PMCID: PMC9332461 DOI: 10.3390/plants11151902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
Anthocyanidin reductase (ANR) is an important regulator of flavonoid metabolism, and proanthocyanidins, the secondary metabolites of flavonoids, play an important role in the response of plants to pathogenic stress. Therefore, in this study, the expression analysis of the ANR gene family of Gossypium barbadense after inoculation with Fusarium oxysporum f. sp. vasinfectum (FOV) was performed at different time points. It was found that Gb_ANR-47 showed significant differences in the disease-resistant cultivar 06-146 and the susceptible cultivar Xinhai 14, as well as in the highest root expression. It was found that the expression of Gb_ANR-47 in the resistant cultivar was significantly higher than that in the susceptible cultivar by MeJA and SA, and different amounts of methyl jasmonate (MeJA) and salicylic acid (SA) response elements were found in the promoter region of Gb_ANR-47. After silencing GbANR-47 in 06-146 material by VIGS technology, its resistance to FOV decreased significantly. The disease severity index (DSI) was significantly increased, and the anthocyanin content was significantly decreased in silenced plants, compared to controls. Our findings suggest that GbANR-47 is a positive regulator of FOV resistance in Gossypium barbadense. The research results provide an important theoretical basis for in-depth analysis of the molecular mechanism of GbANR-47 and improving the anti-FOV of Gossypium barbadense.
Collapse
|
25
|
Zhu Y, Thyssen GN, Abdelraheem A, Teng Z, Fang DD, Jenkins JN, McCarty JC, Wedegaertner T, Hake K, Zhang J. A GWAS identified a major QTL for resistance to Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) race 4 in a MAGIC population of Upland cotton and a meta-analysis of QTLs for Fusarium wilt resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2297-2312. [PMID: 35577933 DOI: 10.1007/s00122-022-04113-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/20/2022] [Indexed: 05/16/2023]
Abstract
A major QTL conferring resistance to Fusarium wilt race 4 in a narrow region of chromosome D02 was identified in a MAGIC population of 550 RILs of Upland cotton. Numerous studies have been conducted to investigate the genetic basis of Fusarium wilt (FW, caused by Fusarium oxysporum f. sp. vasinfectum, FOV) resistance using bi-parental and association mapping populations in cotton. In this study, a multi-parent advanced generation inter-cross (MAGIC) population of 550 recombinant inbred lines (RILs), together with their 11 Upland cotton (Gossypium hirsutum) parents, was used to identify QTLs for FOV race 4 (FOV4) resistance. Among the parents, Acala Ultima, M-240 RNR, and Stoneville 474 were the most resistant, while Deltapine Acala 90, Coker 315, and Stoneville 825 were the most susceptible. Twenty-two MAGIC lines were consistently resistant to FOV4. Through a genome-wide association study (GWAS) based on 473,516 polymorphic SNPs, a major FOV4 resistance QTL within a narrow region on chromosomes D02 was detected, allowing identification of 14 candidate genes. Additionally, a meta-analysis of 133 published FW resistance QTLs showed a D subgenome and individual chromosome bias and no correlation between homeologous chromosome pairs. This study represents the first GWAS study using a largest genetic population and the most comprehensive meta-analysis for FW resistance in cotton. The results illustrated that 550 lines were not enough for high resolution mapping to pinpoint a candidate gene, and experimental errors in phenotyping cotton for FW resistance further compromised the accuracy and precision in QTL localization and identification of candidate genes. This study identified FOV4-resistant parents and MAGIC lines, and the first major QTL for FOV4 resistance in Upland cotton, providing useful information for developing FOV4-resistant cultivars and further genomic studies towards identification of causal genes for FOV4 resistance in cotton.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Gregory N Thyssen
- Cotton Fiber Bioscience and Cotton Chemistry and Utilization Research Units, USDA-ARS-SRRC, New Orleans, LA, USA
| | - Abdelraheem Abdelraheem
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Zonghua Teng
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA, USA
| | - Johnie N Jenkins
- Crop Science Research Laboratory, USDA-ARS, Mississippi State, MS, USA
| | - Jack C McCarty
- Crop Science Research Laboratory, USDA-ARS, Mississippi State, MS, USA
| | | | | | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
26
|
Wang P, Dong N, Wang M, Sun G, Jia Y, Geng X, Liu M, Wang W, Pan Z, Yang Q, Li H, Wei C, Wang L, Zheng H, He S, Zhang X, Wang Q, Du X. Introgression from Gossypium hirsutum is a driver for population divergence and genetic diversity in Gossypium barbadense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:764-780. [PMID: 35132720 DOI: 10.1111/tpj.15702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 05/26/2023]
Affiliation(s)
- Pengpeng Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Dong
- Henan Key Laboratory of Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Collaborative Innovation Center of Modern Biological Breeding in Henan Province, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, 455000, China
| | - Yinhua Jia
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoli Geng
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Weipeng Wang
- Henan Key Laboratory of Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Collaborative Innovation Center of Modern Biological Breeding in Henan Province, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zhaoe Pan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiuyue Yang
- Henan Key Laboratory of Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Collaborative Innovation Center of Modern Biological Breeding in Henan Province, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Hongge Li
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyan Wei
- Henan Key Laboratory of Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Collaborative Innovation Center of Modern Biological Breeding in Henan Province, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Liru Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | | | - Shoupu He
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qinglian Wang
- Henan Key Laboratory of Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Collaborative Innovation Center of Modern Biological Breeding in Henan Province, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
27
|
Yang P, Sun X, Liu X, Wang W, Hao Y, Chen L, Liu J, He H, Zhang T, Bao W, Tang Y, He X, Ji M, Guo K, Liu D, Teng Z, Liu D, Zhang J, Zhang Z. Identification of Candidate Genes for Lint Percentage and Fiber Quality Through QTL Mapping and Transcriptome Analysis in an Allotetraploid Interspecific Cotton CSSLs Population. FRONTIERS IN PLANT SCIENCE 2022; 13:882051. [PMID: 35574150 PMCID: PMC9100888 DOI: 10.3389/fpls.2022.882051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Upland cotton (Gossypium hirsutum) has long been an important fiber crop, but the narrow genetic diversity of modern G. hirsutum limits the potential for simultaneous improvement of yield and fiber quality. It is an effective approach to broaden the genetic base of G. hirsutum through introgression of novel alleles from G. barbadense with excellent fiber quality. In the present study, an interspecific chromosome segment substitution lines (CSSLs) population was established using G. barbadense cultivar Pima S-7 as the donor parent and G. hirsutum cultivar CCRI35 as the recipient parent. A total of 105 quantitative trait loci (QTL), including 85 QTL for fiber quality and 20 QTL for lint percentage (LP), were identified based on phenotypic data collected from four environments. Among these QTL, 25 stable QTL were detected in two or more environments, including four for LP, eleven for fiber length (FL), three for fiber strength (FS), six for fiber micronaire (FM), and one for fiber elongation (FE). Eleven QTL clusters were observed on nine chromosomes, of which seven QTL clusters harbored stable QTL. Moreover, eleven major QTL for fiber quality were verified through analysis of introgressed segments of the eight superior lines with the best comprehensive phenotypes. A total of 586 putative candidate genes were identified for 25 stable QTL associated with lint percentage and fiber quality through transcriptome analysis. Furthermore, three candidate genes for FL, GH_A08G1681 (GhSCPL40), GH_A12G2328 (GhPBL19), and GH_D02G0370 (GhHSP22.7), and one candidate gene for FM, GH_D05G1346 (GhAPG), were identified through RNA-Seq and qRT-PCR analysis. These results lay the foundation for understanding the molecular regulatory mechanism of fiber development and provide valuable information for marker-assisted selection (MAS) in cotton breeding.
Collapse
|
28
|
Zhao N, Wang W, Jiang K, Grover CE, Cheng C, Pan Z, Zhao C, Zhu J, Li D, Wang M, Xiao L, Yang J, Ning X, Li B, Xu H, Su Y, Aierxi A, Li P, Guo B, Wendel JF, Kong J, Hua J. A Calmodulin-Like Gene ( GbCML7) for Fiber Strength and Yield Improvement Identified by Resequencing Core Accessions of a Pedigree in Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2022; 12:815648. [PMID: 35185964 PMCID: PMC8850914 DOI: 10.3389/fpls.2021.815648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 05/23/2023]
Abstract
Sea Island cotton (Gossypium barbadense) is world-renowned for its superior natural fiber. Although fiber strength is one of the most important fiber quality traits, genes contributing to fiber strength are poorly understood. Production of sea island cotton also is inextricably linked to improving its relatively low yield, thus enhancing the importance of joint improvement of both fiber quality and yield. We used genomic variation to uncover the genetic evidence of trait improvement resulting from pedigree breeding of Sea Island cotton. This pedigree was aimed at improving fiber strength and yielded an elite cultivar, XH35. Using a combination of genome-wide association study (GWAS) and selection screens, we detected 82 putative fiber-strength-related genes. Expression analysis confirmed a calmodulin-like gene, GbCML7, which enhanced fiber strength in a specific haplotype. This gene is a major-effect gene, which interacts with a minor-effect gene, GbTUA3, facilitating the enhancement of fiber strength in a synergistic fashion. Moreover, GbCML7 participates in the cooperative improvement of fiber strength, fiber length, and fiber uniformity, though a slight compromise exists between the first two of these traits and the latter. Importantly, GbCML7 is shown to boost yield in some backgrounds by increasing multiple yield components to varying degrees, especially boll number. Our work provides valuable genomic evidence and a key genetic factor for the joint improvement of fiber quality and yield in Sea Island cotton.
Collapse
Affiliation(s)
- Nan Zhao
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiran Wang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Kaiyun Jiang
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Cheng Cheng
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhuanxia Pan
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Cunpeng Zhao
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jiahui Zhu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Dan Li
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Meng Wang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Li Xiao
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Jing Yang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Xinmin Ning
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Bin Li
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haijiang Xu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Ying Su
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Alifu Aierxi
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Pengbo Li
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Baosheng Guo
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Jinping Hua
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Genome-editing in millets: current knowledge and future perspectives. Mol Biol Rep 2021; 49:773-781. [PMID: 34825322 DOI: 10.1007/s11033-021-06975-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Millets are small seeded cereal crops predominantly cultivated and consumed by resource-poor farmers in the semi-arid tropics of Asia and Africa. Millets possess rich nutrients and a climate resilience property when compared to the other cereals such as rice and wheat. Millet improvement using modern genetic and genomic tools is falling behind other cereal crops due to their cultivation being restricted to less developed countries. Genome editing tools have been successfully applied to major cereal crops and, as a result, many key traits have been introduced into rice, wheat and maize. However, genome editing tools have not yet been used for most millets although they possess rich nutrients. The foxtail millet is the only millet utilised up to now for genome editing works. Limited genomic resources and lack of efficient transformation systems may slow down genome editing in millets. As millets possess many important traits of agricultural importance, high resolution studies with genome editing tools will help to understand the specific mechanism and transfer such traits to major cereals in the future. This review covers the current status of genome editing studies in millets and discusses the future prospects of genome editing in millets to understand key traits of nutrient fortification and develop climate resilient crops in the future.
Collapse
|