1
|
Zhu M, Zhong T, Xu L, Guo C, Zhang X, Liu Y, Zhang Y, Li Y, Xie Z, Liu T, Jiang F, Fan X, Balint-Kurti P, Xu M. The ZmCPK39-ZmDi19-ZmPR10 immune module regulates quantitative resistance to multiple foliar diseases in maize. Nat Genet 2024; 56:2815-2826. [PMID: 39496881 PMCID: PMC11631770 DOI: 10.1038/s41588-024-01968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/01/2024] [Indexed: 11/06/2024]
Abstract
Gray leaf spot, northern leaf blight and southern leaf blight are three of the most destructive foliar diseases affecting maize (Zea mays L.). Here we identified a gene, ZmCPK39, that encodes a calcium-dependent protein kinase and negatively regulates quantitative resistance to these three diseases. The ZmCPK39 allele in the resistant line displayed significantly lower pathogen-induced gene expression than that in the susceptible line. A marked decrease in ZmCPK39 abundance mitigated the phosphorylation and degradation of the transcription factor ZmDi19. This led to elevated expression of ZmPR10, a gene known to encode an antimicrobial protein, thereby enhancing maize resistance to foliar diseases. Moreover, the F1 hybrid with reduced ZmCPK39 expression favored disease resistance, thereby increasing yield. Hence, the discovery of the ZmCPK39-ZmDi19-ZmPR10 immune module provides insight into the mechanisms underlying broad-spectrum quantitative disease resistance and also offers a new avenue for the genetic control of maize foliar diseases.
Collapse
Affiliation(s)
- Mang Zhu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Tao Zhong
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Ling Xu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Chenyu Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Xiaohui Zhang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Yulin Liu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China
| | - Yan Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, P. R. China
| | - Yancong Li
- Baoshan Institute of Agricultural Science, Baoshan, P. R. China
| | - Zhijian Xie
- Baoshan Institute of Agricultural Science, Baoshan, P. R. China
| | - Tingting Liu
- Baoshan Institute of Agricultural Science, Baoshan, P. R. China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, P. R. China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, P. R. China
| | - Peter Balint-Kurti
- USDA-ARS Plant Science Research Unit, Raleigh NC and Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing, P. R. China.
- National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, P. R. China.
| |
Collapse
|
2
|
Pan Y, Jiang F, Shaw RK, Sun J, Li L, Yin X, Bi Y, Kong J, Zong H, Gong X, Ijaz B, Fan X. QTL mapping and genome-wide association analysis reveal genetic loci and candidate gene for resistance to gray leaf spot in tropical and subtropical maize germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:266. [PMID: 39532720 PMCID: PMC11557642 DOI: 10.1007/s00122-024-04764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE Using QTL mapping and GWAS, two candidate genes (Zm00001d051039 and Zm00001d051147) were consistently identified across the three different environments and BLUP values. GWAS analysis identified the candidate gene, Zm00001d044845. These genes were subsequently validated to exhibit a significant association with maize gray leaf spot (GLS) resistance. Gray leaf spot (GLS) is a major foliar disease of maize (Zea mays L.) that causes significant yield losses worldwide. Understanding the genetic mechanisms underlying gray leaf spot resistance is crucial for breeding high-yielding and disease-resistant varieties. In this study, eight tropical and subtropical germplasms were crossed with the temperate germplasm Ye107 to develop a nested association mapping (NAM) population comprising 1,653 F2:8 RILs, consisting of eight recombinant inbred line (RIL) subpopulations, using the single-seed descent method. The NAM population was evaluated for GLS resistance in three different environments, and genotyping by sequencing of the NAM population generated 593,719 high-quality single-nucleotide polymorphisms (SNPs). Linkage analysis and genome-wide association studies (GWASs) were conducted to identify candidate genes regulating GLS resistance in maize. Both analyses identified 25 QTLs and 149 SNPs that were significantly associated with GLS resistance. Candidate genes were screened 20 Kb upstream and downstream of the significant SNPs, and three novel candidate genes (Zm00001d051039, Zm00001d051147, and Zm00001d044845) were identified. Zm00001d051039 and Zm00001d051147 were located on chromosome 4 and co-localized in both linkage (qGLS4-1 and qGLS4-2) and GWAS analyses. SNP-138,153,206 was located 0.499 kb downstream of the candidate gene Zm00001d051039, which encodes the protein IN2-1 homolog B, a homolog of glutathione S-transferase (GST). GSTs and protein IN2-1 homolog B scavenge reactive oxygen species under various stress conditions, and GSTs are believed to protect plants from a wide range of biotic and abiotic stresses by detoxifying reactive electrophilic compounds. Zm00001d051147 encodes a probable beta-1,4-xylosyltransferase involved in the biosynthesis of xylan in the cell wall, enhancing resistance. SNP-145,813,215 was located 2.69 kb downstream of the candidate gene. SNP-5,043,412 was consistently identified in three different environments and BLUP values and was located 8.788 kb downstream of the candidate gene Zm00001d044845 on chromosome 9. Zm00001d044845 encodes the U-box domain-containing protein 4 (PUB4), which is involved in regulating plant immunity. qRT-PCR analysis showed that the relative expression levels of the three candidate genes were significantly upregulated in the leaves of the TML139 (resistant) parent, indicating that these three candidate genes could be associated with resistance to GLS. The findings of this study are significant for marker-assisted breeding aimed at enhancing resistance to GLS in maize and lay the foundation for further elucidation of the genetic mechanisms underlying resistance to gray leaf spot in maize and breeding of new disease-resistant varieties.
Collapse
Affiliation(s)
- Yanhui Pan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- Institute of Resource Plants, Yunnan University, Kunming, 650500, China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Ranjan K Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Jiachen Sun
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Linzhuo Li
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Xingfu Yin
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Jiao Kong
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Haiyang Zong
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- Institute of Resource Plants, Yunnan University, Kunming, 650500, China
| | - Xiaodong Gong
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
- Institute of Resource Plants, Yunnan University, Kunming, 650500, China
| | - Babar Ijaz
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| |
Collapse
|
3
|
Nisa WU, Sandhu S, Nair SK, Kaur H, Kumar A, Rashid Z, Saykhedkar G, Vikal Y. Insights into maydis leaf blight resistance in maize: a comprehensive genome-wide association study in sub-tropics of India. BMC Genomics 2024; 25:760. [PMID: 39103778 DOI: 10.1186/s12864-024-10655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND In the face of contemporary climatic vulnerabilities and escalating global temperatures, the prevalence of maydis leaf blight (MLB) poses a potential threat to maize production. This study endeavours to discern marker-trait associations and elucidate the candidate genes that underlie resistance to MLB in maize by employing a diverse panel comprising 336 lines. The panel was screening for MLB across four environments, employing standard artificial inoculation techniques. Genome-wide association studies (GWAS) and haplotype analysis were conducted utilizing a total of 128,490 SNPs obtained from genotyping-by-sequencing (GBS). RESULTS GWAS identified 26 highly significant SNPs associated with MLB resistance, among the markers examined. Seven of these SNPs, reported in novel chromosomal bins (9.06, 5.01, 9.01, 7.04, 4.06, 1.04, and 6.05) were associated with genes: bzip23, NAGS1, CDPK7, aspartic proteinase NEP-2, VQ4, and Wun1, which were characterized for their roles in diminishing fungal activity, fortifying defence mechanisms against necrotrophic pathogens, modulating phyto-hormone signalling, and orchestrating oxidative burst responses. Gene mining approach identified 22 potential candidate genes associated with SNPs due to their functional relevance to resistance against necrotrophic pathogens. Notably, bin 8.06, which hosts five SNPs, showed a connection to defense-regulating genes against MLB, indicating the potential formation of a functional gene cluster that triggers a cascade of reactions against MLB. In silico studies revealed gene expression levels exceeding ten fragments per kilobase million (FPKM) for most genes and demonstrated coexpression among all candidate genes in the coexpression network. Haplotype regression analysis revealed the association of 13 common significant haplotypes at Bonferroni ≤ 0.05. The phenotypic variance explained by these significant haplotypes ranged from low to moderate, suggesting a breeding strategy that combines multiple resistance alleles to enhance resistance to MLB. Additionally, one particular haplotype block (Hap_8.3) was found to consist of two SNPs (S8_152715134, S8_152460815) identified in GWAS with 9.45% variation explained (PVE). CONCLUSION The identified SNPs/ haplotypes associated with the trait of interest contribute to the enrichment of allelic diversity and hold direct applicability in Genomics Assisted Breeding for enhancing MLB resistance in maize.
Collapse
Affiliation(s)
- Wajhat- Un- Nisa
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder Sandhu
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India.
| | | | - Harleen Kaur
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, Ludhiana, India
| | - Zerka Rashid
- International Maize and Wheat Improvement Centre (CIMMYT), Hyderabad, India
| | - Gajanan Saykhedkar
- International Maize and Wheat Improvement Centre (CIMMYT), Hyderabad, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
4
|
Zhao B, Li K, Wang M, Liu Z, Yin P, Wang W, Li Z, Li X, Zhang L, Han Y, Li J, Yang X. Genetic basis of maize stalk strength decoded via linkage and association mapping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1558-1573. [PMID: 38113320 DOI: 10.1111/tpj.16583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
Stalk lodging is a severe problem that limits maize production worldwide, although little attention has been given to its genetic basis. Here we measured rind penetrometer resistance (RPR), an effective index for stalk lodging, in a multi-parent population of 1948 recombinant inbred lines (RILs) and an association population of 508 inbred lines (AMP508). Linkage and association mapping identified 53 and 29 single quantitative trait loci (QTLs) and 50 and 19 pairs of epistatic interactions for RPR in the multi-parent population and AMP508 population, respectively. Phenotypic variation explained by all identified epistatic QTLs (up to ~5%) was much less than that explained by all single additive QTLs (up to ~33% in the multi-parent population and ~ 60% in the AMP508 population). Among all detected QTLs, only eight single QTLs explained >10% of phenotypic variation in single RIL populations. Alleles that increased RPR were enriched in tropical/subtropical (TST) groups from the AMP508 population. Based on genome-wide association studies in both populations, we identified 137 candidate genes affecting RPR, which were assigned to multiple biological processes, such as the biosynthesis of cell wall components. Sixty-six candidate genes were cross-validated by multiple methods or populations. Most importantly, 23 candidate genes were upregulated or downregulated in high-RPR lines relative to low-RPR lines, supporting the associations between candidate genes and RPR. These findings reveal the complex nature of the genetic basis underlying RPR and provide loci or candidate genes for developing elite varieties that are resistant to stalk lodging via molecular breeding.
Collapse
Affiliation(s)
- Binghao Zhao
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Kun Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Wang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Liu
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Pengfei Yin
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Weidong Wang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Zhigang Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Yingjia Han
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jiansheng Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Yu H, Zhang J, Fan J, Jia W, Lv Y, Pan H, Zhang X. Infection-specific transcriptional patterns of the maize pathogen Cochliobolus heterostrophus unravel genes involved in asexual development and virulence. MOLECULAR PLANT PATHOLOGY 2024; 25:e13413. [PMID: 38279855 PMCID: PMC10775821 DOI: 10.1111/mpp.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/24/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024]
Abstract
Southern corn leaf blight (SCLB) caused by Cochliobolus heterostrophus is a destructive disease that threatens global maize (Zea mays) production. Despite many studies being conducted, very little is known about molecular processes employed by the pathogen during infection. There is a need to understand the fungal arms strategy and identify novel functional genes as targets for fungicide development. Transcriptome analysis based on RNA sequencing was carried out across conidia germination and host infection by C. heterostrophus. The present study revealed major changes in C. heterostrophus gene expression during host infection. Several differentially expressed genes (DEGs) induced during C. heterostrophus infection could be involved in the biosynthesis of secondary metabolites, peroxisome, energy metabolism, amino acid degradation and oxidative phosphorylation. In addition, histone acetyltransferase, secreted proteins, peroxisomal proteins, NADPH oxidase and transcription factors were selected for further functional validation. Here, we demonstrated that histone acetyltransferases (Hat2 and Rtt109), secreted proteins (Cel61A and Mep1), peroxisomal proteins (Pex11A and Pex14), NADPH oxidases (NoxA, NoxD and NoxR) and transcription factors (Crz1 and MtfA) play essential roles in C. heterostrophus conidiation, stress adaption and virulence. Taken together, our study revealed major changes in gene expression associated with C. heterostrophus infection and identified a diverse repertoire of genes critical for successful infection.
Collapse
Affiliation(s)
- Huilin Yu
- College of Plant ScienceJilin UniversityChangchunChina
| | - Jiyue Zhang
- College of Plant ScienceJilin UniversityChangchunChina
| | - Jinyu Fan
- College of Plant ScienceJilin UniversityChangchunChina
| | - Wantong Jia
- College of Plant ScienceJilin UniversityChangchunChina
| | - Yanan Lv
- College of Plant ScienceJilin UniversityChangchunChina
| | - Hongyu Pan
- College of Plant ScienceJilin UniversityChangchunChina
| | | |
Collapse
|
6
|
Dai Z, Yang Q, Chen D, Li B, Que J, Hu L, Zhang B, Zhang Z, Chen K, Zhang S, Lai Z. ZmAGO18b negatively regulates maize resistance against southern leaf blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:158. [PMID: 37341790 DOI: 10.1007/s00122-023-04405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
KEY MESSAGE Here, we report that ZmAGO18b encoding an argonaute protein is a negative regulator of maize resistance against southern leaf blight. Southern leaf blight caused by fungal pathogen Cochliobolus heterostrophus is a destructive disease on maize throughout the world. Argonaute (AGO) proteins, key regulators in small RNA pathway, play important roles in plant defense. But whether they have function in maize resistance against C. heterostrophus is unknown. Association analysis between the nucleic variation of 18 ZmAGO loci with disease phenotype against C. heterostrophus was performed, and the ZmAGO18b locus was identified to be associated with resistance against C. heterostrophus. Overexpression of ZmAGO18b gene suppresses maize resistance against C. heterostrophus, and mutation of ZmAGO18b enhances maize resistance against C. heterostrophus. Further, we identified the resistant haplotype of ZmAGO18b by association analysis of natural variation in ZmAGO18b genomic DNA sequences with seedling resistance phenotypes against C. heterostrophus and confirmed the resistant haplotype is co-segregated with resistance phenotypes against C. heterostrophus in two F2 populations. In sum, this study reports that ZmAGO18b negatively regulates maize resistance against C. heterostrophus.
Collapse
Affiliation(s)
- Zhikang Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qianhui Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Donghai Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bingchen Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiamin Que
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Long Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Kun Chen
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Shukuan Zhang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|