1
|
Hussain SS, Ali A, Abbas M, Sun Y, Li Y, Li Q, Ragauskas AJ. Harnessing miRNA156: A molecular Toolkit for reshaping plant development and achieving ideal architecture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109071. [PMID: 39186849 DOI: 10.1016/j.plaphy.2024.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Achieving ideal plant architecture is of utmost importance for plant improvement to meet the demands of ever-increasing population. The wish list of ideal plant architecture traits varies with respect to its utilization and environmental conditions. Late seed development in woody plants poses difficulties for their propagation, and an increase in regeneration capacity can overcome this problem. The transition of a plant through sequential developmental stages e.g., embryonic, juvenile, and maturity is a well-orchestrated molecular and physiological process. The manipulation in the timing of phase transition to achieve ideal plant traits and regulation of metabolic partitioning will unlock new plant potential. Previous studies demonstrate that micro RNA156 (miR156) impairs the expression of its downstream genes to resist the juvenile-adult-reproductive phase transition to prolonged juvenility. The phenomenon behind prolonged juvenility is the maintenance of stem cell integrity and regeneration is an outcome of re-establishment of the stem cell niche. The previously reported vital and diverse functions of miR156 make it a more important case of study to explore its functions and possible ways to use it in molecular breeding. In this review, we proposed how genetic manipulation of miR156 can be used to reshape plant development phase transition and achieve ideal plant architecture. We have summarized recent studies on miR156 to describe its functional pattern and networking with up and down-stream molecular factors at each stage of the plant developmental life cycle. In addition, we have highlighted unaddressed questions, provided insights and devised molecular pathways that will help researchers to design their future studies.
Collapse
Affiliation(s)
- Syed Sarfaraz Hussain
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China; Department of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Manzar Abbas
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Quanzi Li
- Department of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| | - Arthur J Ragauskas
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA; Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
2
|
A Y K, E M, R B, E M, M D, L C, F D. Independent genetic factors control floret number and spikelet number in Triticum turgidum ssp. FRONTIERS IN PLANT SCIENCE 2024; 15:1390401. [PMID: 39253571 PMCID: PMC11381284 DOI: 10.3389/fpls.2024.1390401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Wheat grain yield is a complex trait resulting from a trade-off among many distinct components. During wheat evolution, domestication events and then modern breeding have strongly increased the yield potential of wheat plants, by enhancing spike fertility. To address the genetic bases of spike fertility in terms of spikelet number per spike and floret number per spikelet, a population of 110 recombinant inbred lines (RILS) obtained crossing a Triticum turgidum ssp. durum cultivar (Latino) and a T. dicoccum accession (MG5323) was exploited. Being a modern durum and a semi-domesticated genotype, respectively, the two parents differ for spike architecture and fertility, and thus the corresponding RIL population is the ideal genetic material to dissect genetic bases of yield components. The RIL population was phenotyped in four environments. Using a high-density SNP genetic map and taking advantage of several genome sequencing available for Triticeae, a total of 94 QTLs were identified for the eight traits considered; these QTLs were further reduced to 17 groups, based on their genetic and physical co-location. QTLs controlling floret number per spikelet and spikelet number per spike mapped in non-overlapping chromosomal regions, suggesting that independent genetic factors determine these fertility-related traits. The physical intervals of QTL groups were considered for possible co-location with known genes functionally involved in spike fertility traits and with yield-related QTLs previously mapped in tetraploid wheat. The most interesting result concerns a QTL group on chromosome 5B, associated with spikelet number per spike, since it could host genes still uncharacterized for their association to spike fertility. Finally, we identified two different regions where the trade-off between fertility related traits and kernel weight is overcome. Further analyses of these regions could pave the way for a future identification of new genetic loci contributing to fertility traits essential for yield improvement in durum wheat.
Collapse
Affiliation(s)
- Kiros A Y
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mica E
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università del Piemonte Orientale, Vercelli, Italy
| | - Battaglia R
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Mazzucotelli E
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Dell'Acqua M
- Center of Plant Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Cattivelli L
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Desiderio F
- Council for Agricultural Research and Economics (CREA) - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| |
Collapse
|
3
|
Xu H, Yu R, Tang Y, Meng J, Tao J. Identification and Functional Studies on the Role of PlSPL14 in Herbaceous Peony Stem Development. Int J Mol Sci 2024; 25:8443. [PMID: 39126014 PMCID: PMC11313244 DOI: 10.3390/ijms25158443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Stem strength plays a crucial role in the growth and development of plants, as well as in their flowering and fruiting. It not only impacts the lodging resistance of crops, but also influences the ornamental value of ornamental plants. Stem development is closely linked to stem strength; however, the roles of the SPL transcription factors in the stem development of herbaceous peony (Paeonia lactiflora Pall.) are not yet fully elucidated. In this study, we obtained and cloned the full-length sequence of PlSPL14, encoding 1085 amino acids. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression level of PlSPL14 gradually increased with the stem development of P. lactiflora and was significantly expressed in vascular bundles. Subsequently, utilizing the techniques of virus-induced gene silencing (VIGS) and heterologous overexpression in tobacco (Nicotiana tabacum L.), it was determined that PlSPL14-silenced P. lactiflora had a thinner xylem thickness, a decreased stem diameter, and weakened stem strength, while PlSPL14-overexpressing tobacco resulted in a thicker xylem thickness, an increased stem diameter, and enhanced stem strength. Further screening of the interacting proteins of PlSPL14 using a yeast two-hybrid (Y2H) assay revealed an interactive relationship between PlSPL14 and PlSLR1 protein, which acts as a negative regulator of gibberellin (GA). Additionally, the expression level of PlSLR1 gradually decreased during the stem development of P. lactiflora. The above results suggest that PlSPL14 may play a positive regulatory role in stem development and act in the xylem, making it a potential candidate gene for enhancing stem straightness in plants.
Collapse
Affiliation(s)
- Huajie Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Renkui Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Yuhan Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiasong Meng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Jia X, Xu S, Wang F, Jia Y, Qing Y, Gao T, Zhang Z, Liu X, Yang C, Ma F, Li C. Sorbitol mediates age-dependent changes in apple plant growth strategy through gibberellin signaling. HORTICULTURE RESEARCH 2024; 11:uhae192. [PMID: 39145197 PMCID: PMC11322524 DOI: 10.1093/hr/uhae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024]
Abstract
Plants experience various age-dependent changes during juvenile to adult vegetative phase. However, the regulatory mechanisms orchestrating the changes remain largely unknown in apple (Malus domestica). This study showed that tissue-cultured apple plants at juvenile, transition, and adult phase exhibit age-dependent changes in their plant growth, photosynthetic performance, hormone levels, and carbon distribution. Moreover, this study identified an age-dependent gene, sorbitol dehydrogenase (MdSDH1), a key enzyme for sorbitol catabolism, highly expressed in the juvenile phase in apple. Silencing MdSDH1 in apple significantly decreased the plant growth and GA3 levels. However, exogenous GA3 rescued the reduced plant growth phenotype of TRV-MdSDH1. Biochemical analysis revealed that MdSPL1 interacts with MdWRKY24 and synergistically enhance the repression of MdSPL1 and MdWRKY24 on MdSDH1, thereby promoting sorbitol accumulation during vegetative phase change. Exogenous sorbitol application indicated that sorbitol promotes the transcription of MdSPL1 and MdWRKY24. Notably, MdSPL1-MdWRKY24 module functions as key repressor to regulate GA-responsive gene, Gibberellic Acid-Stimulated Arabidopsis (MdGASA1) expression, thereby leading to a shift from the quick to the slow-growth strategy. These results reveal the pivotal role of sorbitol in controlling apple plant growth, thereby improving our understanding of vegetative phase change in apple.
Collapse
Affiliation(s)
- Xumei Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuo Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fei Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yiwei Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yubin Qing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaomin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Dong F, Song J, Zhang H, Zhang J, Chen Y, Zhou X, Li Y, Ge S, Liu Y. TaSPL6B, a member of the Squamosa promoter binding protein-like family, regulates shoot branching and florescence in Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:708. [PMID: 39054432 PMCID: PMC11271066 DOI: 10.1186/s12870-024-05429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Squamosa promoter-binding protein-like (SPL) proteins are essential to plant growth and development as plant-specific transcription factors. However, the functions of SPL proteins in wheat need to be further explored. RESULTS We cloned and characterized TaSPL6B of wheat in this study. Analysis of physicochemical properties revealed that it contained 961 amino acids and had a molecular weight of 105 kDa. Full-length TaSPL6B transcription activity was not validated in yeast and subcellular localization analysis revealed that TaSPL6B was distributed in the nucleus. Ectopic expression of TaSPL6B in Arabidopsis led to increasing number of branches and early flowering. TaSPL6B was highly transcribed in internodes of transgenic Arabidopsis. The expression of AtSMXL6/AtSMXL7/AtSMXL8 (homologous genes of TaD53) was markedly increased, whereas the expression of AtSPL2 (homologous genes of TaSPL3) and AtBRC1 (homologous genes of TaTB1) was markedly reduced in the internodes of transgenic Arabidopsis. Besides, TaSPL6B, TaSPL3 and TaD53 interacted with one another, as demonstrated by yeast two-hybrid and bimolecular fluorescence complementation assays. Therefore, we speculated that TaSPL6B brought together TaD53 and TaSPL3 and enhanced the inhibition effect of TaD53 on TaSPL3 through integrating light and strigolactone signaling pathways, followed by suppression of TaTB1, a key repressor of tillering. CONCLUSIONS As a whole, our findings contribute to a better understanding of how SPL genes work in wheat and will be useful for further research into how TaSPL6B affects yield-related traits in wheat.
Collapse
Affiliation(s)
- Feiyan Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Jinghan Song
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huadong Zhang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Jiarun Zhang
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yangfan Chen
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Zhou
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yaqian Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Shijie Ge
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China
| | - Yike Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/ Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan, 430064, China.
| |
Collapse
|
6
|
Sharif R, Zhu Y, Huang Y, Sohail H, Li S, Chen X, Qi X. microRNA regulates cytokinin induced parthenocarpy in cucumber (Cucumis sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108681. [PMID: 38776825 DOI: 10.1016/j.plaphy.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Parthenocarpy is one of the most important agronomic traits for fruit yield in cucumbers. However, the precise gene regulation and the posttranscriptional mechanism are elusive. In the presented study, one parthenocarpic line DDX and non-parthenocarpic line ZK were applied to identify the microRNAs (miRNAs) involved in parthenocarpic fruit formation. The differential expressed miRNAs among parthenocarpic fruit of forchlorfenuron (CPPU) treated ZK (ZK-CPPU), pollinated ZK (ZK-P), non-pollinated DDX (DDX-NP) were compared with the non-parthenocarpic fruits of non-pollinated ZK (ZK-NP). It indicated 98 miRNAs exhibited differential expression were identified. Notably, a significant proportion of these miRNAs were enriched in the signal transduction pathway of plant hormones, as identified by the KEGG pathway analysis. qRT-PCR validation indicated that CsmiR156 family was upregulated in the ZK-NP while downregulated in ZK-CPPU, ZK-P, and DDX-NP at 1 day after anthesis. Meanwhile, the opposite trend was observed for CsmiR164a. In ZK-CPPU, ZK-P, and DDX-NP, CsmiRNA156 genes (CsSPL16 and CsARR9-like) were upregulated while CsmiRNA164a genes (CsNAC6, CsCUC1, and CsNAC100) were downregulated. The GUS and dual luciferase assay validated that CsmiR156a inhibited while CsmiR164a induced their target genes' transcription. This study presents novel insights into the involvement of CsmiR156a and CsmiR164a in the CK-mediated posttranscriptional regulation of cucumber parthenocarpy, which will aid future breeding programs.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Yamei Zhu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Yaoyue Huang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Hamza Sohail
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Su Li
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
7
|
Haber Z, Sharma D, Selvaraj KSV, Sade N. Is CRISPR/Cas9-based multi-trait enhancement of wheat forthcoming? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112021. [PMID: 38311249 DOI: 10.1016/j.plantsci.2024.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have been implemented in recent years in the genome editing of eukaryotes, including plants. The original system of knocking out a single gene by causing a double-strand break (DSB), followed by non-homologous end joining (NHEJ) or Homology-directed repair (HDR) has undergone many adaptations. These adaptations include employing CRISPR/Cas9 to upregulate gene expression or to cause specific small changes to the DNA sequence of the gene-of-interest. In plants, multiplexing, i.e., inducing multiple changes by CRISPR/Cas9, is extremely relevant due to the redundancy of many plant genes, and the time- and labor-consuming generation of stable transgenic plant lines via crossing. Here we discuss relevant examples of various traits, such as yield, biofortification, gluten content, abiotic stress tolerance, and biotic stress resistance, which have been successfully manipulated using CRISPR/Cas9 in plants. While existing studies have primarily focused on proving the impact of CRISPR/Cas9 on a single trait, there is a growing interest among researchers in creating a multi-stress tolerant wheat cultivar 'super wheat', to commercially and sustainably enhance wheat yields under climate change. Due to the complexity of the technical difficulties in generating multi-target CRISPR/Cas9 lines and of the interactions between stress responses, we propose enhancing already commercial local landraces with higher yield traits along with stress tolerances specific to the respective localities, instead of generating a general 'super wheat'. We hope this will serve as the sustainable solution to commercially enhancing crop yields under both stable and challenging environmental conditions.
Collapse
Affiliation(s)
- Zechariah Haber
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Davinder Sharma
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - K S Vijai Selvaraj
- Vegetable Research Station, Tamil Nadu Agricultural University, Palur 607102, Tamil Nadu, India
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
8
|
Gupta A, Liu B, Raza S, Chen QJ, Yang B. Modularly assembled multiplex prime editors for simultaneous editing of agronomically important genes in rice. PLANT COMMUNICATIONS 2024; 5:100741. [PMID: 37897041 PMCID: PMC10873889 DOI: 10.1016/j.xplc.2023.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Prime editing (PE) technology enables precise alterations in the genetic code of a genome of interest. PE offers great potential for identifying major agronomically important genes in plants and editing them into superior variants, ideally targeting multiple loci simultaneously to realize the collective effects of the edits. Here, we report the development of a modular assembly-based multiplex PE system in rice and demonstrate its efficacy in editing up to four genes in a single transformation experiment. The duplex PE (DPE) system achieved a co-editing efficiency of 46.1% in the T0 generation, converting TFIIAγ5 to xa5 and xa23 to Xa23SW11. The resulting double-mutant lines exhibited robust broad-spectrum resistance against multiple Xanthomonas oryzae pathovar oryzae (Xoo) strains in the T1 generation. In addition, we successfully edited OsEPSPS1 to an herbicide-tolerant variant and OsSWEET11a to a Xoo-resistant allele, achieving a co-editing rate of 57.14%. Furthermore, with the quadruple PE (QPE) system, we edited four genes-two for herbicide tolerance (OsEPSPS1 and OsALS1) and two for Xoo resistance (TFIIAγ5 and OsSWEET11a)-using one construct, with a co-editing efficiency of 43.5% for all four genes in the T0 generation. We performed multiplex PE using five more constructs, including two for triplex PE (TPE) and three for QPE, each targeting a different set of genes. The editing rates were dependent on the activity of pegRNA and/or ngRNA. For instance, optimization of ngRNA increased the PE rates for one of the targets (OsSPL13) from 0% to 30% but did not improve editing at another target (OsGS2). Overall, our modular assembly-based system yielded high PE rates and streamlined the cloning of PE reagents, making it feasible for more labs to utilize PE for their editing experiments. These findings have significant implications for advancing gene editing techniques in plants and may pave the way for future agricultural applications.
Collapse
Affiliation(s)
- Ajay Gupta
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Bo Liu
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Saad Raza
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
9
|
Kharbikar L, Konwarh R, Chakraborty M, Nandanwar S, Marathe A, Yele Y, Ghosh PK, Sanan-Mishra N, Singh AP. 3Bs of CRISPR-Cas mediated genome editing in plants: exploring the basics, bioinformatics and biosafety landscape. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1825-1850. [PMID: 38222286 PMCID: PMC10784264 DOI: 10.1007/s12298-023-01397-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024]
Abstract
The recent thrust in research has projected the type II clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR-Cas9) system as an avant-garde plant genome editing tool. It facilitates the induction of site-specific double-stranded DNA cleavage by the RNA-guided DNA endonuclease (RGEN), Cas9. Elimination, addition, or alteration of sections in DNA sequence besides the creation of a knockout genotype (CRISPRko) is aided by the CRISPR-Cas9 system in its wild form (wtCas9). The inactivation of the nuclease domain generates a dead Cas9 (dCas9), which is capable of targeting genomic DNA without scissoring it. The dCas9 system can be engineered by fusing it with different effectors to facilitate transcriptional activation (CRISPRa) and transcriptional interference (CRISPRi). CRISPR-Cas thus holds tremendous prospects as a genome-manipulating stratagem for a wide gamut of crops. In this article, we present a brief on the fundamentals and the general workflow of the CRISPR-Cas system followed by an overview of the prospects of bioinformatics in propelling CRISPR-Cas research with a special thrust on the available databases and algorithms/web-accessible applications that have aided in increasing the usage and efficiency of editing. The article also provides an update on the current regulatory landscape in different countries on the CRISPR-Cas edited plants to emphasize the far-reaching impact of the genomic editing technology. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01397-3.
Collapse
Affiliation(s)
- Lalit Kharbikar
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rocktotpal Konwarh
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Baba Kinaram Research Foundation (BKRF), Bramsthan, Mau, Uttar Pradesh India
| | - Monoswi Chakraborty
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Bengaluru, Karnataka India
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shweta Nandanwar
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Ashish Marathe
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Yogesh Yele
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Probir Kumar Ghosh
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Neeti Sanan-Mishra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Anand Pratap Singh
- Baba Kinaram Research Foundation (BKRF), Bramsthan, Mau, Uttar Pradesh India
| |
Collapse
|
10
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
11
|
Gasparis S, Miłoszewski MM. Genetic Basis of Grain Size and Weight in Rice, Wheat, and Barley. Int J Mol Sci 2023; 24:16921. [PMID: 38069243 PMCID: PMC10706642 DOI: 10.3390/ijms242316921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Grain size is a key component of grain yield in cereals. It is a complex quantitative trait controlled by multiple genes. Grain size is determined via several factors in different plant development stages, beginning with early tillering, spikelet formation, and assimilates accumulation during the pre-anthesis phase, up to grain filling and maturation. Understanding the genetic and molecular mechanisms that control grain size is a prerequisite for improving grain yield potential. The last decade has brought significant progress in genomic studies of grain size control. Several genes underlying grain size and weight were identified and characterized in rice, which is a model plant for cereal crops. A molecular function analysis revealed most genes are involved in different cell signaling pathways, including phytohormone signaling, transcriptional regulation, ubiquitin-proteasome pathway, and other physiological processes. Compared to rice, the genetic background of grain size in other important cereal crops, such as wheat and barley, remains largely unexplored. However, the high level of conservation of genomic structure and sequences between closely related cereal crops should facilitate the identification of functional orthologs in other species. This review provides a comprehensive overview of the genetic and molecular bases of grain size and weight in wheat, barley, and rice, focusing on the latest discoveries in the field. We also present possibly the most updated list of experimentally validated genes that have a strong effect on grain size and discuss their molecular function.
Collapse
Affiliation(s)
- Sebastian Gasparis
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, 05-870 Błonie, Poland;
| | | |
Collapse
|
12
|
Zhou X, Zhao Y, Ni P, Ni Z, Sun Q, Zong Y. CRISPR-mediated acceleration of wheat improvement: advances and perspectives. J Genet Genomics 2023; 50:815-834. [PMID: 37741566 DOI: 10.1016/j.jgg.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.
Collapse
Affiliation(s)
- Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Pei Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Luo X, Yang Y, Lin X, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics 2023; 50:835-845. [PMID: 36907353 DOI: 10.1016/j.jgg.2023.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
Wheat is the most widely grown crop globally, providing 20% of the daily consumed calories and protein content around the world. With the growing global population and frequent occurrence of extreme weather caused by climate change, ensuring adequate wheat production is essential for food security. The architecture of the inflorescence plays a crucial role in determining the grain number and size, which is a key trait for improving yield. Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices. Here, we summarize the genetic regulation network governing wheat spike formation, the strategies used for identifying and studying the key factors affecting spike architecture, and the progress made in breeding applications. Additionally, we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
14
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
15
|
Das S, Sathee L. miRNA mediated regulation of nitrogen response and nitrogen use efficiency of plants: the case of wheat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1371-1394. [PMID: 38076770 PMCID: PMC10709294 DOI: 10.1007/s12298-023-01336-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 10/04/2024]
Abstract
Nitrogen (N) is needed for plant growth and development and is the major limiting nutrient due to its higher demand in agricultural production globally. The use of N fertilizers has increased considerably in recent years to achieve higher cereal yields. High N inputs coupled with declining N use efficiency (NUE) result in the degradation of the environment. Plants have developed multidimensional strategies in response to changes in N availability in soil. These strategies include N stress-induced responses such as changes in gene expression patterns. Several N stress-induced genes and other regulatory factors, such as microRNAs (miRNAs), have been identified in different plant species, opening a new avenue of research in plant biology. This review presents a general overview of miRNA-mediated regulation of N response and NUE. Further, the in-silico target predictions and the predicted miRNA-gene network for nutrient metabolism/homeostasis in wheat provide novel insights. The information on N-regulated miRNAs and the differentially expressed target transcripts are necessary resources for genetic improvement of NUE by genome editing.
Collapse
Affiliation(s)
- Samrat Das
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
16
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
17
|
Elsharawy H, Refat M. CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review. Funct Integr Genomics 2023; 23:265. [PMID: 37541970 DOI: 10.1007/s10142-023-01190-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Wheat (Triticum aestivum L.) is an important cereal crop that is grown all over the world for food and industrial purposes. Wheat is essential to the human diet due to its rich content of necessary amino acids, minerals, vitamins, and calories. Various wheat breeding techniques have been utilized to improve its quality, productivity, and resistance to biotic and abiotic stress impairing production. However, these techniques are expensive, demanding, and time-consuming. Additionally, these techniques need multiple generations to provide the desired results, and the improved traits could be lost over time. To overcome these challenges, researchers have developed various genome editing tools to improve the quality and quantity of cereal crops, including wheat. Genome editing technologies evolve quickly. Nowadays, single or multiple mutations can be enabled and targeted at specific loci in the plant genome, allowing controlled removal of undesirable features or insertion of advantageous ones. Clustered, regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) is a powerful genome editing tool that can be effectively used for precise genome editing of wheat and other crops. This review aims to provide a comprehensive understanding of this technology's potential applications to enhance wheat's quality and productivity. It will first explore the function of CRISPR/Cas9 in preserving the adaptive immunity of prokaryotic organisms, followed by a discussion of its current applications in wheat breeding.
Collapse
Affiliation(s)
- Hany Elsharawy
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Moath Refat
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong, University, Xi'an, 710061, China
| |
Collapse
|
18
|
Xu Y, Bai L, Liu M, Liu Y, Peng S, Hu P, Wang D, Liu Q, Yan S, Gao L, Wang X, Ning Y, Zuo S, Zheng W, Liu S, Xiang W, Wang G, Kang H. Identification of two novel rice S genes through combination of association and transcription analyses with gene-editing technology. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1628-1641. [PMID: 37154202 PMCID: PMC10363757 DOI: 10.1111/pbi.14064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 05/10/2023]
Abstract
Traditional rice blast resistance breeding largely depends on utilizing typical resistance (R) genes. However, the lack of durable R genes has prompted rice breeders to find new resistance resources. Susceptibility (S) genes are potential new targets for resistance genetic engineering using genome-editing technologies, but identifying them is still challenging. Here, through the integration of genome-wide association study (GWAS) and transcriptional analysis, we identified two genes, RNG1 and RNG3, whose polymorphisms in 3'-untranslated regions (3'-UTR) affected their expression variations. These polymorphisms could serve as molecular markers to identify rice blast-resistant accessions. Editing the 3'-UTRs using CRISPR/Cas9 technology affected the expression levels of two genes, which were positively associated with rice blast susceptibility. Knocking out either RNG1 or RNG3 in rice enhanced the rice blast and bacterial blight resistance, without impacting critical agronomic traits. RNG1 and RNG3 have two major genotypes in diverse rice germplasms. The frequency of the resistance genotype of these two genes significantly increased from landrace rice to modern cultivars. The obvious selective sweep flanking RNG3 suggested it has been artificially selected in modern rice breeding. These results provide new targets for S gene identification and open avenues for developing novel rice blast-resistant materials.
Collapse
Affiliation(s)
- Yuchen Xu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Lu Bai
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Minghao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yanchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shasha Peng
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Pei Hu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Dan Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Qi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetic BreedingTianjin Crop Research Institute, Tianjin Academy of Agriculture SciencesTianjinChina
| | - Lijun Gao
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Wenjing Zheng
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural SciencesShenyangChina
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Guo‐Liang Wang
- Department of Plant PathologyOhio State UniversityColumbusOhioUSA
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
19
|
McLellan H, Boevink PC, Birch PRJ. How to convert host plants into nonhosts. TRENDS IN PLANT SCIENCE 2023; 28:876-879. [PMID: 37270351 DOI: 10.1016/j.tplants.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023]
Abstract
Recent research demonstrates that undermining interactions between pathogen effectors and their host target proteins can reduce infection. As more effector-target pairs are identified, their structures and interaction surfaces exposed, and there is the possibility of making multiple edits to diverse plant genomes, the desire to convert crops to nonhosts could become reality.
Collapse
Affiliation(s)
- Hazel McLellan
- Division of Plant Science, School of Life Sciences, University of Dundee, @James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R J Birch
- Division of Plant Science, School of Life Sciences, University of Dundee, @James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK; Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
20
|
Ferreira SS, Reis RS. Using CRISPR/Cas to enhance gene expression for crop trait improvement by editing miRNA targets. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2208-2212. [PMID: 36626564 PMCID: PMC10082926 DOI: 10.1093/jxb/erad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/04/2023] [Indexed: 06/06/2023]
|
21
|
Sun J, Bie XM, Chu XL, Wang N, Zhang XS, Gao XQ. Genome-edited TaTFL1-5 mutation decreases tiller and spikelet numbers in common wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1142779. [PMID: 36895877 PMCID: PMC9989183 DOI: 10.3389/fpls.2023.1142779] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Tillering is a critical agronomic trait of wheat (Triticum aestivum L.) that determines the shoot architecture and affects grain yield. TERMINAL FLOWER 1 (TFL1), encoding a phosphatidylethanolamine-binding protein, is implicated in the transition to flowering and shoot architecture in plant development. However, the roles of TFL1 homologs is little known in wheat development. CRISPR/Cas9-mediated targeted mutagenesis was used in this study to generate a set of wheat (Fielder) mutants with single, double or triple-null tatfl1-5 alleles. The wheat tatfl1-5 mutations decreased the tiller number per plant in the vegetative growth stage and the effective tiller number per plant and spikelet number per spike at maturity in the field. RNA-seq analysis showed that the expression of the auxin signaling-related and cytokinin signaling-related genes was significantly changed in the axillary buds of tatfl1-5 mutant seedlings. The results suggested that wheat TaTFL1-5s were implicated in tiller regulation by auxin and cytokinin signaling.
Collapse
|
22
|
Cao L, Li T, Geng S, Zhang Y, Pan Y, Zhang X, Wang F, Hao C. TaSPL14-7A is a conserved regulator controlling plant architecture and yield traits in common wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1178624. [PMID: 37089636 PMCID: PMC10113487 DOI: 10.3389/fpls.2023.1178624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Plant architecture is a crucial influencing factor of wheat yield and adaptation. In this study, we cloned and characterized TaSPL14, a homologous gene of the rice ideal plant architecture gene OsSPL14 in wheat. TaSPL14 homoeologs (TaSPL14-7A, TaSPL14-7B and TaSPL14-7D) exhibited similar expression patterns, and they were all preferentially expressed in stems at the elongation stage and in young spikes. Moreover, the expression level of TaSPL14-7A was higher than that of TaSPL14-7B and TaSPL14-7D. Overexpression of TaSPL14-7A in wheat resulted in significant changes in plant architecture and yield traits, including decreased tiller number and increased kernel size and weight. Three TaSPL14-7A haplotypes were identified in Chinese wheat core collection, and haplotype-based association analysis showed that TaSPL14-7A-Hap1/2 were significantly correlated with fewer tillers, larger kernels and higher kernel weights in modern cultivars. The haplotype effect resulted from a difference in TaSPL14-7A expression levels among genotypes, with TaSPL14-7A-Hap1/2 leading to higher expression levels than TaSPL14-7A-Hap3. As favorable haplotypes, TaSPL14-7A-Hap1/2 underwent positive selection during global wheat breeding over the last century. Together, the findings of our study provide insight into the function and genetic effects of TaSPL14 and provide a useful molecular marker for wheat breeding.
Collapse
Affiliation(s)
- Lina Cao
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Tian Li, ; Fang Wang, ; Chenyang Hao,
| | - Shuaifeng Geng
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinhui Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxue Pan
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Tian Li, ; Fang Wang, ; Chenyang Hao,
| | - Chenyang Hao
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Tian Li, ; Fang Wang, ; Chenyang Hao,
| |
Collapse
|