1
|
Xu X, Wu C, Zhang F, Yao J, Fan L, Liu Z, Yao Y. Comprehensive review of Plasmodiophora brassicae: pathogenesis, pathotype diversity, and integrated control methods. Front Microbiol 2025; 16:1531393. [PMID: 39980695 PMCID: PMC11840573 DOI: 10.3389/fmicb.2025.1531393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Clubroot disease is an important disease of cruciferous crops worldwide caused by Plasmodiophora brassicae. The pathogen P. brassicae can infect almost all cruciferous crops, resulting in a reduction in yield and quality of the host plant. The first part of this review outlines the process of P. brassicae infestation, effectors, physiological pathotypes and identification systems. The latter part highlights and summarizes the various current control measures and research progress on clubroot. Finally, we propose a strategic concept for the sustainable management of clubroot. In conclusion, this paper will help to deepen the knowledge of P. brassicae and the understanding of integrated control measures for clubroot, and to lay a solid foundation for the sustainable management of clubroot.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yingjuan Yao
- Jiangxi Provincial Key Laboratory of Agricultural Non-Point Source Pollution Control and Waste Comprehensive Utilization, Institute of Agricultural Applied Microbiology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
2
|
Zhang N, Zhu M, Qiu Y, Fang Z, Zhuang M, Zhang Y, Lv H, Ji J, Hou X, Yang L, Wang Y. Rapid introgression of the clubroot resistance gene CRa into cabbage skeleton inbred lines through marker assisted selection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:19. [PMID: 39866858 PMCID: PMC11754771 DOI: 10.1007/s11032-024-01532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a globally pervasive soil-borne disease that poses a significant challenge primarily in cruciferous crops. However, the scarcity of resistant materials and the intricate genetic mechanisms within cabbage present major obstacles to clubroot resistance (CR) breeding. In our previous research, we developed an Ogura CMS cabbage variety, "17CR3", which harbors the CRa gene, crucial for CR. The fertility of this variety can be restored through crossing with an Ogura cytoplasmic male sterile (CMS) restore line. In the current investigation, offspring from fertile hybrids were utilized as donor parents in backcrossing with five cabbage inbred lines, with the goal of introducing the CRa gene into elite cabbage cultivars possessing superior agronomic traits. Following five years of continuous field selection combined with molecular marker-assisted selection (MAS), we successfully developed BC4 individuals exhibiting excellent agronomic traits and diverse genetic backgrounds. Whole-genome resequencing revealed a mere 54,213 SNP differences between the genetic makeup of BC4 individuals and their recurrent parents. The results of inoculation identification demonstrated a high degree of co-segregation between the CRa-specific marker KBrH129J18 and resistance to Plasmodiophora brassicae in both inoculated resistant seedlings and cabbage plants harboring CRa across three distinct regions of China. Additionally, results from Semi-Quantitative RT-PCR experiments revealed minimal to no expression of CRa in the majority of susceptible individuals, underscoring the pivotal role of CRa in conferring CR. Moreover, BC3 individuals resulting from the cross between "SK308" and "18CR3", which carried CRa, exhibited resistance to clubroot under the natural conditions of disease-prone fields in Wulong, China. In summary, through a combination of traditional breeding methods and MAS, we successfully bred five cabbage inbred lines carrying the CRa gene from diverse genetic backgrounds, thereby establishing a robust foundation for their integration into breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01532-2.
Collapse
Affiliation(s)
- Na Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Mingzhao Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- State Key Laboratory of Vegetable Biobreeding, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097 China
| | - Yuting Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 P.R. China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
3
|
Kaur H, Shannon LM, Samac DA. A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics 2024; 25:1022. [PMID: 39482604 PMCID: PMC11526573 DOI: 10.1186/s12864-024-10931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes. MAIN BODY In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline. CONCLUSION Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Deborah A Samac
- USDA-ARS, Plant Science Research Unit, St. Paul, MN, 55108, USA
| |
Collapse
|
4
|
Baloch A, Shah N, Idrees F, Zhou X, Gan L, Atem JEC, Zhou Y, Piao Z, Chen P, Zhan Z, Zhang C. Pyramiding of triple Clubroot resistance loci conferred superior resistance without negative effects on agronomic traits in Brassica napus. PHYSIOLOGIA PLANTARUM 2024; 176:e14414. [PMID: 38956798 DOI: 10.1111/ppl.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Clubroot disease caused by Plasmodiophora brassicae is becoming a serious threat to rapeseed (Brassica napus) production worldwide. Breeding resistant varieties using CR (clubroot resistance) loci is the most promising solution. Using marker-assisted selection and speed-breeding technologies, we generated Brassica napus materials in homozygous or heterozygous states using CRA3.7, CRA08.1, and CRA3.2 loci in the elite parental line of the Zhongshuang11 background. We developed three elite lines with two CR loci in different combinations and one line with three CR loci at the homozygous state. In our study, we used six different clubroot strains (Xinmin, Lincang, Yuxi, Chengdu, Chongqing, and Jixi) which are categorized into three groups based on our screening results. The newly pyramided lines with two or more CR loci displayed better disease resistance than the parental lines carrying single CR loci. There is an obvious gene dosage effect between CR loci and disease resistance levels. For example, pyramided lines with triple CR loci in the homozygous state showed superior resistance for all pathogens tested. Moreover, CR loci in the homozygous state are better on disease resistance than the heterozygous state. More importantly, no negative effect was observed on agronomic traits for the presence of multiple CR loci in the same background. Overall, these data suggest that the pyramiding of triple clubroot resistance loci conferred superior resistance with no negative effects on agronomic traits in Brassica napus.
Collapse
Affiliation(s)
- Amanullah Baloch
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nadil Shah
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fahad Idrees
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueqing Zhou
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longcai Gan
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jalal Eldeen Chol Atem
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanwei Zhou
- Yichang Academy of Agricultural Science, Yichang, China
| | | | - Peng Chen
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Chunyu Zhang
- National Key Lab of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Zhou X, Zhong T, Wu M, Li Q, Yu W, Gan L, Xiang X, Zhang Y, Shi Y, Zhou Y, Chen P, Zhang C. Multiomics analysis of a resistant European turnip ECD04 during clubroot infection reveals key hub genes underlying resistance mechanism. FRONTIERS IN PLANT SCIENCE 2024; 15:1396602. [PMID: 38845850 PMCID: PMC11153729 DOI: 10.3389/fpls.2024.1396602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
The clubroot disease has become a worldwide threat for crucifer crop production, due to its soil-borne nature and difficulty to eradicate completely from contaminated field. In this study we used an elite resistant European fodder turnip ECD04 and investigated its resistance mechanism using transcriptome, sRNA-seq, degradome and gene editing. A total of 1751 DEGs were identified from three time points after infection, among which 7 hub genes including XTH23 for cell wall assembly and two CPK28 genes in PTI pathways. On microRNA, we identified 17 DEMs and predicted 15 miRNA-target pairs (DEM-DEG). We validated two pairs (miR395-APS4 and miR160-ARF) by degradome sequencing. We investigated the miR395-APS4 pair by CRISPR-Cas9 mediated gene editing, the result showed that knocking-out APS4 could lead to elevated clubroot resistance in B. napus. In summary, the data acquired on transcriptional response and microRNA as well as target genes provide future direction especially gene candidates for genetic improvement of clubroot resistance on Brassica species.
Collapse
Affiliation(s)
- Xueqing Zhou
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ting Zhong
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meixiu Wu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Li
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Wenlin Yu
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longcai Gan
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianyu Xiang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunyun Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yaru Shi
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanwei Zhou
- Rice and Oil Research Institute, Yichang Academy of Agricultural Science, Yichang, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Wei X, Xiao S, Zhao Y, Zhang L, Nath UK, Yang S, Su H, Zhang W, Wang Z, Tian B, Wei F, Yuan Y, Zhang X. Fine mapping and candidate gene analysis of CRA8.1.6, which confers clubroot resistance in turnip ( Brassica rapa ssp. rapa). FRONTIERS IN PLANT SCIENCE 2024; 15:1355090. [PMID: 38828217 PMCID: PMC11140098 DOI: 10.3389/fpls.2024.1355090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/21/2024] [Indexed: 06/05/2024]
Abstract
Clubroot disease poses a significant threat to Brassica crops, necessitating ongoing updates on resistance gene sources. In F2 segregants of the clubroot-resistant inbred line BrT18-6-4-3 and susceptible DH line Y510, the genetic analysis identified a single dominant gene responsible for clubroot resistance. Through bulk segregant sequencing analysis and kompetitive allele-specific polymerase chain reaction assays, CRA8.1.6 was mapped within 110 kb (12,255-12,365 Mb) between markers L-CR11 and L-CR12 on chromosome A08. We identified B raA08g015220.3.5C as the candidate gene of CRA8.1.6. Upon comparison with the sequence of disease-resistant material BrT18-6-4-3, we found 249 single-nucleotide polymorphisms, seven insertions, six deletions, and a long terminal repeat (LTR) retrotransposon (5,310 bp) at 909 bp of the first intron. However, the LTR retrotransposon was absent in the coding sequence of the susceptible DH line Y510. Given the presence of a non-functional LTR insertion in other materials, it showed that the LTR insertion might not be associated with susceptibility. Sequence alignment analysis revealed that the fourth exon of the susceptible line harbored two deletions and an insertion, resulting in a frameshift mutation at 8,551 bp, leading to translation termination at the leucine-rich repeat domain's C-terminal in susceptible material. Sequence alignment of the CDS revealed a 99.4% similarity to Crr1a, which indicate that CRA8.1.6 is likely an allele of the Crr1a gene. Two functional markers, CRA08-InDel and CRA08-KASP1, have been developed for marker-assisted selection in CR turnip cultivars. Our findings could facilitate the development of clubroot-resistance turnip cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shixiong Xiao
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyan Zhao
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Luyue Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shuangjuan Yang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Su
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjing Zhang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyong Wang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Baoming Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuxiang Yuan
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaowei Zhang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Zeng L, Zhang Y, Wu Y, Zhang X, Zhao C, Ren L, Huang J, Cheng X, Liu S, Liu L. Pathotype Characterization of Plasmodiophora brassicae by European Clubroot Differential and Williams Sets in China. PLANT DISEASE 2024; 108:847-851. [PMID: 37840291 DOI: 10.1094/pdis-08-23-1571-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Clubroot disease caused by the soil-borne Plasmodiophora brassicae is devastating to Brassicaceae crops and spreading rapidly in China in recent years, resulting in great yield losses annually. Virulence of P. brassicae populations specializes and is in dynamic change in the fields. Information on the pathotypes and their distributions is crucial to control the clubroot disease. Presently, the pathotypes of P. brassicae prevalent in China, however, are not well determined. In this study, we used 16 Brassica hosts, including the European Clubroot Differential (ECD) and Williams sets, to designate the pathotypes of 33 P. brassicae populations from 13 provinces. The 33 P. brassicae populations could be divided into 26 pathotypes by the ECD set or seven pathotypes by the Williams set, revealing ECD16/15/31 and ECD16/31/31 or P4 and P2 as the predominant pathotypes. We found that the Brassica rapa differentials ECD01 to ECD04 showed stable and high levels of resistance to most pathotypes of P. brassicae in China, thereby providing valuable resources for clubroot-resistance breeding of Brassicaceae crops. The ECD set exhibited much higher discernibility and further divided the isolates that belonged to the P4 pathotype into 10 ECD pathotypes. Isolates of ECD16/23/31 and ECD16/15/31 were strongly virulent on Huashuang 5R, the first and widely used clubroot-resistant cultivar of oilseed rape in China. As we learn, 26 pathotypes are the most diverse populations of P. brassicae characterized until now in China. Our study provides new insights into virulence specialization of P. brassicae and their geographical distributions, contributing to exploitation of clubroot-resistant resources and the field layout of the present resistant Brassica crops in China.
Collapse
Affiliation(s)
- Lingyi Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Yupo Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Chuanji Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Li Ren
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Junyan Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaohui Cheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Shengyi Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Lijiang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
8
|
Tan Z, Han X, Dai C, Lu S, He H, Yao X, Chen P, Yang C, Zhao L, Yang QY, Zou J, Wen J, Hong D, Liu C, Ge X, Fan C, Yi B, Zhang C, Ma C, Liu K, Shen J, Tu J, Yang G, Fu T, Guo L, Zhao H. Functional genomics of Brassica napus: Progresses, challenges, and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:484-509. [PMID: 38456625 DOI: 10.1111/jipb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Hu H, Zhang Y, Yu F. A CRISPR/Cas9-based vector system enables the fast breeding of selection-marker-free canola with Rcr1-rendered clubroot resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1347-1363. [PMID: 37991105 PMCID: PMC10901203 DOI: 10.1093/jxb/erad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Breeding for disease resistance in major crops is of crucial importance for global food security and sustainability. However, common biotechnologies such as traditional transgenesis or genome editing do not provide an ideal solution, whereas transgenic crops free of selection markers such as cisgenic/intragenic crops might be suitable. In this study, after cloning and functional verification of the Rcr1 gene for resistance to clubroot (Plasmodiophora brassicae), we confirmed that the genes Rcr1, Rcr2, Rcr4, and CRa from Brassica rapa crops and the resistance gene from B. napus oilseed rape cv. 'Mendel' on chromosome A03 were identical in their coding regions. We also determined that Rcr1 has a wide distribution in Brassica breeding materials and renders potent resistance against multiple representative clubroot strains in Canada. We then modified a CRISPR/Cas9-based cisgenic vector system and found that it enabled the fast breeding of selection-marker-free transgenic crops with add-on traits, with selection-marker-free canola (B. napus) germplasms with Rcr1-rendered stable resistance to clubroot disease being successfully developed within 2 years. In the B. napus background, the intragenic vector system was able to remove unwanted residue sequences from the final product with high editing efficiency, and off-target mutations were not detected. Our study demonstrates the potential of applying this breeding strategy to other crops that can be transformed by Agrobacterium. Following the streamlined working procedure, intragenic germplasms can be developed within two generations, which could significantly reduce the breeding time and labor compared to traditional introgression whilst still achieving comparable or even better breeding results.
Collapse
Affiliation(s)
- Hao Hu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yan Zhang
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Fengqun Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
10
|
Liu Z, Fu Y, Wang H, Zhang Y, Han J, Wang Y, Shen S, Li C, Jiang M, Yang X, Song X. The high-quality sequencing of the Brassica rapa 'XiangQingCai' genome and exploration of genome evolution and genes related to volatile aroma. HORTICULTURE RESEARCH 2023; 10:uhad187. [PMID: 37899953 PMCID: PMC10611556 DOI: 10.1093/hr/uhad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023]
Abstract
'Vanilla' (XQC, brassica variety chinensis) is an important vegetable crop in the Brassica family, named for its strong volatile fragrance. In this study, we report the high-quality chromosome-level genome sequence of XQC. The assembled genome length was determined as 466.11 Mb, with an N50 scaffold of 46.20 Mb. A total of 59.50% repetitive sequences were detected in the XQC genome, including 47 570 genes. Among all examined Brassicaceae species, XQC had the closest relationship with B. rapa QGC ('QingGengCai') and B. rapa Pakchoi. Two whole-genome duplication (WGD) events and one recent whole-genome triplication (WGT) event occurred in the XQC genome in addition to an ancient WGT event. The recent WGT was observed to occur during 21.59-24.40 Mya (after evolution rate corrections). Our findings indicate that XQC experienced gene losses and chromosome rearrangements during the genome evolution of XQC. The results of the integrated genomic and transcriptomic analyses revealed critical genes involved in the terpenoid biosynthesis pathway and terpene synthase (TPS) family genes. In summary, we determined a chromosome-level genome of B. rapa XQC and identified the key candidate genes involved in volatile fragrance synthesis. This work can act as a basis for the comparative and functional genomic analysis and molecular breeding of B. rapa in the future.
Collapse
Affiliation(s)
- Zhaokun Liu
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Yanhong Fu
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Huan Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Yanping Zhang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu 215008, China
| | - Jianjun Han
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Yingying Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Shaoqin Shen
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Chunjin Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Mingmin Jiang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Xuemei Yang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| |
Collapse
|
11
|
Zhang L, Liang J, Chen H, Zhang Z, Wu J, Wang X. A near-complete genome assembly of Brassica rapa provides new insights into the evolution of centromeres. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1022-1032. [PMID: 36688739 PMCID: PMC10106856 DOI: 10.1111/pbi.14015] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 05/04/2023]
Abstract
Brassica rapa comprises many important cultivated vegetables and oil crops. However, Chiifu v3.0, the current B. rapa reference genome, still contains hundreds of gaps. Here, we presented a near-complete genome assembly of B. rapa Chiifu v4.0, which was 424.59 Mb with only two gaps, using Oxford Nanopore Technology (ONT) ultralong-read sequencing and Hi-C technologies. The new assembly contains 12 contigs, with a contig N50 of 38.26 Mb. Eight of the ten chromosomes were entirely reconstructed in a single contig from telomere to telomere. We found that the centromeres were mainly invaded by ALE and CRM long terminal repeats (LTRs). Moreover, there is a high divergence of centromere length and sequence among B. rapa genomes. We further found that centromeres are enriched for Copia invaded at 0.14 MYA on average, while pericentromeres are enriched for Gypsy LTRs invaded at 0.51 MYA on average. These results indicated the different invasion mechanisms of LTRs between the two structures. In addition, a novel repetitive sequence PCR630 was identified in the pericentromeres of B. rapa. Overall, the near-complete genome assembly, B. rapa Chiifu v4.0, offers valuable tools for genomic and genetic studies of Brassica species and provides new insights into the evolution of centromeres.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Jianli Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Haixu Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Zhicheng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
12
|
Javed MA, Schwelm A, Zamani‐Noor N, Salih R, Silvestre Vañó M, Wu J, González García M, Heick TM, Luo C, Prakash P, Pérez‐López E. The clubroot pathogen Plasmodiophora brassicae: A profile update. MOLECULAR PLANT PATHOLOGY 2023; 24:89-106. [PMID: 36448235 PMCID: PMC9831288 DOI: 10.1111/mpp.13283] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Plasmodiophora brassicae is the causal agent of clubroot disease of cruciferous plants and one of the biggest threats to the rapeseed (Brassica napus) and brassica vegetable industry worldwide. DISEASE SYMPTOMS In the advanced stages of clubroot disease wilting, stunting, yellowing, and redness are visible in the shoots. However, the typical symptoms of the disease are the presence of club-shaped galls in the roots of susceptible hosts that block the absorption of water and nutrients. HOST RANGE Members of the family Brassicaceae are the primary host of the pathogen, although some members of the family, such as Bunias orientalis, Coronopus squamatus, and Raphanus sativus, have been identified as being consistently resistant to P. brassicae isolates with variable virulence profile. TAXONOMY Class: Phytomyxea; Order: Plasmodiophorales; Family: Plasmodiophoraceae; Genus: Plasmodiophora; Species: Plasmodiophora brassicae (Woronin, 1877). DISTRIBUTION Clubroot disease is spread worldwide, with reports from all continents except Antarctica. To date, clubroot disease has been reported in more than 80 countries. PATHOTYPING Based on its virulence on different hosts, P. brassicae is classified into pathotypes or races. Five main pathotyping systems have been developed to understand the relationship between P. brassicae and its hosts. Nowadays, the Canadian clubroot differential is extensively used in Canada and has so far identified 36 different pathotypes based on the response of a set of 13 hosts. EFFECTORS AND RESISTANCE After the identification and characterization of the clubroot pathogen SABATH-type methyltransferase PbBSMT, several other effectors have been characterized. However, no avirulence gene is known, hindering the functional characterization of the five intercellular nucleotide-binding (NB) site leucine-rich-repeat (LRR) receptors (NLRs) clubroot resistance genes validated to date. IMPORTANT LINK Canola Council of Canada is constantly updating information about clubroot and P. brassicae as part of their Canola Encyclopedia: https://www.canolacouncil.org/canola-encyclopedia/diseases/clubroot/. PHYTOSANITARY CATEGORIZATION PLADBR: EPPO A2 list; Annex designation 9E.
Collapse
Affiliation(s)
- Muhammad Asim Javed
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Arne Schwelm
- Department of Plant ScienceWageningen University and ResearchWageningenNetherlands
- Teagasc, Crops Research CentreCarlowIreland
| | - Nazanin Zamani‐Noor
- Julius Kühn‐Institute, Institute for Plant Protection in Field Crops and GrasslandBraunschweigGermany
| | - Rasha Salih
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Marina Silvestre Vañó
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Jiaxu Wu
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | - Melaine González García
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| | | | - Chaoyu Luo
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Priyavashini Prakash
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- K. S. Rangasamy College of TechnologyNamakkalIndia
| | - Edel Pérez‐López
- Départment de phytologie, Faculté des sciences de l'agriculture et de l'alimentationUniversité LavalQuebec CityQuebecCanada
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuebec CityQuebecCanada
- Institute de Biologie Intégrative et des Systèmes, Université LavalQuebec CityQuebecCanada
| |
Collapse
|
13
|
Yin X, Yang D, Zhao Y, Yang X, Zhou Z, Sun X, Kong X, Li X, Wang G, Duan Y, Yang Y, Yang Y. Differences in pseudogene evolution contributed to the contrasting flavors of turnip and Chiifu, two Brassica rapa subspecies. PLANT COMMUNICATIONS 2023; 4:100427. [PMID: 36056558 PMCID: PMC9860189 DOI: 10.1016/j.xplc.2022.100427] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/30/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Pseudogenes are important resources for investigation of genome evolution and genomic diversity because they are nonfunctional but have regulatory effects that influence plant adaptation and diversification. However, few systematic comparative analyses of pseudogenes in closely related species have been conducted. Here, we present a turnip (Brassica rapa ssp. rapa) genome sequence and characterize pseudogenes among diploid Brassica species/subspecies. The results revealed that the number of pseudogenes was greatest in Brassica oleracea (CC genome), followed by B. rapa (AA genome) and then Brassica nigra (BB genome), implying that pseudogene differences emerged after species differentiation. In Brassica AA genomes, pseudogenes were distributed asymmetrically on chromosomes because of numerous chromosomal insertions/rearrangements, which contributed to the diversity among subspecies. Pseudogene differences among subspecies were reflected in the flavor-related glucosinolate (GSL) pathway. Specifically, turnip had the highest content of pungent substances, probably because of expansion of the methylthioalkylmalate synthase-encoding gene family in turnips; these genes were converted into pseudogenes in B. rapa ssp. pekinensis (Chiifu). RNA interference-based silencing of the gene encoding 2-oxoglutarate-dependent dioxygenase 2, which is also associated with flavor and anticancer substances in the GSL pathway, resulted in increased abundance of anticancer compounds and decreased pungency of turnip and Chiifu. These findings revealed that pseudogene differences between turnip and Chiifu influenced the evolution of flavor-associated GSL metabolism-related genes, ultimately resulting in the different flavors of turnip and Chiifu.
Collapse
Affiliation(s)
- Xin Yin
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Danni Yang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youjie Zhao
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Xingyu Yang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Zhou
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xudong Sun
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiangxiang Kong
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiong Li
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guangyan Wang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuanwen Duan
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunqiang Yang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yongping Yang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
14
|
Advances in Biological Control and Resistance Genes of Brassicaceae Clubroot Disease-The Study Case of China. Int J Mol Sci 2023; 24:ijms24010785. [PMID: 36614228 PMCID: PMC9821010 DOI: 10.3390/ijms24010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Clubroot disease is a soil-borne disease caused by Plasmodiophora brassicae. It occurs in cruciferous crops exclusively, and causes serious damage to the economic value of cruciferous crops worldwide. Although different measures have been taken to prevent the spread of clubroot disease, the most fundamental and effective way is to explore and use disease-resistance genes to breed resistant varieties. However, the resistance level of plant hosts is influenced both by environment and pathogen race. In this work, we described clubroot disease in terms of discovery and current distribution, life cycle, and race identification systems; in particular, we summarized recent progress on clubroot control methods and breeding practices for resistant cultivars. With the knowledge of these identified resistance loci and R genes, we discussed feasible strategies for disease-resistance breeding in the future.
Collapse
|
15
|
Pang W, Zhang X, Ma Y, Wang Y, Zhan Z, Piao Z. Fine mapping and candidate gene analysis of CRA3.7 conferring clubroot resistance in Brassica rapa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4541-4548. [PMID: 36243892 DOI: 10.1007/s00122-022-04237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
In this study, we fine-mapped a clubroot resistance gene CRA3.7 in Chinese cabbage and developed its closely linked marker syau-InDel3008 for marker-assisted selection in CR cultivars breeding. Chinese cabbage is an important leafy vegetable rich in many nutrients widely grown in China. Clubroot disease caused by an obligate biotrophic pathogen Plasmodiophora brassicae was rapidly spread and challenged to Chinese cabbage production. A clubroot resistance (CR) gene, CRA3.7, was mapped on chromosome A03 of Brassica rapa. A Chinese cabbage line 'CR510', which harbor homozygous resistance locus CRA3.7 was selected from a BC4F3 family. 'CR510' was crossed with a clubroot susceptible Chinese cabbage inbred line '59-1'. Total 51 recombinant plants were identified from an F2 population including 3000 individuals. These recombinants were selfed and the clubroot resistance of F2/3 families was evaluated. Finally, a clubroot resistance gene CRA3.7 was fine-mapped to an interval of approximately 386 kb between marker syau-InDel3024 and syau-InDel3008. According to the reference genome, total 54 genes including five encoding the TIR-NBS-LRR proteins was annotated in the fine-mapped region. Further, nine candidate's gene expression in parental lines at 7, 14 and 21 days after inoculation of P. brassicae were evaluated. Bra019376, Bra019401, Bra019403 and Bra019410 are highly expressed in 'CR510' than '59-1'. Gene sequence of Bra019410 from 'CR510' was cloned and identified different from CRa. Therefore, Bra019376, Bra019401, Bra019403 and Bra019410 are the most likely candidates for CRA3.7. Our research provides a valuable germplasm resource against P. brassicae Pb3 and CRA3.7 closely linked marker for marker-assisted selection in CR cultivars breeding.
Collapse
Affiliation(s)
- Wenxing Pang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xue Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yinbo Ma
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yingjun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zongxiang Zhan
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
16
|
Zhu M, Yang L, Zhang Y, Zhuang M, Ji J, Hou X, Li Z, Han F, Fang Z, Lv H, Wang Y. Introgression of clubroot resistant gene into Brassica oleracea L. from Brassica rapa based on homoeologous exchange. HORTICULTURE RESEARCH 2022; 9:uhac195. [PMID: 37180031 PMCID: PMC10167419 DOI: 10.1093/hr/uhac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/26/2022] [Indexed: 05/15/2023]
Abstract
Clubroot is a soil-borne disease in cabbage (Brassica oleracea L. var. capitata L.) caused by Plasmodiophora brassicae, which poses a great threat to cabbage production. However, clubroot resistance (CR) genes in Brassica rapa could be introduced into the cabbage via breeding to make it clubroot resistant. In this study, CR genes from B. rapa were introduced into the cabbage genome and the mechanism of gene introgression was explored. Two methods were used to create CR materials: (i) The fertility of CR Ogura CMS cabbage germplasms containing CRa was restored by using an Ogura CMS restorer. After cytoplasmic replacement and microspore culture, CRa-positive microspore individuals were obtained. (ii) Distant hybridization was performed between cabbage and B. rapa, which contained three CR genes (CRa, CRb, and Pb8.1). Finally, BC2 individuals containing all three CR genes were obtained. Inoculation results showed that both CRa-positive microspore individuals and BC2 individuals containing three CR genes were resistant to race 4 of P. brassicae. Sequencing results from CRa-positive microspore individuals with specific molecular markers and genome-wide association study (GWAS) showed penetration at the homologous position of the cabbage genome by a 3.42 Mb CRa containing a fragment from B. rapa; indicating homoeologous exchange (HE) as the theoretical basis for the introgression of CR resistance. The successful introduction of CR into the cabbage genome in the present study can provide useful clues for creating introgression lines within other species of interest.
Collapse
Affiliation(s)
- Mingzhao Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Vegetable Science, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhansheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengqing Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Shaw RK, Shen Y, Yu H, Sheng X, Wang J, Gu H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. Int J Mol Sci 2022; 23:9280. [PMID: 36012543 PMCID: PMC9409056 DOI: 10.3390/ijms23169280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brassica oleracea is an agronomically important species of the Brassicaceae family, including several nutrient-rich vegetables grown and consumed across the continents. But its sustainability is heavily constrained by a range of destructive pathogens, among which, clubroot disease, caused by a biotrophic protist Plasmodiophora brassicae, has caused significant yield and economic losses worldwide, thereby threatening global food security. To counter the pathogen attack, it demands a better understanding of the complex phenomenon of Brassica-P. brassicae pathosystem at the physiological, biochemical, molecular, and cellular levels. In recent years, multiple omics technologies with high-throughput techniques have emerged as successful in elucidating the responses to biotic and abiotic stresses. In Brassica spp., omics technologies such as genomics, transcriptomics, ncRNAomics, proteomics, and metabolomics are well documented, allowing us to gain insights into the dynamic changes that transpired during host-pathogen interactions at a deeper level. So, it is critical that we must review the recent advances in omics approaches and discuss how the current knowledge in multi-omics technologies has been able to breed high-quality clubroot-resistant B. oleracea. This review highlights the recent advances made in utilizing various omics approaches to understand the host resistance mechanisms adopted by Brassica crops in response to the P. brassicae attack. Finally, we have discussed the bottlenecks and the way forward to overcome the persisting knowledge gaps in delivering solutions to breed clubroot-resistant Brassica crops in a holistic, targeted, and precise way.
Collapse
Affiliation(s)
| | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|