1
|
Wang H, Wu H, Zhang W, Jiang J, Qian H, Man C, Gao H, Chen Q, Du L, Chen S, Wang F. Development and validation of a 5K low-density SNP chip for Hainan cattle. BMC Genomics 2024; 25:873. [PMID: 39294563 PMCID: PMC11409743 DOI: 10.1186/s12864-024-10753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND This study aimed to design and develop a 5K low-density liquid chip for Hainan cattle utilizing targeted capture sequencing technology. The chip incorporates a substantial number of functional single nucleotide polymorphism (SNP) loci derived from public literature, including SNP loci significantly associated with immunity, heat stress, meat quality, reproduction, and other traits. Additionally, SNPs located in the coding regions of immune-related genes from the Bovine Genome Variation Database (BGVD) and Hainan cattle-specific SNP loci were included. RESULTS A total of 5,293 SNPs were selected, resulting in 9,837 DNA probes with a coverage rate of 85.69%, thereby creating a Hainan cattle-specific 5K Genotyping by Target Sequencing (GBTS) liquid chip. Evaluation with 152 cattle samples demonstrated excellent clustering performance and a detection rate ranging from 96.60 to 99.07%, with 94.5% of SNP sites exhibiting polymorphism. The chip achieved 100% gender coverage and displayed a heterozygosity rate between 14.20% and 29.65%, with a repeatability rate of 99.65-99.85%. Analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed the potential regulatory roles of exonic SNPs in immune response pathways. CONCLUSION The development and validation of the 5K GBTS liquid chip for Hainan cattle represent a valuable tool for genome analysis and genetic diversity assessment. Furthermore, it facilitates breed identification, gender determination, and kinship analysis, providing a foundation for the efficient utilization and development of local cattle genetic resources.
Collapse
Affiliation(s)
- Huan Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Hui Wu
- Xinjiang Barkol Kazakh Autonomous County Animal Husbandry Veterinary Station, Barkol Kazakh Autonomous County, Xinjiang, PR China
| | - Wencan Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Junming Jiang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Hejie Qian
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Hongyan Gao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, College of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, PR China.
| |
Collapse
|
2
|
Liu H, Duan L, Ma J, Jin J, Huang R, Liu Y, Chen S, Xu X, Chen J, Yao M, Chen L. CsEXL3 regulate mechanical harvest-related droopy leaves under the transcriptional activation of CsBES1.2 in tea plant. HORTICULTURE RESEARCH 2024; 11:uhae074. [PMID: 38738211 PMCID: PMC11088715 DOI: 10.1093/hr/uhae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/01/2024] [Indexed: 05/14/2024]
Abstract
Due to a labor shortage, the mechanical harvesting of tea plantations has become a focal point. However, mechanical harvest efficiency was hampered by droopy leaves, leading to a high rate of broken tea shoots and leaves. Here, we dissected the genetic structure of leaf droopiness in tea plants using genome-wide association studies (GWAS) on 146 accessions, combined with transcriptome from two accessions with contrasting droopy leaf phenotypes. A set of 16 quantitative trait loci (QTLs) containing 54 SNPs and 34 corresponding candidate genes associated with droopiness were then identified. Among these, CsEXL3 (EXORDIUM-LIKE 3) from Chromosome 1 emerged as a candidate gene. Further investigations revealed that silencing CsEXL3 in tea plants resulted in weaker vascular cell malformation and brassinosteroid-induced leaf droopiness. Additionally, brassinosteroid signal factor CsBES1.2 was proved to participate in CsEXL3-induced droopiness and vascular cell malformation via using the CsBES1.2-silencing tea plant. Notably, CsBES1.2 bound on the E-box of CsEXL3 promoter to transcriptionally activate CsEXL3 expression as CUT&TAG based ChIP-qPCR and ChIP-seq suggested in vivo as well as EMSA and Y1H indicated in vitro. Furthermore, CsEXL3 instead of CsBES1.2 decreased lignin content and the expressing levels of lignin biosynthesis genes. Overall, our findings suggest that CsEXL3 regulates droopy leaves, partially through the transcriptional activation of CsBES1.2, with the potential to improve mechanical harvest efficiency in tea plantations.
Collapse
Affiliation(s)
- Haoran Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lingxiao Duan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianqiang Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiqiang Jin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Rong Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yujie Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Si Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xiaoying Xu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
3
|
Wang L, Qian Y, Wu L, Wei K, Wang L. The MADS-box transcription factor CsAGL9 plays essential roles in seed setting in Camellia sinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108301. [PMID: 38232497 DOI: 10.1016/j.plaphy.2023.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
The number of seed setting (NSS) is an important biological trait that affects tea propagation and yield. In this study, the NSS of an F1 tea population (n = 324) generated via a cross between 'Longjing 43' and 'Baihaozao' was investigated at two locations in two consecutive years. Quantitative trait locus (QTL) mapping of the NSS was performed, and 10 major QTLs were identified. In total, 318 genes were found in these 10 QTLs intervals, and 11 key candidate genes were preliminarily identified. Among them, the MADS-box transcription factor AGAMOUS LIKE 9 (CsAGL9, CSS0037962) located in the most stable QTL (qNSS2) was identified as a key gene affecting the NSS. CsAGL9 overexpression in Arabidopsis promoted early flowering and significantly decreased the length and number of pods and number of seeds per pod. Transcriptome analysis demonstrated that the auxin pathway, a key hormone pathway regulating plant reproduction, was highly affected in the transgenic lines. The auxin pathway was likewise the most prominent in the gene co-expression network study of CsAGL9 in tea plants. In summary, we identified CsAGL9 is essential for seed setting using QTL mapping integrated with RNA-seq, which shed a new light on the mechanism NSS of seed setting in tea plants.
Collapse
Affiliation(s)
- Liubin Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinhong Qian
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liyun Wu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China
| | - Kang Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China.
| | - Liyuan Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou, 310008, China.
| |
Collapse
|
4
|
Zhang W, Ni K, Long L, Ruan J. Nitrogen transport and assimilation in tea plant ( Camellia sinensis): a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1249202. [PMID: 37810380 PMCID: PMC10556680 DOI: 10.3389/fpls.2023.1249202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Nitrogen is one of the most important nutrients for tea plants, as it contributes significantly to tea yield and serves as the component of amino acids, which in turn affects the quality of tea produced. To achieve higher yields, excessive amounts of N fertilizers mainly in the form of urea have been applied in tea plantations where N fertilizer is prone to convert to nitrate and be lost by leaching in the acid soils. This usually results in elevated costs and environmental pollution. A comprehensive understanding of N metabolism in tea plants and the underlying mechanisms is necessary to identify the key regulators, characterize the functional phenotypes, and finally improve nitrogen use efficiency (NUE). Tea plants absorb and utilize ammonium as the preferred N source, thus a large amount of nitrate remains activated in soils. The improvement of nitrate utilization by tea plants is going to be an alternative aspect for NUE with great potentiality. In the process of N assimilation, nitrate is reduced to ammonium and subsequently derived to the GS-GOGAT pathway, involving the participation of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH). Additionally, theanine, a unique amino acid responsible for umami taste, is biosynthesized by the catalysis of theanine synthetase (TS). In this review, we summarize what is known about the regulation and functioning of the enzymes and transporters implicated in N acquisition and metabolism in tea plants and the current methods for assessing NUE in this species. The challenges and prospects to expand our knowledge on N metabolism and related molecular mechanisms in tea plants which could be a model for woody perennial plant used for vegetative harvest are also discussed to provide the theoretical basis for future research to assess NUE traits more precisely among the vast germplasm resources, thus achieving NUE improvement.
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang Ni
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, China
| | - Lizhi Long
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, China
| |
Collapse
|
5
|
Li JW, Li H, Liu ZW, Wang YX, Chen Y, Yang N, Hu ZH, Li T, Zhuang J. Molecular markers in tea plant (Camellia sinensis): Applications to evolution, genetic identification, and molecular breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107704. [PMID: 37086694 DOI: 10.1016/j.plaphy.2023.107704] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Tea plants have a long cultivation history in the world, and the beverage (tea) made from its leaves is well known in the world. Due to the characteristics of self-incompatibility, long-term natural and artificial hybridization, tea plants have a very complex genetic background, which make the classification of tea plants unclear. Molecular marker, one type of genetic markers, has the advantages of stable inheritance, large amount of information, and high reliability. The development of molecular marker has facilitated the understanding of complex tea germplasm resources. So far, molecular markers had played important roles in the study of the origin and evolution, the preservation and identification of tea germplasms, and the excellent cultivars breeding of tea plants. However, the information is scattered, making it difficult to understand the advance of molecular markers in tea plants. In this paper, we summarized the development process and types of molecular markers in tea plants. In addition, the application advance of these molecular markers in tea plants was reviewed. Perspectives of molecular markers in tea plants were also systematically provided and discussed. The elaboration of molecular markers in this paper should help us to renew understanding of its application in tea plants.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Wang L, Xun H, Aktar S, Zhang R, Wu L, Ni D, Wei K, Wang L. Development of SNP Markers for Original Analysis and Germplasm Identification in Camellia sinensis. PLANTS (BASEL, SWITZERLAND) 2022; 12:162. [PMID: 36616292 PMCID: PMC9824298 DOI: 10.3390/plants12010162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Tea plants are widely grown all over the world because they are an important economic crop. The purity and authenticity of tea varieties are frequent problems in the conservation and promotion of germplasm resources in recent years, which has brought considerable inconvenience and uncertainty to the selection of parental lines for breeding and the research and cultivation of superior varieties. However, the development of core SNP markers can quickly and accurately identify the germplasm, which plays an important role in germplasm identification and the genetic relationship analysis of tea plants. In this study, based on 179,970 SNP loci from the whole genome of the tea plant, all of 142 cultivars were clearly divided into three groups: Assam type (CSA), Chinese type (CSS), and transitional type. Most CSA cultivars are from Yunnan Province, which confirms that Yunnan Province is the primary center of CSA origin and domestication. Most CSS cultivars are distributed in east China; therefore, we deduced that east China (mainly Zhejiang and Fujian provinces) is most likely the area of origin and domestication of CSS. Moreover, 45 core markers were screened using strict criteria to 179,970 SNP loci, and we analyzed 117 well-Known tea cultivars in China with 45 core SNP markers. The results were as follows: (1) In total, 117 tea cultivars were distinguished by eight markers, which were selected to construct the DNA fingerprint, and the remaining markers were used as standby markers for germplasm identification. (2) Ten pairs of parent and offspring relationships were confirmed or identified, and among them, seven pairs were well-established pedigree relationships; the other three pairs were newly identified. In this study, the east of China (mainly Zhejiang and Fujian provinces) is most likely the area of origin and domestication of CSS. The 45 core SNP markers were developed, which provide a scientific basis at the molecular level to identify the superior tea germplasm, undertake genetic relationship analysis, and benefit subsequent breeding work.
Collapse
Affiliation(s)
- Liubin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanshuo Xun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Shirin Aktar
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Rui Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Liyun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Dejiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Nature Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China
| |
Collapse
|