1
|
Yang K, Zhang H, Sun L, Zhang Y, Gao Z, Song X. Identification and characterization of the auxin-response factor family in moso bamboo reveals that PeARF41 negatively regulates second cell wall formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109395. [PMID: 39662390 DOI: 10.1016/j.plaphy.2024.109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Auxin response factors (ARFs) are key transcriptional factors mediating the transcriptional of auxin-related genes that play crucial roles in a range of plant metabolic activities. The characteristics of 47 PeARFs, identified in moso bamboo and divided into three classes, were evaluated. Structural feature analysis showed that intron numbers ranged from 3 to 14, while Motif 1, 2, 7 and 10 were highly conserved, altogether forming DNA-binding and ARF domains. Analysis of RNA-seq from different tissues revealed that PeARFs showed tissue-specificity. Additionally, abundant hormone-response and stress-related elements were enriched in promoters of PeARFs, supporting the hypothesis that the expression of PeARFs was significantly activated or inhibited by ABA and cold treatments. Further, PeARF41 overexpression inhibited SCW formation by reducing hemicellulose, cellulose and lignin contents. Moreover, a co-expression network, containing 28 genes with PeARF41 at its core was predicted, and the results of yeast one hybridization (Y1H), electrophoretic mobility shift assay (EMSA) and dual-luciferase (Dul-LUC) assays showed that PeARF41 bound the PeSME1 promoter to inhibit its expression. We conclude that a 'PeARF41-PeSME1' regulatory cascade mediates SCW formation. Our findings provided a solid theoretical foundation for further research on the role of PeARFs.
Collapse
Affiliation(s)
- Kebin Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huiling Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Letong Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yue Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhimin Gao
- International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xinzhang Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Yang K, Li Z, Zhu C, Liu Y, Li H, Di X, Song X, Ren H, Gao Z. A hierarchical ubiquitination-mediated regulatory module controls bamboo lignin biosynthesis. PLANT PHYSIOLOGY 2024; 196:2565-2582. [PMID: 39250763 DOI: 10.1093/plphys/kiae480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
The lignocellulosic feedstock of woody bamboo shows promising potential as an alternative to conventional wood, attributed to its excellent properties. The content and distribution of lignin serve as the foundation of these properties. While the regulation of lignin biosynthesis in bamboo has been extensively studied at the transcriptional level, its posttranslational control has remained poorly understood. This study provides a ubiquitinome dataset for moso bamboo (Phyllostachys edulis), identifying 13,015 ubiquitinated sites in 4,849 unique proteins. We further identified Kelch repeat F-box protein 9 (PeKFB9) that plays a negative role in lignin biosynthesis. Heterologous expression of PeKFB9 resulted in reduced accumulation of lignin and decreased phenylalanine ammonia lyase (PAL) activities. Both in vitro and in vivo assays identified interaction between PeKFB9 and PePAL10. Further examination revealed that SCFPeKFB9 mediated the ubiquitination and degradation of PePAL10 via the 26S proteasome pathway. Moreover, PebZIP28667 could bind to the PePAL10 promoter to significantly inhibit its transcription, and ubiquitination of PebZIP28667 weakened this inhibition. Collectively, our findings reveal a PeKFB9-PePAL10/PebZIP28667-PePAL10 module that acts as a negative regulator of lignin biosynthesis. This study advances our understanding of posttranslational regulation in plant lignification, which will facilitate the improvement of the properties of bamboo wood and the breeding of varieties.
Collapse
Affiliation(s)
- Kebin Yang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziyang Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Chenglei Zhu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yan Liu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Hui Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xiaolin Di
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Haiqing Ren
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhimin Gao
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
3
|
Gong X, Qi K, Zhao L, Xie Z, Pan J, Yan X, Shiratake K, Zhang S, Tao S. PbAGL7-PbNAC47-PbMYB73 complex coordinately regulates PbC3H1 and PbHCT17 to promote the lignin biosynthesis in stone cells of pear fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1933-1953. [PMID: 39446773 DOI: 10.1111/tpj.17090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Lignification of the cell wall in pear (Pyrus) fruit results in the formation of stone cells, which affects the texture and quality of the fruit. However, it is still unclear that how different transcription factors (TFs) work together to coordinate the synthesis and deposition of lignin. Here, we examined the transcriptome of pear varieties with different stone cell contents and found a key TF (PbAGL7) that can promote the increase of stone cell contents and secondary cell wall thicknesses. In addition, PbAGL7 can facilitate the expression level of lignin biosynthesis-related genes and accelerate the lignin biosynthesis in pear fruit and Arabidopsis. However, PbAGL7 did not directly bind to the promoters of PbC3H1 and PbHCT17 which are crucial genes involved in lignin biosynthesis. On the other hand, yeast two-hybrid (Y2H) library showed that PbNAC47 and PbMYB73 interacted with PbAGL7 in the nucleus. PbNAC47 and PbMYB73 also increased the stone cell and lignin contents, and upregulated the expressions of PbC3H1 and PbHCT17 by binding to the SNBE and AC elements, respectively. Moreover, PbNAC47 also interacted with PbMYB73 to form PbAGL7-PbNAC47-PbMYB73 complex. This complex significantly activated the expression levels of PbC3H1 and PbHCT17 and promoted lignin biosynthesis to form stone cells in pear fruit. Overall, our study provides new insights into the molecular mechanism of TFs that coordinately regulate the stone cell formation in pear fruit and extend our knowledge to understand cell wall lignification in plants.
Collapse
Affiliation(s)
- Xin Gong
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| | - Kaijie Qi
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liangyi Zhao
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihua Xie
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiahui Pan
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Yan
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | | | - Shaoling Zhang
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shutian Tao
- Sanya Institute, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
4
|
Grover S, Mou DF, Shrestha K, Puri H, Pingault L, Sattler SE, Louis J. Impaired Brown midrib12 function orchestrates sorghum resistance to aphids via an auxin conjugate indole-3-acetic acid-aspartic acid. THE NEW PHYTOLOGIST 2024; 244:1597-1615. [PMID: 39233513 DOI: 10.1111/nph.20091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Lignin, a complex heterogenous polymer present in virtually all plant cell walls, plays a critical role in protecting plants from various stresses. However, little is known about how lignin modifications in sorghum will impact plant defense against sugarcane aphids (SCA), a key pest of sorghum. We utilized the sorghum brown midrib (bmr) mutants, which are impaired in monolignol synthesis, to understand sorghum defense mechanisms against SCA. We found that loss of Bmr12 function and overexpression (OE) of Bmr12 provided enhanced resistance and susceptibility to SCA, respectively, as compared with wild-type (WT; RTx430) plants. Monitoring of the aphid feeding behavior indicated that SCA spent more time in reaching the first sieve element phase on bmr12 plants compared with RTx430 and Bmr12-OE plants. A combination of transcriptomic and metabolomic analyses revealed that bmr12 plants displayed altered auxin metabolism upon SCA infestation and specifically, elevated levels of auxin conjugate indole-3-acetic acid-aspartic acid (IAA-Asp) were observed in bmr12 plants compared with RTx430 and Bmr12-OE plants. Furthermore, exogenous application of IAA-Asp restored resistance in Bmr12-OE plants, and artificial diet aphid feeding trial bioassays revealed that IAA-Asp is associated with enhanced resistance to SCA. Our findings highlight the molecular underpinnings that contribute to sorghum bmr12-mediated resistance to SCA.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - De-Fen Mou
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Kumar Shrestha
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Heena Puri
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| |
Collapse
|
5
|
Omelyanchuk NA, Lavrekha VV, Bogomolov AG, Dolgikh VA, Sidorenko AD, Zemlyanskaya EV. Computational Reconstruction of the Transcription Factor Regulatory Network Induced by Auxin in Arabidopsis thaliana L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1905. [PMID: 39065433 PMCID: PMC11280061 DOI: 10.3390/plants13141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
In plant hormone signaling, transcription factor regulatory networks (TFRNs), which link the master transcription factors to the biological processes under their control, remain insufficiently characterized despite their crucial function. Here, we identify a TFRN involved in the response to the key plant hormone auxin and define its impact on auxin-driven biological processes. To reconstruct the TFRN, we developed a three-step procedure, which is based on the integrated analysis of differentially expressed gene lists and a representative collection of transcription factor binding profiles. Its implementation is available as a part of the CisCross web server. With the new method, we distinguished two transcription factor subnetworks. The first operates before auxin treatment and is switched off upon hormone application, the second is switched on by the hormone. Moreover, we characterized the functioning of the auxin-regulated TFRN in control of chlorophyll and lignin biosynthesis, abscisic acid signaling, and ribosome biogenesis.
Collapse
Affiliation(s)
- Nadya A. Omelyanchuk
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Viktoriya V. Lavrekha
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anton G. Bogomolov
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
| | - Vladislav A. Dolgikh
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra D. Sidorenko
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (N.A.O.); (V.V.L.); (A.G.B.); (V.A.D.); (A.D.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Wang W, Li Y, Cai C, Zhu Q. Auxin response factors fine-tune lignin biosynthesis in response to mechanical bending in bamboo. THE NEW PHYTOLOGIST 2024; 241:1161-1176. [PMID: 37964659 DOI: 10.1111/nph.19398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Lignin contributes to plant mechanical properties during bending loads. Meanwhile, phytohormone auxin controls various plant biological processes. However, the mechanism of auxin's role in bending-induced lignin biosynthesis was unclear, especially in bamboo, celebrated for its excellent deformation stability. Here, we reported that auxin response factors (ARF) 3 and ARF6 from Moso bamboo (Phyllostachys edulis (Carrière) J. Houz) directly regulate lignin biosynthesis pathway genes, and affect lignin biosynthesis in bamboo. Auxin and lignin exhibited asymmetric distribution patterns, and auxin promoted lignin biosynthesis in response to bending loads in bamboo. Employing transcriptomic and weighted gene co-expression network analysis approach, we discovered that expression patterns of ARF3 and ARF6 strongly correlated with lignin biosynthesis genes. ARF3 and ARF6 directly bind to the promoter regions of 4-coumarate: coenzyme A ligase (4CL3, 4CL7, and 4CL9) or caffeoyl-CoA O-methyltransferase (CCoAOMT2) genes, pivotal to lignin biosynthesis, and activate their expressions. Notably, the efficacy of this binding hinges on auxin levels. Alternation of the expressions of ARF3 and ARF6 substantially altered lignin accumulation in transgenic bamboo. Collectively, our study shed light on bamboo lignification genetics. Auxin signaling could directly modulate lignin biosynthesis genes to impact plant lignin content.
Collapse
Affiliation(s)
- Wenjia Wang
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Yigang Li
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Changyang Cai
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, 350002, Fujian, China
| |
Collapse
|
7
|
Xia NY, Yao XC, Ma WH, Wang YC, Wei Y, He L, Meng X, Cheng HT, Yang WM, Duan CQ, Pan QH. Integrated Analysis of Transcriptome and Metabolome to Unveil Impact on Enhancing Grape Aroma Quality with Synthetic Auxin: Spotlight the Mediation of ABA in Crosstalk with Auxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1228-1243. [PMID: 38181223 DOI: 10.1021/acs.jafc.3c06846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
It is widely accepted that prevéraison application of naphthaleneacetic acid (NAA) can delay the ripening of grapes and improve their quality. However, how NAA impacts grape aroma compound concentrations remains unclear. This study incorporated the analyses of aroma metabolome, phytohormones, and transcriptome of Vitis vinifera L. cv. Cabernet Sauvignon grapes cultivated in continental arid/semiarid regions of western China. The analyses demonstrated that NAA application increased β-damascenone and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in the harvested grapes by delaying véraison and upregulating VvPSY1 and VvCCD4b expressions. Additionally, NAA treatment decreased 2-isobutyl-3-methoxypyrazine (IBMP) at the same phenological stage. Notably, abscisic acid (ABA) levels increased in NAA-treated grapes during véraison, which triggered further changes in norisoprenoid metabolisms. The ABA-responsive factor VvABF2 was potentially involved in VvPSY1 positive modulation, while the auxin response factor VvARF10 may play a role in VvCCD4b upregulation and VvOMT2 downregulation during NAA induction. VvARF10 possibly acts as a crosstalk node between the ABA and auxin signaling pathways following NAA treatment in regulating aroma biosynthesis.
Collapse
Affiliation(s)
- Nong-Yu Xia
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xue-Chen Yao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Wan-Hui Ma
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ya-Chen Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yi Wei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Lei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiao Meng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hao-Tian Cheng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | | | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|