1
|
Zhou J, Li J, Zhang Y, Yang Y, Lv Y, Pu Q, Deng X, Tao D. Introgression among subgroups is an important driving force for genetic improvement and evolution of the Asian cultivated rice Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2025; 16:1535880. [PMID: 40051880 PMCID: PMC11882543 DOI: 10.3389/fpls.2025.1535880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
Anagenesis accumulates favorable mutations that enable crops to adapt to continually improving artificial production environments, while cladogenesis results in the deposition of beneficial variations across diverse ecotypes. Integrating advantageous genetic variations from diverse evolutionary sources establishes the foundation for the continued genetic improvement of crops. For a long time, rice breeding practices have been guided by the established belief that the Asian cultivated rice consists of two subspecies: Oryza sativa subsp. indica and subsp. japonica. Integrating elite genetic variants from both subspecies has been a major strategy for genetic improvement. This approach has proven successful through the achievements of temperate japonica breeding programs in China, Japan, and Korea over the past decades. The genetic differentiation within the Asian cultivated rice has been successfully harnessed for heterosis breeding, thereby enhancing rice yield productivity. Genomic investigations have revealed more genetic divergences in the Asian cultivated rice, prompting the proposal of six subgroups within it. This indicates that there is greater potential for uncovering additional genetic divergences and diversity in future breeding practices. Genetic introgression and gene flow among subgroups have led to improvements in agronomic traits within the indica, temperate japonica, and tropical japonica subgroups during the modern rice breeding process. The introgression process has widened the genetic diversity within subgroups and reduced the genetic distance between them, resulting in the creation of new genetic blocks and subpopulations. Artificial introgression has accelerated the evolution process in rice breeding history. Advancements in the study of genetic divergence and diversity in rice offer valuable insights to guide breeding practices. The mini subgroups aus, basmatic, and rayada possess untapped genetic potential but have been poorly studied worldwide; more samples should be further investigated. This information will be invaluable for harnessing these advantageous variations through introgression breeding. Further studying the nature of reproductive barriers among subgroups will enhance our understanding of genetic differentiation, allow us to overcome these barriers and facilitate effective genetic exchange, and even enable us to harness heterosis among subgroups.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dayun Tao
- Yunnan Seed Laboratory/Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops
Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| |
Collapse
|
2
|
Lou H, Li S, Shi Z, Zou Y, Zhang Y, Huang X, Yang D, Yang Y, Li Z, Xu C. Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice. Cell 2025; 188:530-549.e20. [PMID: 39674177 DOI: 10.1016/j.cell.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/26/2024] [Accepted: 11/07/2024] [Indexed: 12/16/2024]
Abstract
A 2°C climate-warming scenario is expected to further exacerbate average crop losses by 3%-13%, yet few heat-tolerant staple-crop varieties are available toward meeting future food demands. Here, we develop high-efficiency prime-editing tools to precisely knockin a 10-bp heat-shock element (HSE) into promoters of cell-wall-invertase genes (CWINs) in elite rice and tomato cultivars. HSE insertion endows CWINs with heat-responsive upregulation in both controlled and field environments to enhance carbon partitioning to grain and fruits, resulting in per-plot yield increases of 25% in rice cultivar Zhonghua11 and 33% in tomato cultivar Ailsa Craig over heat-stressed controls, without fruit quality penalties. Up to 41% of heat-induced grain losses were rescued in rice. Beyond a prime-editing system for tweaking gene expression by efficiently delivering bespoke changes into crop genomes, we demonstrate broad and robust utility for targeted knockin of cis-regulatory elements to optimize source-sink relations and boost crop climate resilience.
Collapse
Affiliation(s)
- Huanchang Lou
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujia Li
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zihang Shi
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yupan Zou
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yueqin Zhang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaozhen Huang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dandan Yang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongfang Yang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuoyao Li
- College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Cao Xu
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Zhou X, Li J, Chen L, Guo M, Liang R, Pan Y. The genomic pattern of insertion/deletion variations during rice improvement. BMC Genomics 2024; 25:1263. [PMID: 39741238 DOI: 10.1186/s12864-024-11178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Rice, as one of the most important staple crops, its genetic improvement plays a crucial role in agricultural production and food security. Although extensive research has utilized single nucleotide polymorphisms (SNPs) data to explore the genetic basis of important agronomic traits in rice improvement, reports on the role of other types of variations, such as insertions and deletions (INDELs), are still limited. RESULTS In this study, we extracted INDELs from resequencing data of 148 rice improved varieties. We identified 938,585 INDELs and found that as the length of the variation increases, the number of variations decreases, with 89.0% of INDELs being 2-10 bp. The highest number of INDELs was found on chromosome 1, while the least was on chromosome 10. INDELs were unevenly distributed across the genome, generating a total of 33 hotspot regions. 47.0% of INDELs were located within 2 kb upstream and downstream of genes. Using phenotypic data from five agronomic traits (heading date, flag leaf length, flag leaf width, panicle number, and plant height) along with INDEL data to perform genome-wide association study (GWAS), we identified 6,331 significant loci involving 157 cloned genes. Haplotype analysis of candidate genes revealed INDELs affecting important functional genes, such as OsMED25 and OsRRMh related to heading date, and MOC2 related to plant height. CONCLUSIONS Our work analyzed the variation patterns of INDELs in rice improvement and identified INDELs associated with agronomic traits. These results will provide valuable genetic and material resources for the genetic improvement of rice.
Collapse
Affiliation(s)
- Xia Zhou
- Urban Construction School, Beijing City University, Beijing, 101300, China
| | - Jilong Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Lei Chen
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Minjie Guo
- Peanut Institute, Kaifeng Academy of Agricultural and Forestry Sciences, Kaifeng, 475004, China
| | - Renmin Liang
- Hechi Agricultural Science Research Institute, Guangxi Academy of Agricultural Sciences, Hechi, 546306, China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
4
|
Long W, He Q, Wang Y, Wang Y, Wang J, Yuan Z, Wang M, Chen W, Luo L, Luo L, Xu W, Li Y, Li W, Yan L, Cai Y, Du H, Xie H. Genome evolution and diversity of wild and cultivated rice species. Nat Commun 2024; 15:9994. [PMID: 39557856 PMCID: PMC11574199 DOI: 10.1038/s41467-024-54427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Wild species of crops serve as a valuable germplasm resource for breeding of modern cultivars. Rice (Oryza sativa L.) is a vital global staple food. However, research on genome evolution and diversity of wild rice species remains limited. Here, we present nearly complete genomes of 13 representative wild rice species. By integrating with four previously published genomes for pangenome analysis, a total of 101,723 gene families are identified across the genus, including 9834 (9.67%) core gene families. Additionally, 63,881 gene families absent in cultivated rice species but present in wild rice species are discovered. Extensive structural rearrangements, sub-genomes exchanges, widespread allelic variations, and regulatory sequence variations are observed in wild rice species. Interestingly, expanded but less diverse disease resistance genes in the genomes of cultivated rice, likely due to the loss of some resistance genes and the fixing and amplification of genes encoding resistance genes to specific diseases during domestication and artificial selection. This study not only reveals natural variations valuable for gene-level studies and breeding selection but also enhances our understanding on rice evolution and domestication.
Collapse
Affiliation(s)
- Weixiong Long
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Yitao Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Jie Wang
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhengqing Yuan
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Meijia Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Wei Chen
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Lihua Luo
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Laiyang Luo
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Weibiao Xu
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yonghui Li
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Longan Yan
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yaohui Cai
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China.
| | - Hongwei Xie
- Jiangxi Super -rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, National Engineering Research Center for Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
| |
Collapse
|
5
|
Sun Q, Yu Z, Wang X, Chen H, Lu J, Zhao C, Jiang L, Li F, Xu Q, Ma D. EARLY FLOWERING3-1 represses Grain number, plant height, and heading date7 to promote ABC1 REPRESSOR1 and regulate nitrogen uptake in rice. PLANT PHYSIOLOGY 2024; 196:1857-1868. [PMID: 39133898 DOI: 10.1093/plphys/kiae416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/17/2024] [Indexed: 11/05/2024]
Abstract
The extensive use of nitrogen fertilizer boosts rice (Oryza sativa) production but also harms ecosystems. Therefore, enhancing crop nitrogen use efficiency is crucial. Here, we performed map-based cloning and identified the EARLY FLOWERING3 (ELF3) like protein-encoding gene OsELF3-1, which confers enhanced nitrogen uptake in rice. OsELF3-1 forms a ternary complex (OsEC) with OsELF4s and OsLUX, the putative orthologs of ELF4 and LUX ARRHYTHMO (LUX) in Arabidopsis (Arabidopsis thaliana), respectively. OsEC directly binds to the promoter of Grain number, plant height, and heading date7 (Ghd7) and represses its expression. Ghd7 encodes a transcription factor that has major effects on multiple agronomic traits. Ghd7 is also a transcriptional repressor and directly suppresses the expression of ABC1 REPRESSOR1 (ARE1), a negative regulator of nitrogen use efficiency. Therefore, targeting the OsEC-Ghd7-ARE1 module offers an approach to enhance nitrogen uptake, presenting promising avenues for sustainable agriculture.
Collapse
Affiliation(s)
- Qi Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiwen Yu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoche Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Hao Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiahao Lu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Chenfei Zhao
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Linlin Jiang
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Dianrong Ma
- Agronomy College, Liaodong University, Dandong, 118003, China
| |
Collapse
|
6
|
Feng J, Zhang W, Chen C, Liang Y, Li T, Wu Y, Liu H, Wu J, Lin W, Li J, He Y, He J, Luan A. The pineapple reference genome: Telomere-to-telomere assembly, manually curated annotation, and comparative analysis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2208-2225. [PMID: 39109967 DOI: 10.1111/jipb.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 10/19/2024]
Abstract
Pineapple is the third most crucial tropical fruit worldwide and available in five varieties. Genomes of different pineapple varieties have been released to date; however, none of them are complete, with all exhibiting substantial gaps and representing only two of the five pineapple varieties. This significantly hinders the advancement of pineapple breeding efforts. In this study, we sequenced the genomes of three varieties: a wild pineapple variety, a fiber pineapple variety, and a globally cultivated edible pineapple variety. We constructed the first gap-free reference genome (Ref) for pineapple. By consolidating multiple sources of evidence and manually revising each gene structure annotation, we identified 26,656 protein-coding genes. The BUSCO evaluation indicated a completeness of 99.2%, demonstrating the high quality of the gene structure annotations in this genome. Utilizing these resources, we identified 7,209 structural variations across the three varieties. Approximately 30.8% of pineapple genes were located within ±5 kb of structural variations, including 30 genes associated with anthocyanin synthesis. Further analysis and functional experiments demonstrated that the high expression of AcMYB528 aligns with the accumulation of anthocyanins in the leaves, both of which may be affected by a 1.9-kb insertion fragment. In addition, we developed the Ananas Genome Database, which offers data browsing, retrieval, analysis, and download functions. The construction of this database addresses the lack of pineapple genome resource databases. In summary, we acquired a seamless pineapple reference genome with high-quality gene structure annotations, providing a solid foundation for pineapple genomics and a valuable reference for pineapple breeding.
Collapse
Affiliation(s)
- Junting Feng
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 572024, China
| | - Wei Zhang
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Chengjie Chen
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yinlong Liang
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Tangxiu Li
- Nanfan Research Institute of Hainan University, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Ya Wu
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hui Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Wu
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenqiu Lin
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Jiawei Li
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yehua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Junhu He
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Aiping Luan
- National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| |
Collapse
|
7
|
Mishra S, Srivastava AK, Khan AW, Tran LSP, Nguyen HT. The era of panomics-driven gene discovery in plants. TRENDS IN PLANT SCIENCE 2024; 29:995-1005. [PMID: 38658292 DOI: 10.1016/j.tplants.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Panomics is an approach to integrate multiple 'omics' datasets, generated using different individuals or natural variations. Considering their diverse phenotypic spectrum, the phenome is inherently associated with panomics-based science, which is further combined with genomics, transcriptomics, metabolomics, and other omics techniques, either independently or collectively. Panomics has been accelerated through recent technological advancements in the field of genomics that enable the detection of population-wide structural variations (SVs) and hence offer unprecedented insights into the genetic variations contributing to important agronomic traits. The present review provides the recent trends of panomics-driven gene discovery toward various traits related to plant development, stress tolerance, accumulation of specialized metabolites, and domestication/dedomestication. In addition, the success stories are highlighted in the broader context of enhancing crop productivity.
Collapse
Affiliation(s)
- Shefali Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - Aamir W Khan
- Division of Plant Science and Technology and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Henry T Nguyen
- Division of Plant Science and Technology and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
8
|
Li F, Wu L, Li X, Chai Y, Ruan N, Wang Y, Xu N, Yu Z, Wang X, Chen H, Lu J, Xu H, Xu Z, Chen W, Xu Q. Dissecting the molecular basis of the ultra-large grain formation in rice. THE NEW PHYTOLOGIST 2024; 243:2251-2264. [PMID: 39073105 DOI: 10.1111/nph.20001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
The shape of rice grains not only determines the thousand-grain weight but also correlates closely with the grain quality. Here we identified an ultra-large grain accession (ULG) with a thousand-grain weight exceeding 60 g. The integrated analysis of QTL, BSA, de novo genome assembled, transcription sequencing, and gene editing was conducted to dissect the molecular basis of the ULG formation. The ULG pyramided advantageous alleles from at least four known grain-shaping genes, OsLG3, OsMADS1, GS3, GL3.1, and one novel locus, qULG2-b, which encoded a leucine-rich repeat receptor-like kinase. The collective impacts of OsLG3, OsMADS1, GS3, and GL3.1 on grain size were confirmed in transgenic plants and near-isogenic lines. The transcriptome analysis identified 112 genes cooperatively regulated by these four genes that were prominently involved in photosynthesis and carbon metabolism. By leveraging the pleiotropy of these genes, we enhanced the grain yield, appearance, and stress tolerance of rice var. SN265. Beyond showcasing the pyramiding of multiple grain size regulation genes that can produce ULG, our study provides a theoretical framework and valuable genomic resources for improving rice variety by leveraging the pleiotropy of grain size regulated genes.
Collapse
Affiliation(s)
- Fengcheng Li
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Lian Wu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiang Li
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanan Chai
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Nan Ruan
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Ye Wang
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Na Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiwen Yu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoche Wang
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Hao Chen
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiahao Lu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Hai Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhengjin Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenfu Chen
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Quan Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
9
|
Xu N, Qiu Y, Cui X, Fei C, Xu Q. Enhancing grain shape, thermotolerance, and alkaline tolerance via Gγ protein manipulation in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:154. [PMID: 38856926 DOI: 10.1007/s00122-024-04669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
KEY MESSAGE Our findings highlight a valuable breeding resource, demonstrating the potential to concurrently enhance grain shape, thermotolerance, and alkaline tolerance by manipulating Gγ protein in rice. Temperate Geng/Japonica (GJ) rice yields have improved significantly, bolstering global food security. However, GJ rice breeding faces challenges, including enhancing grain quality, ensuring stable yields at warmer temperatures, and utilizing alkaline land. In this study, we employed CRISPR/Cas9 gene-editing technology to knock out the GS3 locus in seven elite GJ varieties with superior yield performance. Yield component measurements revealed that GS3 knockout mutants consistently enhanced grain length and reduced plant height in diverse genetic backgrounds. The impact of GS3 on the grain number per panicle and setting rate depended on the genetic background. GS3 knockout did not affect milling quality and minimally altered protein and amylose content but notably influenced chalkiness-related traits. GS3 knockout indiscriminately improved heat and alkali stress tolerance in the GJ varieties studied. Transcriptome analysis indicated differential gene expression between the GS3 mutants and their wild-type counterparts, enriched in biological processes related to photosynthesis, photosystem II stabilization, and pathways associated with photosynthesis and cutin, suberine, and wax biosynthesis. Our findings highlight GS3 as a breeding resource for concurrently improving grain shape, thermotolerance, and alkaline tolerance through Gγ protein manipulation in rice.
Collapse
Affiliation(s)
- Na Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuchao Qiu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xin Cui
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang, 110866, China
| | - Cheng Fei
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| | - Quan Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
10
|
Zhou X, Qiang C, Chen L, Qing D, Huang J, Li J, Pan Y. The Landscape of Presence/Absence Variations during the Improvement of Rice. Genes (Basel) 2024; 15:645. [PMID: 38790274 PMCID: PMC11120952 DOI: 10.3390/genes15050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Rice is one of the most important staple crops in the world; therefore, the improvement of rice holds great significance for enhancing agricultural production and addressing food security challenges. Although there have been numerous studies on the role of single-nucleotide polymorphisms (SNPs) in rice improvement with the development of next-generation sequencing technologies, research on the role of presence/absence variations (PAVs) in the improvement of rice is limited. In particular, there is a scarcity of studies exploring the traits and genes that may be affected by PAVs in rice. Here, we extracted PAVs utilizing resequencing data from 148 improved rice varieties distributed in Asia. We detected a total of 33,220 PAVs and found that the number of variations decreased gradually as the length of the PAVs increased. The number of PAVs was the highest on chromosome 1. Furthermore, we identified a 6 Mb hotspot region on chromosome 11 containing 1091 PAVs in which there were 29 genes related to defense responses. By conducting a genome-wide association study (GWAS) using PAV variation data and phenotypic data for five traits (flowering time, plant height, flag leaf length, flag leaf width, and panicle number) across all materials, we identified 186 significantly associated PAVs involving 20 cloned genes. A haplotype analysis and expression analysis of candidate genes revealed that important genes might be affected by PAVs, such as the flowering time gene OsSFL1 and the flag leaf width gene NAL1. Our work investigated the pattern in PAVs and explored important PAV key functional genes associated with agronomic traits. Consequently, these results provide potential and exploitable genetic resources for rice breeding.
Collapse
Affiliation(s)
- Xia Zhou
- Urban Construction School, Beijing City University, Beijing 101300, China;
| | - Chenggen Qiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Lei Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.C.); (D.Q.); (J.H.)
| | - Dongjin Qing
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.C.); (D.Q.); (J.H.)
| | - Juan Huang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.C.); (D.Q.); (J.H.)
| | - Jilong Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.C.); (D.Q.); (J.H.)
| |
Collapse
|
11
|
Zhang Z, van Treuren R, Yang T, Hu Y, Zhou W, Liu H, Wei T. A comprehensive lettuce variation map reveals the impact of structural variations in agronomic traits. BMC Genomics 2023; 24:659. [PMID: 37919641 PMCID: PMC10621239 DOI: 10.1186/s12864-023-09739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND As an important vegetable crop, cultivated lettuce is grown worldwide and a great variety of agronomic traits have been preserved within germplasm collections. The mechanisms underlying these phenotypic variations remain to be elucidated in association with sequence variations. Compared with single nucleotide polymorphisms, structural variations (SVs) that have more impacts on gene functions remain largely uncharacterized in the lettuce genome. RESULTS Here, we produced a comprehensive SV set for 333 wild and cultivated lettuce accessions. Comparison of SV frequencies showed that the SVs prevalent in L. sativa affected the genes enriched in carbohydrate derivative catabolic and secondary metabolic processes. Genome-wide association analysis of seven agronomic traits uncovered potentially causal SVs associated with seed coat color and leaf anthocyanin content. CONCLUSION Our work characterized a great abundance of SVs in the lettuce genome, and provides a valuable genomic resource for future lettuce breeding.
Collapse
Affiliation(s)
- Zhaowu Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
| | - Rob van Treuren
- Centre for Genetic Resources, the Netherlands, Wageningen University & Research, Wageningen, the Netherlands
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
| | - Yulan Hu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
| | - Wenhui Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
12
|
Jiang S, Zhang X, Yang X, Liu C, Wang L, Ma B, Miao Y, Hu J, Tan K, Wang Y, Jiang H, Wang J. A chromosome-level genome assembly of an early matured aromatic Japonica rice variety Qigeng10 to accelerate rice breeding for high grain quality in Northeast China. FRONTIERS IN PLANT SCIENCE 2023; 14:1134308. [PMID: 36909446 PMCID: PMC9995481 DOI: 10.3389/fpls.2023.1134308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Early-matured aromatic japonica rice from the Northeast is the most popular rice commodity in the Chinese market. The Qigeng10 (QG10) was one of the varieties with the largest planting area in this region in recent years. It was an early-matured japonica rice variety with a lot of superior traits such as semi-dwarf, lodging resistance, long grain, aromatic and good quality. Therefore, a high-quality assembly of Qigeng10 genome is critical and useful for japonica research and breeding. In this study, we produced a high-precision QG10 chromosome-level genome by using a combination of Nanopore and Hi-C platforms. Finally, we assembled the QG10 genome into 77 contigs with an N50 length of 11.80 Mb in 27 scaffolds with an N50 length of 30.55 Mb. The assembled genome size was 378.31Mb with 65 contigs and constituted approximately 99.59% of the 12 chromosomes. We identified a total of 1,080,819 SNPs and 682,392 InDels between QG10 and Nipponbare. We also annotated 57,599 genes by the Ab initio method, homology-based technique, and RNA-seq. Based on the assembled genome sequence, we detected the sequence variation in a total of 63 cloned genes involved in grain yield, grain size, disease tolerance, lodging resistance, fragrance, and many other important traits. Finally, we identified five elite alleles (qTGW2Nipponbare , qTGW3Nanyangzhan , GW5IR24 , GW6Suyunuo , and qGW8Basmati385 ) controlling long grain size, four elite alleles (COLD1Nipponbare , bZIP73Nipponbare , CTB4aKunmingxiaobaigu , and CTB2Kunmingxiaobaigu ) controlling cold tolerance, three non-functional alleles (DTH7Kitaake , Ghd7Hejiang19 , and Hd1Longgeng31 ) for early heading, two resistant alleles (PiaAkihikari and Pid4Digu ) for rice blast, a resistant allele STV11Kasalath for rice stripe virus, an NRT1.1BIR24 allele for higher nitrate absorption activity, an elite allele SCM3Chugoku117 for stronger culms, and the typical aromatic gene badh2-E2 for fragrance in QG10. These results not only help us to better elucidate the genetic mechanisms underlying excellent agronomic traits in QG10 but also have wide-ranging implications for genomics-assisted breeding in early-matured fragrant japonica rice.
Collapse
Affiliation(s)
- Shukun Jiang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Xijuan Zhang
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xianli Yang
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chuanzeng Liu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Lizhi Wang
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Bo Ma
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Yi Miao
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Jifang Hu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Kefei Tan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Yuxian Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Hui Jiang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Junhe Wang
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
13
|
Qiu L, Zhou P, Wang H, Zhang C, Du C, Tian S, Wu Q, Wei L, Wang X, Zhou Y, Huang R, Huang X, Ouyang X. Photoperiod Genes Contribute to Daylength-Sensing and Breeding in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:899. [PMID: 36840246 PMCID: PMC9959395 DOI: 10.3390/plants12040899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Rice (Oryza sativa L.), one of the most important food crops worldwide, is a facultative short-day (SD) plant in which flowering is modulated by seasonal and temperature cues. The photoperiodic molecular network is the core network for regulating flowering in rice, and is composed of photoreceptors, a circadian clock, a photoperiodic flowering core module, and florigen genes. The Hd1-DTH8-Ghd7-PRR37 module, a photoperiodic flowering core module, improves the latitude adaptation through mediating the multiple daylength-sensing processes in rice. However, how the other photoperiod-related genes regulate daylength-sensing and latitude adaptation remains largely unknown. Here, we determined that mutations in the photoreceptor and circadian clock genes can generate different daylength-sensing processes. Furthermore, we measured the yield-related traits in various mutants, including the main panicle length, grains per panicle, seed-setting rate, hundred-grain weight, and yield per panicle. Our results showed that the prr37, elf3-1 and ehd1 mutants can change the daylength-sensing processes and exhibit longer main panicle lengths and more grains per panicle. Hence, the PRR37, ELF3-1 and Ehd1 locus has excellent potential for latitude adaptation and production improvement in rice breeding. In summary, this study systematically explored how vital elements of the photoperiod network regulate daylength sensing and yield traits, providing critical information for their breeding applications.
Collapse
Affiliation(s)
- Leilei Qiu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Peng Zhou
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Hao Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Zhang
- Liaoning Rice Research Institute, Shenyang 110101, China
| | - Chengxing Du
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shujun Tian
- Liaoning Rice Research Institute, Shenyang 110101, China
| | - Qinqin Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Litian Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaoying Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yiming Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rongyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
14
|
Xu N, Xu H, Xu Z, Li F, Xu Q. Introgression of a Complex Genomic Structural Variation Causes Hybrid Male Sterility in GJ Rice ( Oryza sativa L.) Subspecies. Int J Mol Sci 2022; 23:ijms232112804. [PMID: 36361593 PMCID: PMC9656383 DOI: 10.3390/ijms232112804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/26/2022] Open
Abstract
Hybrids between different subspecies of rice Oryza sativa L. commonly show hybrid sterility. Here we show that a widely planted commercial japonica/GJ variety, DHX2, exhibited hybrid sterility when crossing with other GJ varieties. Using the high-quality genome assembly, we identified three copies of the Sc gene in DHX2, whereas Nipponbare (Nip) had only one copy of Sc. Knocking out the extra copies of Sc in DHX2 significantly improved the pollen fertility of the F1 plant of DHX2/Nip cross. The population structure analysis revealed that a slight introgression from Basmati1 might occur in the genome of DHX2. We demonstrated that both DHX2 and Basmati1 harbored three copies of Sc. Moreover, the introgression of GS3 and BADH2/fgr from Basmati1 confers the slender and fragrance grain of DHX2. These results add to our understanding of the hybrid sterility of inter-subspecies and intra-subspecies and may provide a novel strategy for hybrid breeding.
Collapse
Affiliation(s)
| | | | | | | | - Quan Xu
- Correspondence: (F.L.); (Q.X.)
| |
Collapse
|