1
|
Zhao X, Huang S, Yao Q, He R, Wang H, Xu Z, Xing W, Liu D. ABA-regulated MAPK signaling pathway promotes hormesis in sugar beet under cadmium exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135968. [PMID: 39342845 DOI: 10.1016/j.jhazmat.2024.135968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Sugar beet (Beta vulgaris L.) shows potential as an energy crop for cadmium (Cd) phytoremediation. To elucidate its in vivo response strategy to Cd exposure, seedlings were treated with 1, 3, and 5 mmol/L CdCl2 (Cd-1, Cd-3, and Cd-5) for 6 h, using 0 mmol/L CdCl2 (Cd-0) as the control. The results showed that Cd-3 promoted a unique "hormesis" effect, leading to superior growth performance, increased levels of chlorophyll, soluble protein, and SOD activity, and reduced MDA content in sugar beet, compared to Cd-1, Cd-5, and even Cd-0. GO and KEGG enrichments and PPI networks of transcriptomic analysis revealed that the differentially expressed genes (DEGs) were primarily involved in lipid metabolism, cellular protein catabolism, and photosynthesis. Notably, the MAPK signaling pathway was significantly enriched only under Cd-3, with the up-regulation of ABA-related core gene BvPYL9 and an increase in ABA content after 6 h of Cd exposure. Furthermore, overexpression of BvPYL9 in Arabidopsis thaliana (OE-1 and OE-2) resulted in enhanced growth (fresh weight, dry weight, and root length), as well as higher ABA and soluble protein contents under different Cd treatments. Cd-induced transcriptional responses of BvPYL9 were also evident in OE-1 and OE-2, especially at 10 µmol/L, indicated by qRT-PCR. These findings suggest that ABA-mediated MAPK signaling pathway is activated in response to Cd toxicity, with BvPYL9 being a key factor in the cascade effects for the Cd-induced hormesis in sugar beet.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Shuoqi Huang
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Qi Yao
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Rui He
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hao Wang
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Zhaodan Xu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Wang Xing
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Dali Liu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
2
|
Das P, Anupama, Shukla AK, Khare P. Time series analysis of uptake and translocation of Cd and expression of transporter genes in nine Andrographis paniculata accessions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65574-65590. [PMID: 39589420 DOI: 10.1007/s11356-024-35592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
Cadmium is a non-essential and toxic metal. Its presence in plants can have hazardous effects not only on the plants themselves but also on human health after consumption. A time-dependent experiment was conducted on nine accessions of A. paniculata (AP1, AP2, AP3, AP8, AP11, AP12, AP21, AP25, and CIM) in Cd-contaminated soil to understand the variability of Cd accumulation. The study examined the Cd uptake, translocation, antioxidant stress enzymes, ionic composition of root exudates, Cd bioavailability, and expression of transporter genes PCR, NRAMP, ABCC, HMA, and HIPP. Results demonstrated the lowest bio-concentration factor for Cd in AP1 and CIM (0.34-1.04). A significant increase in bio-concentration (6-37%), bioaccumulation (25-80%), and translocation (6-52%) of Cd was observed in nine accessions with time. However, AP1, AP8, AP11, and CIM demonstrated a significant decrease in bio-concentration (7-38%), bioaccumulation (14-50%), and translocation (8-45%) of Cd with time. The differential Cd uptake among the accessions was major associated with antioxidant enzyme activities, root exudates, Cd bioavailability, and biomass. The differential expression of Cd influx (ApNRAMP3 and ApNRAMP5) and efflux (ApPCR2, ApPCR6, ApPCR8, and ApPCR11) transporter genes was observed with time. According to the results, low accumulating accessions AP1, AP8, AP11, and CIM had higher biomass (10-46%) and lower Cd uptake (7-38%) than high accumulating accessions. These accessions also had minimal stress enzyme activities and a prevalence of cations in root exudates, which impeded Cd bioavailability (8-26%) and increased microbial biomass carbon (7-31%). The upregulation of ApPCR2, ApPCR6, ApPCR8, ApPCR11, ApHMA3, ApABCC3, ApABCC5, ApHIPP3.1, and ApHIPP3.2 while downregulation of ApNRAMP3, ApNRAMP5, and ApHMA1 genes further modulated Cd uptake and tolerance in low accumulating accessions.
Collapse
Affiliation(s)
- Paurabi Das
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants PO-CIMAP, Lucknow, 226015, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anupama
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants PO-CIMAP, Lucknow, 226015, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashutosh K Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants PO-CIMAP, Lucknow, 226015, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Noor I, Sohail H, Akhtar MT, Cui J, Lu Z, Mostafa S, Hasanuzzaman M, Hussain S, Guo N, Jin B. From stress to resilience: Unraveling the molecular mechanisms of cadmium toxicity, detoxification and tolerance in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176462. [PMID: 39332719 DOI: 10.1016/j.scitotenv.2024.176462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Soil contamination with cadmium (Cd) has become a global issue due to increasing human activities. Cd contamination poses threats to plant growth as well as jeopardizing food safety and human health through the accumulation of Cd in edible parts of plants. Unraveling the Cd toxicity mechanisms and responses of plants to Cd stress is critical for promoting plant growth and ensuring food safety in Cd-contaminated soils. Toxicological research on plant responses to heavy metal stress has extensively studied Cd, as it can disrupt multiple physiological processes. In addition to morpho-anatomical, hormonal, and biochemical responses, plants rapidly initiate transcriptional modifications to combat Cd stress-induced oxidative and genotoxic damage. Various families of transcription factors play crucial roles in triggering such responses. Moreover, epigenetic modifications have been identified as essential players in maintaining plant genome stability under genotoxic stress. Plants have developed several detoxification strategies to mitigate Cd-induced toxicity, such as cell-wall binding, complexation, vacuolar sequestration, efflux, and translocation. This review provides a comprehensive update on understanding of molecular mechanisms involved in Cd uptake, transportation, and detoxification, with a particular emphasis on the signaling pathways that involve transcriptional and epigenetic responses in plants. This review highlights the innovative strategies for enhancing Cd tolerance and explores their potential application in various crops. Furthermore, this review offers strategies for increasing Cd tolerance and limiting Cd bioavailability in edible parts of plants, thereby improving the safety of food crops.
Collapse
Affiliation(s)
- Iqra Noor
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Hamza Sohail
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Muhammad Tanveer Akhtar
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Jiawen Cui
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Zhaogeng Lu
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Salma Mostafa
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Sajjad Hussain
- Citrus Centre, Texas A&M University-Kingsville, Weslaco 78599, United States of America
| | - Nan Guo
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China
| | - Biao Jin
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225000, Jiangsu Province, PR China.
| |
Collapse
|
4
|
Shan Q, Guan J, Yang Y, Chai T, Gong S, Wang J, Qiao K. Cadmium-induced protein AS8: A protein to improve Cd accumulation and transport via Cd uptake in poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109199. [PMID: 39418917 DOI: 10.1016/j.plaphy.2024.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/29/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
The pollution of soil with heavy metals (HMs) has become an environmental problem of global concern. Phytoremediation, whereby plants extract HMs from soil, can efficiently and substantially reduce HM pollution in soil in an environmentally friendly manner. Cadmium-induced protein AS8 (CIPAS8) is present in many plants and its expression is induced by HMs. In this study, PeCIPAS8 and SlCIPAS8 were transformed into 84K poplar to study their effects on tolerance to, and translocation of, cadmium (Cd) in woody plants. Localization analyses showed that two CIPAS8 proteins were localized at the plasma membrane when transiently expressed in tobacco leaf epidermal cells. Compared with wild-type 84K poplar seedlings, transgenic poplar lines overexpressing PeCIPAS8 or SlCIPAS8 showed increased Cd contents and decreased Cd tolerance. Transgenic poplar lines overexpressing PeCIPAS8 or SlCIPAS8 accumulated more Cd in the roots, stems, and leaves, but the plant height did not differ significantly, compared with wild-type 84K poplar under Cd stress during the vegetative stage. CIPAS8 increased the Cd influx rate of transgenic poplar roots compared with that of the wild type, and affected the transcription levels of other metal transporters. These findings show that CIPAS8 increases Cd flux into plant tissues and demonstrate moderate Cd sensitivity of the plant. Therefore, CIPAS8 is an influx transporter with the potential to increase the uptake of toxic HMs by woody plants growing in HM-contaminated soils.
Collapse
Affiliation(s)
- Qinghua Shan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jing Guan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yahan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tuanyao Chai
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shufang Gong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingang Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
5
|
Liu C, Wen L, Cui Y, Ahammed GJ, Cheng Y. Metal transport proteins and transcription factor networks in plant responses to cadmium stress. PLANT CELL REPORTS 2024; 43:218. [PMID: 39153039 DOI: 10.1007/s00299-024-03303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Cadmium (Cd) contamination poses a significant threat to agriculture and human health due to its high soil mobility and toxicity. This review synthesizes current knowledge on Cd uptake, transport, detoxification, and transcriptional regulation in plants, emphasizing the roles of metal transport proteins and transcription factors (TFs). We explore transporter families like NRAMP, HMA, ZIP, ABC, and YSL in facilitating Cd movement within plant tissues, identifying potential targets for reducing Cd accumulation in crops. Additionally, regulatory TF families, including WRKY, MYB, bHLH, and ERF, are highlighted for their roles in modulating gene expression to counteract Cd toxicity. This review consolidates the existing literature on plant-Cd interactions, providing insights into established mechanisms and identifying gaps for future research. Understanding these mechanisms is crucial for developing strategies to enhance plant tolerance, ensure food safety, and promote sustainable agriculture amidst increasing heavy-metal pollution.
Collapse
Affiliation(s)
- Chaochao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
- Xianghu Laboratory, Hangzhou, 311231, People's Republic of China
| | - Lang Wen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Yijia Cui
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, People's Republic of China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Yuan Cheng
- Xianghu Laboratory, Hangzhou, 311231, People's Republic of China.
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| |
Collapse
|
6
|
Qin XL, Zhao YQ, Zhang DJ, Wang KY, Chen WH, Tang ZZ, Chen YE, Yuan S, Ye L, Yuan M. Three species of rape responded to cadmium and melatonin alleviating Cd-toxicity in species-specific strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124178. [PMID: 38763294 DOI: 10.1016/j.envpol.2024.124178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Cadmium (Cd) pollution has been a significant concern in heavy metal pollution, prompting plants to adopt various strategies to mitigate its damage. While the response of plants to Cd stress and the impact of exogenous melatonin has received considerable attention, there has been limited focus on the responses of closely related species to these factors. Consequently, our investigation aimed to explore the response of three different species of rape to Cd stress and examine the influence of exogenous melatonin in this scenario. The research findings revealed distinctive responses among the investigated rape species. B. campestris showed the resistance to Cd and exhibited lower Cd absorption and sustained its physiological activity under Cd stress. In contrast, B. juncea accumulated much Cd and increased the amount of anthocyanin to mitigate the Cd-damage. Furthermore, B. napus showed the tolerance to Cd and tended to accumulate Cd in vacuoles under Cd stress, thereby decreasing the Cd damage and leading to higher activity of antioxidant enzymes and photosynthesis. Moreover, the application of exogenous melatonin significantly elevated the melatonin level in plants and mitigated Cd toxicity by promoting the activity of antioxidant enzymes, reducing Cd absorption, enhancing the chelating capacity with Cd, decreasing Cd accumulation in organelles, and reducing its fluidity. Specifically, exogenous melatonin increased the FHAc content in B. campestris, elevated the phytochelatins (PCs) level in B. napus, and stimulated photosynthesis in B. juncea. In summary, the findings underscore the species-specific responses of the three species of rape to both Cd stress and exogenous melatonin, highlighting the potential for tailored mitigation strategies based on the unique characteristics of each species.
Collapse
Affiliation(s)
- Xiao-Long Qin
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Yu-Qing Zhao
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - De-Jun Zhang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Ke-Yu Wang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Wen-Hui Chen
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Zi-Zhong Tang
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, 611130, Chengdu, China
| | - Lin Ye
- College of Animal Science and Technology, Sichuan Agricultural University, 611100, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, 625014, Ya'an, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
7
|
Song X, Wang N, Zhou J, Tao J, He X, Guo N. High cadmium-accumulating Salix ecotype shapes rhizosphere microbiome to facilitate cadmium extraction. ENVIRONMENT INTERNATIONAL 2024; 190:108904. [PMID: 39059023 DOI: 10.1016/j.envint.2024.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Cadmium (Cd) contamination poses a significant threat to agricultural soils and food safety, necessitating effective remediation strategies. Salix species, with their high coverage and Cd accumulating capacity, hold promise for remediation efforts. The rhizosphere microbiome is crucial for enhancing Cd accumulating capacity for Salix. However, the mechanisms by how Salix interacts with its rhizosphere microbiome to enhance Cd extraction remains poorly understood. In this study, we compared the remediation performance of two Salix ecotypes: 51-3 (High Cd-accumulating Ecotype, HAE) and P646 (Low Cd-accumulating Ecotype, LAE). HAE exhibited notable advantages over LAE, with 10.80 % higher plant height, 43.80 % higher biomass, 20.26 % higher Cd accumulation in aboveground tissues (93.09 μg on average), and a superior Cd translocation factor (1.97 on average). Analysis of the rhizosphere bacterial community via 16S rRNA amplicon sequencing revealed that HAE harbored a more diverse bacterial community with a distinct composition compared to LAE. Indicator analysis identified 84 genera specifically enriched in HAE, predominantly belonging to Proteobacteria, Actinobacteria, and Firmicutes, including beneficial microbes such as Streptomyces, Bacillus, and Pseudomonas. Network analysis further elucidated three taxa groups specifically recruited by HAE, which were highly correlated with functional genes that associated with biosynthesis of secondary metabolites, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. These functions contribute to enhancing plant growth, Cd uptake, and resistance to Cd in Salix. Overall, our findings highlight the importance of the rhizosphere microbiome in facilitating Cd extraction and provide insights into microbiome-based strategies for sustainable agricultural practices.
Collapse
Affiliation(s)
- Xiaomei Song
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China; College of Art Design, Yangzhou Polytechnic Institute, Yangzhou, 225107, Jiangsu, China
| | - Ningqi Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhou
- National Willow Engineering Technology Research Center, Jiangsu Academy of Forestry, Nanjing, 211153, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xudong He
- National Willow Engineering Technology Research Center, Jiangsu Academy of Forestry, Nanjing, 211153, China.
| | - Nan Guo
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
8
|
Li Y, He Z, Xu J, Jiang S, Han X, Wu L, Zhuo R, Qiu W. SpSIZ1 from hyperaccumulator Sedum plumbizincicola orchestrates SpABI5 to fine-tune cadmium tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1382121. [PMID: 39045590 PMCID: PMC11264288 DOI: 10.3389/fpls.2024.1382121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Sedum plumbizincicola is a renowned hyperaccumulator of cadmium (Cd), possesses significant potential for eco-friendly phytoremediation of soil contaminated with Cd. Nevertheless, comprehension of the mechanisms underpinning its Cd stress response remains constrained, primarily due to the absence of a comprehensive genome sequence and an established genetic transformation system. In this study, we successfully identified a novel protein that specifically responds to Cd stress through early comparative iTRAQ proteome and transcriptome analyses under Cd stress conditions. To further investigate its structure, we employed AlphaFold, a powerful tool for protein structure prediction, and found that this newly identified protein shares a similar structure with Arabidopsis AtSIZ1. Therefore, we named it Sedum plumbizincicola SIZ1 (SpSIZ1). Our study revealed that SpSIZ1 plays a crucial role in positively regulating Cd tolerance through its coordination with SpABI5. Overexpression of SpSIZ1 significantly enhanced plant resistance to Cd stress and reduced Cd accumulation. Expression pattern analysis revealed higher levels of SpSIZ1 expression in roots compared to stems and leaves, with up-regulation under Cd stress induction. Importantly, overexpressing SpSIZ1 resulted in lower Cd translocation factors (Tfs) but maintained relatively constant Cd levels in roots under Cd stress, leading to enhanced Cd stress resistance in plants. Protein interaction analysis revealed that SpSIZ1 interacts with SpABI5, and the expression of genes responsive to abscisic acid (ABA) through SpABI5-dependent signaling was significantly up-regulated in SpSIZ1-overexpressing plants with Cd stress treatment. Collectively, our results illustrate that SpSIZ1 interacts with SpABI5, enhancing the expression of ABA downstream stress-related genes through SpABI5, thereby increasing Cd tolerance in plants.
Collapse
Affiliation(s)
- Yuhong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Faculty of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Shenyue Jiang
- Meicheng Office of Market Supervision Bureau of Jiande City, Jiande, Zhejiang, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
9
|
Li S, He Z, Qiu W, Yu M, Wu L, Han X, Zhuo R. SpCTP3 from the hyperaccumulator Sedum plumbizincicola positively regulates cadmium tolerance by interacting with SpMDH1. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134517. [PMID: 38739960 DOI: 10.1016/j.jhazmat.2024.134517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Cadmium (Cd) is a heavy metal pollutant mainly originating from the discharge of industrial sewage, irrigation with contaminated water, and the use of fertilizers. The phytoremediation of Cd polluted soil depends on the identification of the associated genes in hyperaccumulators. Here, a novel Cd tolerance gene (SpCTP3) was identified in hyperaccumulator Sedum plumbizincicola. The results of Cd2+ binding and thermodynamic analyses, revealed the CXXC motif in SpCTP3 functions is a Cd2+ binding site. A mutated CXXC motif decreased binding to Cd by 59.93%. The subcellular localization analysis suggested that SpCTP3 is primarily a cytoplasmic protein. Additionally, the SpCTP3-overexpressing (OE) plants were more tolerant to Cd and accumulated more Cd than wild-type Sedum alfredii (NHE-WT). The Cd concentrations in the cytoplasm of root and leaf cells were significantly higher (53.75% and 71.87%, respectively) in SpCTP3-OE plants than in NHE-WT. Furthermore, malic acid levels increased and decreased in SpCTP3-OE and SpCTP3-RNAi plants, respectively. Moreover, SpCTP3 interacted with malate dehydrogenase 1 (MDH1). Thus, SpCTP3 helps regulate the subcellular distribution of Cd and increases Cd accumulation when it is overexpressed in plants, ultimately Cd tolerance through its interaction with SpMDH1. This study provides new insights relevant to improving the Cd uptake by Sedum plumbizincicola.
Collapse
Affiliation(s)
- Shaocui Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China; Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU)/ Biotechnology Research Center, China Three Gorges University, Yichang 443002, Hubei, PR China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China.
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China.
| |
Collapse
|
10
|
Wei X, Geng M, Yuan J, Zhan J, Liu L, Chen Y, Wang Y, Qin W, Duan H, Zhao H, Li F, Ge X. GhRCD1 promotes cotton tolerance to cadmium by regulating the GhbHLH12-GhMYB44-GhHMA1 transcriptional cascade. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1777-1796. [PMID: 38348566 PMCID: PMC11182589 DOI: 10.1111/pbi.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 06/19/2024]
Abstract
Heavy metal pollution poses a significant risk to human health and wreaks havoc on agricultural productivity. Phytoremediation, a plant-based, environmentally benign, and cost-effective method, is employed to remove heavy metals from contaminated soil, particularly in agricultural or heavy metal-sensitive lands. However, the phytoremediation capacity of various plant species and germplasm resources display significant genetic diversity, and the mechanisms underlying these differences remain hitherto obscure. Given its potential benefits, genetic improvement of plants is essential for enhancing their uptake of heavy metals, tolerance to harmful levels, as well as overall growth and development in contaminated soil. In this study, we uncover a molecular cascade that regulates cadmium (Cd2+) tolerance in cotton, involving GhRCD1, GhbHLH12, GhMYB44, and GhHMA1. We identified a Cd2+-sensitive cotton T-DNA insertion mutant with disrupted GhRCD1 expression. Genetic knockout of GhRCD1 by CRISPR/Cas9 technology resulted in reduced Cd2+ tolerance in cotton seedlings, while GhRCD1 overexpression enhanced Cd2+ tolerance. Through molecular interaction studies, we demonstrated that, in response to Cd2+ presence, GhRCD1 directly interacts with GhbHLH12. This interaction activates GhMYB44, which subsequently activates a heavy metal transporter, GhHMA1, by directly binding to a G-box cis-element in its promoter. These findings provide critical insights into a novel GhRCD1-GhbHLH12-GhMYB44-GhHMA1 regulatory module responsible for Cd2+ tolerance in cotton. Furthermore, our study paves the way for the development of elite Cd2+-tolerant cultivars by elucidating the molecular mechanisms governing the genetic control of Cd2+ tolerance in cotton.
Collapse
Affiliation(s)
- Xi Wei
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Menghan Geng
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Jiachen Yuan
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Jingjing Zhan
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Lisen Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Yanli Chen
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Ye Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Wenqiang Qin
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Hongying Duan
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
| | - Hang Zhao
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Fuguang Li
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Western Agricultural Research Center, Chinese Academy of Agricultural SciencesChangjiXinjiangChina
| | - Xiaoyang Ge
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Western Agricultural Research Center, Chinese Academy of Agricultural SciencesChangjiXinjiangChina
| |
Collapse
|
11
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
12
|
Gong W, Li Q, Tu Y, Yang D, Lai Y, Tang W, Mao W, Feng Y, Liu L, Ji X, Li H. Diversity and functional traits of seed endophytes of Dysphania ambrosioides from heavy metal contaminated and non-contaminated areas. World J Microbiol Biotechnol 2024; 40:191. [PMID: 38702442 DOI: 10.1007/s11274-024-04003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Seed endophytes played a crucial role on host plants stress tolerance and heavy metal (HM) accumulation. Dysphania ambrosioides is a hyperaccumulator and showed strong tolerance and extraordinary accumulation capacities of multiple HMs. However, little is known about its seed endophytes response to field HM-contamination, and its role on host plants HM tolerance and accumulation. In this study, the seed endophytic community of D. ambrosioides from HM-contaminated area (H) and non-contaminated area (N) were investigated by both culture-dependent and independent methods. Moreover, Cd tolerance and the plant growth promoting (PGP) traits of dominant endophytes from site H and N were evaluated. The results showed that in both studies, HM-contamination reduced the diversity and richness of endophytic community and changed the most dominant endophyte, but increased resistant species abundance. By functional trait assessments, a great number of dominant endophytes displayed multiple PGP traits and Cd tolerance. Interestingly, soil HM-contamination significantly increased the percentage of Cd tolerance isolates of Agrobacterium and Epicoccum, but significantly decreased the ration of Agrobacterium with the siderophore production ability. However, the other PGP traits of isolates from site H and N showed no significant difference. Therefore, it was suggested that D. ambrosioides might improve its HM tolerance and accumulation through harboring more HM-resistant endophytes rather than PGP endophytes, but to prove this, more work need to be conducted in the future.
Collapse
Affiliation(s)
- Weijun Gong
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiaohong Li
- The First People's Hospital of Yunnan Province, Kunming, 650500, China
| | - Yungui Tu
- The First People's Hospital of Anning, Kunming, 650300, China
| | - Dian Yang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yibin Lai
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenting Tang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wenqin Mao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yue Feng
- The First People's Hospital of Anning, Kunming, 650300, China
| | - Li Liu
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
13
|
Ma C, Zhang Q, Guo Z, Guo X, Song W, Ma H, Zhou Z, Zhuo R, Zhang H. Copper-dependent control of uptake, translocation and accumulation of cadmium in hyperaccumlator Sedum alfredii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171024. [PMID: 38387586 DOI: 10.1016/j.scitotenv.2024.171024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Cadmium (Cd) is detrimental to plant growth and threatens human health. Here, we investigated the potential for remediation of Cd-contaminated soil with high copper (Cu) background using Cd hyperaccumulator ecotype (HE) Sedum alfredii. We assessed effects of Cu on Cd accumulation, compartmentation and translocation in HE S. alfredii, and compared with those in a related non-accumulator ecotype (NHE). We found that Cu supply significantly induced Cd accumulation in roots and shoots of long-term soil-cultivated HE S. alfredii. A large fraction of root Cd was accumulated in the organelles, but a small fraction was stored in the cell wall. Importantly, Cu addition reduced Cd accumulation in the cell wall and the organelles in root cells. Furthermore, leaf cell capacity to sequestrate Cd in the organelles was greatly improved upon Cu exposure. We also found that genes involving metal transport and cell wall remodeling were distinctly regulated to mediate Cd accumulation in HE S. alfredii. These findings indicate that Cu-dependent decrease of root cell-wall-bound Cd, and stimulation of efflux/influx of organelle Cd transport in root and leaf cells plays a role in the dramatic Cd hyperaccumulation expressed in naturally survived HE S. alfredii.
Collapse
Affiliation(s)
- Chunjie Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Qi Zhang
- Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Zhaoyuan Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Xiaonuo Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenhua Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Hanhan Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Zhongle Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Renying Zhuo
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Haiyan Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
14
|
Zhang Y, Mo Y, Ren H, Wu X, Han L, Sun Z, Xu W. Improving Sedum plumbizincicola genetic transformation with the SpGRF4-SpGIF1 gene and the self-excision CRE/LoxP system. PLANTA 2024; 259:119. [PMID: 38594473 DOI: 10.1007/s00425-024-04393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
MAIN CONCLUSION S. plumbizincicola genetic transformation was optimized using a self-excision molecular-assisted transformation system by integrating the SpGRF4/SpGIF1 gene with XVE and Cre/loxP. Sedum plumbizincicola, despite being an excellent hyperaccumulator of cadmium and zinc with significant potential for soil pollution phytoremediation on farmland, has nonetheless trailed behind other major model plants in genetic transformation technology. In this study, different explants and SpGRF4-SpGIF1 genes were used to optimize the genetic transformation of S. plumbizincicola. We found that petiole and stem segments had higher genetic transformation efficiency than cluster buds. Overexpression of SpGRF4-SpGIF1 could significantly improve the genetic transformation efficiency and shorten the period of obtaining regenerated buds. However, molecular assistance with overexpression of SpGRF4-SpGIF1 leads to abnormal morphology, resulting in plant tissue enlargement and abnormal growth. Therefore, we combined SpGRF4-SpGIF1 with XVE and Cre/loxP to obtain DNA autocleavage transgenic plants induced by estradiol, thereby ensuring normal growth in transgenic plants. This study optimized the S. plumbizincicola genetic transformation system, improved the efficiency of genetic transformation, and established a self-excision molecular-assisted transformation system. This work also established the basis for studying S. plumbizincicola gene function, and for S. plumbizincicola breeding and germplasm innovation.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanlan Mo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hongxu Ren
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaotong Wu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Liyuan Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenzhong Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Lin L, Wu X, Deng X, Lin Z, Liu C, Zhang J, He T, Yi Y, Liu H, Wang Y, Sun W, Xu Z. Mechanisms of low cadmium accumulation in crops: A comprehensive overview from rhizosphere soil to edible parts. ENVIRONMENTAL RESEARCH 2024; 245:118054. [PMID: 38157968 DOI: 10.1016/j.envres.2023.118054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal often found in soil and agricultural products. Due to its high mobility, Cd poses a significant health risk when absorbed by crops, a crucial component of the human diet. This absorption primarily occurs through roots and leaves, leading to Cd accumulation in edible parts of the plant. Our research aimed to understand the mechanisms behind the reduced Cd accumulation in certain crop cultivars through an extensive review of the literature. Crops employ various strategies to limit Cd influx from the soil, including rhizosphere microbial fixation and altering root cell metabolism. Additional mechanisms include membrane efflux, specific transport, chelation, and detoxification, facilitated by metalloproteins such as the natural resistance-associated macrophage protein (Nramp) family, heavy metal P-type ATPases (HMA), zinc-iron permease (ZIP), and ATP-binding cassette (ABC) transporters. This paper synthesizes differences in Cd accumulation among plant varieties, presents methods for identifying cultivars with low Cd accumulation, and explores the unique molecular biology of Cd accumulation. Overall, this review provides a comprehensive resource for managing agricultural lands with lower contamination levels and supports the development of crops engineered to accumulate minimal amounts of Cd.
Collapse
Affiliation(s)
- Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou, 510656, China
| | - Tao He
- College of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan, 442000, China
| | - Yunqiang Yi
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Zhimin Xu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
16
|
Sanjana S, Jazeel K, Janeeshma E, Nair SG, Shackira AM. Synergistic interactions of assorted ameliorating agents to enhance the potential of heavy metal phytoremediation. STRESS BIOLOGY 2024; 4:13. [PMID: 38363436 PMCID: PMC10873264 DOI: 10.1007/s44154-024-00153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Pollution by toxic heavy metals creates a significant impact on the biotic community of the ecosystem. Nowadays, a solution to this problem is an eco-friendly approach like phytoremediation, in which plants are used to ameliorate heavy metals. In addition, various amendments are used to enhance the potential of heavy metal phytoremediation. Symbiotic microorganisms such as phosphate-solubilizing bacteria (PSB), endophytes, mycorrhiza and plant growth-promoting rhizobacteria (PGPR) play a significant role in the improvement of heavy metal phytoremediation potential along with promoting the growth of plants that are grown in contaminated environments. Various chemical chelators (Indole 3-acetic acid, ethylene diamine tetra acetic acid, ethylene glycol tetra acetic acid, ethylenediamine-N, N-disuccinic acid and nitrilotri-acetic acid) and their combined action with other agents also contribute to heavy metal phytoremediation enhancement. With modern techniques, transgenic plants and microorganisms are developed to open up an alternative strategy for phytoremediation. Genomics, proteomics, transcriptomics and metabolomics are widely used novel approaches to develop competent phytoremediators. This review accounts for the synergistic interactions of the ameliorating agent's role in enhancing heavy metal phytoremediation, intending to highlight the importance of these various approaches in reducing heavy metal pollution.
Collapse
Affiliation(s)
- S Sanjana
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India
| | - K Jazeel
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India
| | - E Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala, India
| | - Sarath G Nair
- Department of Botany, Mar Athanasius College, Mahatma Gandhi University, Kottayam, Kerala, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India.
| |
Collapse
|
17
|
Li Y, Shi X, Xu J, Huang X, Feng J, Huang Y, Liu K, Yu F. Proteomics-based analysis on the stress response mechanism of Bidens pilosa L. under cadmium exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132761. [PMID: 37837780 DOI: 10.1016/j.jhazmat.2023.132761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Bidens pilosa L. (B. pilosa) has great potential for the phytoremediation of cadmium (Cd)-contaminated soils. However, the molecular mechanism underlying Cd tolerance and detoxification in B. pilosa is still unclear. In the present study, a 4D label-free quantification technique combined with liquid chromatography-parallel reaction monitoring mass spectrometry was used to explore the stress response mechanism of B. pilosa. Proteomic analysis revealed 213 and 319 differentially expressed proteins (DEPs) in the roots and leaves of B. pilosa, respectively, and 12 target proteins were selected for further analysis. SWISS-MODEL was used to predict the 3D structures of the target proteins. The cation-ATPase-N structural domain and an ATPase-E1-E2 motif, which help to regulate ATPase function, were detected in the TR10519_c0_g1_ORF protein. In addition, the TR6620_c0_g1_ORF_1 and TR611_c1_g1_ORF proteins contained peroxidase-1 and peroxidase-2 motifs. The TR11239_c0_g1_ORF protein was found to belong to the Fe-SOD family, to have a dimeric structure and to contain a relatively high proportion of α-helices but few β-sheets, which play important roles in reactive oxygen intermediate scavenging. Thus, the current study provides an overview of the proteomic response of B. pilosa in scavenging of Cd-induced reactive oxygen intermediates and reveals key proteins involved in the stress response of B. pilosa under Cd exposure.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Xinwei Shi
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Jie Xu
- College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Xiaofang Huang
- College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Jingpei Feng
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Yuanyuan Huang
- College of Environment and Resources, Guangxi Normal University, Guilin 541004, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Life Science, Guangxi Normal University, Guilin 541004, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
18
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
19
|
Xu W, Huang H, Li X, Yang M, Chi S, Pan Y, Li N, Paterson AH, Chai Y, Lu K. CaHMA1 promotes Cd accumulation in pepper fruit. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132480. [PMID: 37683343 DOI: 10.1016/j.jhazmat.2023.132480] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
The main planting areas for pepper (Capsicum sp.) are high in cadmium (Cd), which is the most prevalent heavy metal pollutant worldwide. Breeding pepper cultivars with low Cd levels can promote sustainable agricultural production and ensure the safety of pepper products. To identify breeding targets for reducing Cd accumulation in pepper fruits, we performed a genome-wide association study on 186 accessions. Polymorphisms were associated with fruit Cd content in a genomic region containing a homolog of Arabidopsis (Arabidopsis thaliana) Heavy metal-transporting ATPase 1 (HMA1) encoding a P-type ATPase. In two cultivars with contrasting Cd accumulation, transcriptome analysis revealed differentially expressed genes enriched for carbohydrate metabolism and photosynthesis in fruits with high Cd accumulation, and a Cd2+/Zn2+-exporting ATPase gene (HMA). Heterologous expression of CaHMA1 in yeast increases Cd sensitivity. Overexpression of CaHMA1 conferred a severe increase in Cd content in Arabidopsis plants, whereas reduced CaHMA1 expression in pepper fruits decreased Cd content. We propose that CaHMA1 expression may be an important component of the high Cd accumulation in pepper plants.
Collapse
Affiliation(s)
- Weihong Xu
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - He Huang
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Xiaodong Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Mei Yang
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Sunlin Chi
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Nannan Li
- College of Resources and Environmental Sciences, Southwest University, Chongqing 400715, China
| | - Andrew H Paterson
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30605, USA.
| | - Yourong Chai
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Zhang Y, Mo Y, Han L, Sun Z, Xu W. Exploring Transcriptional Regulation of Hyperaccumulation in Sedum plumbizincicola through Integrated Transcriptome Analysis and CRISPR/Cas9 Technology. Int J Mol Sci 2023; 24:11845. [PMID: 37511604 PMCID: PMC10380820 DOI: 10.3390/ijms241411845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The cadmium hyperaccumulator Sedum plumbizincicola has remarkable abilities for cadmium (Cd) transport, accumulation and detoxification, but the transcriptional regulation mechanisms responsible for its Cd hyperaccumulation remain unknown. To address this knowledge gap, we conducted a comparative transcriptome study between S. plumbizincicola and the non-hyperaccumulating ecotype (NHE) of Sedum alfredii with or without Cd treatment. Our results revealed many differentially expressed genes involved in heavy metal transport and detoxification that were abundantly expressed in S. plumbizincicola. Additionally, we identified a large number of differentially expressed transcription factor genes, highlighting the complexity of transcriptional regulatory networks. We further screened four transcription factor genes that were highly expressed in the roots of S. plumbizincicola as candidate genes for creating CRISPR/Cas9 knockout mutations. Among these, the SpARR11 and SpMYB84 mutant lines exhibited decreased Cd accumulation in their aboveground parts, suggesting that these two transcription factors may play a role in the regulation of the Cd hyperaccumulation in S. plumbizincicola. Although further research will be required to determine the precise targeted genes of these transcription factors, combined transcriptome analysis and CRISPR/Cas9 technology provides unprecedented opportunities for identifying transcription factors related to Cd hyperaccumulation and contributes to the understanding of the transcriptional regulation mechanism of hyperaccumulation in S. plumbizincicola.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.Z.)
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanlan Mo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liyuan Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.Z.)
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Y.Z.)
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
21
|
Liu M, He X, Zhuo R, Mu J, Zhang D. Functional characterization of a DNA-damage repair/tolerance 100 (DRT100) gene in Sedum alfredii Hance for genome stability maintenance and Cd hypertolerance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121546. [PMID: 37019266 DOI: 10.1016/j.envpol.2023.121546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Cd contamination is a world-wild concern for its toxicity and accumulation in food chain. Sedum alfredii Hance (Crassulaceae) is a zinc (Zn) and cadmium (Cd) hyperaccumulator native to China and widely applied for the phytoremediation at Zn or Cd contaminated sites. Although many studies report the uptake, translocation and storage of Cd in S. alfredii Hance, limited information is known about the genes and underlying mechanisms of genome stability maintenance under Cd stress. In this study, a gene resembling DNA-damage repair/toleration 100 (DRT100) was Cd inducible and designated as SaDRT100. Heterologous expression of SaDRT100 gene in yeasts and Arabidopsis thaliana enhanced Cd tolerance capability. Under Cd stress, transgenic Arabidopsis with SaDRT100 gene exhibited lower levels of reactive oxygen species (ROS), fewer Cd uptake in roots and less Cd-induced DNA damage. Evidenced by the subcellular location in cellular nucleus and expression in aerial parts, we suggested the involvement of SaDRT100 in combating Cd-induced DNA damage. Our findings firstly uncovered the roles of SaDRT100 gene in Cd hypertolerance and genome stability maintenance in S. alfredii Hance. The potential functions of DNA protection make SaDRT100 gene a candidate in genetic engineering for phytoremediation at multi-component contaminated sites.
Collapse
Affiliation(s)
- Mingying Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuelian He
- Fungal Research Center, Shaanxi Institute of Microbiology, Xi'an, 710043, Shaanxi, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Ju Mu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
22
|
Wang H, Liu J, Huang J, Xiao Q, Hayward A, Li F, Gong Y, Liu Q, Ma M, Fu D, Xiao M. Mapping and Identifying Candidate Genes Enabling Cadmium Accumulation in Brassica napus Revealed by Combined BSA-Seq and RNA-Seq Analysis. Int J Mol Sci 2023; 24:10163. [PMID: 37373312 DOI: 10.3390/ijms241210163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Rapeseed has the ability to absorb cadmium in the roots and transfer it to aboveground organs, making it a potential species for remediating soil cadmium (Cd) pollution. However, the genetic and molecular mechanisms underlying this phenomenon in rapeseed are still unclear. In this study, a 'cadmium-enriched' parent, 'P1', with high cadmium transport and accumulation in the shoot (cadmium root: shoot transfer ratio of 153.75%), and a low-cadmium-accumulation parent, 'P2', (with a cadmium transfer ratio of 48.72%) were assessed for Cd concentration using inductively coupled plasma mass spectrometry (ICP-MS). An F2 genetic population was constructed by crossing 'P1' with 'P2' to map QTL intervals and underlying genes associated with cadmium enrichment. Fifty extremely cadmium-enriched F2 individuals and fifty extremely low-accumulation F2 individuals were selected based on cadmium content and cadmium transfer ratio and used for bulk segregant analysis (BSA) in combination with whole genome resequencing. This generated a total of 3,660,999 SNPs and 787,034 InDels between these two segregated phenotypic groups. Based on the delta SNP index (the difference in SNP frequency between the two bulked pools), nine candidate Quantitative trait loci (QTLs) from five chromosomes were identified, and four intervals were validated. RNA sequencing of 'P1' and 'P2' in response to cadmium was also performed and identified 3502 differentially expressed genes (DEGs) between 'P1' and 'P2' under Cd treatment. Finally, 32 candidate DEGs were identified within 9 significant mapping intervals, including genes encoding a glutathione S-transferase (GST), a molecular chaperone (DnaJ), and a phosphoglycerate kinase (PGK), among others. These genes are strong candidates for playing an active role in helping rapeseed cope with cadmium stress. Therefore, this study not only sheds new light on the molecular mechanisms of Cd accumulation in rapeseed but could also be useful for rapeseed breeding programs targeting this trait.
Collapse
Affiliation(s)
- Huadong Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiajia Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Juan Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing Xiao
- Graduate School of Jiangxi Normal University, Jiangxi Normal University, Nanchang 330045, China
| | - Alice Hayward
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4072, Australia
| | - Fuyan Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingying Gong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qian Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Miao Ma
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
23
|
Ajeesh Krishna TP, Maharajan T, Antony Ceasar S. Significance and genetic control of membrane transporters to improve phytoremediation and biofortification processes. Mol Biol Rep 2023:10.1007/s11033-023-08521-2. [PMID: 37212961 DOI: 10.1007/s11033-023-08521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Humans frequently consume plant-based foods in their daily life. Contamination of agricultural soils by heavy metals (HMs) is a major food and nutritional security issue. The crop plants grown in HM-contaminated agricultural soil may accumulate more HMs in their edible part, further transferring into the food chain. Consumption of HM-rich crops can cause severe health issues in humans. On the other hand, the low content of the essential HM in the edible part of the crop also causes health problems. Therefore, researchers must try to reduce the non-essential HM in the edible part of the crop plants and improve the essential HMs. Phytoremediation and biofortification are the two strategies for resolving this problem. The genetic component helps to improve the efficiency of phytoremediation and biofortification processes in plants. They help eliminate HMs from soil and improve essential HM content in crop plants. The membrane transporter genes (genetic components) are critical in these two strategies. Therefore, engineering membrane transporter genes may help reduce the non-essential HM content in the edible part of crop plants. Targeted gene editing by genome editing tools like CRISPR could help plants achieve efficient phytoremediation and biofortification. This article covers gene editing's scope, application, and implication to improve the phytoremediation and biofortification processes in non-crop and crop plants.
Collapse
Affiliation(s)
- T P Ajeesh Krishna
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, 683104, India
| | - Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, 683104, India
| | - S Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, 683104, India.
| |
Collapse
|
24
|
Gajardo HA, Gómez-Espinoza O, Boscariol Ferreira P, Carrer H, Bravo LA. The Potential of CRISPR/Cas Technology to Enhance Crop Performance on Adverse Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091892. [PMID: 37176948 PMCID: PMC10181257 DOI: 10.3390/plants12091892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Worldwide food security is under threat in the actual scenery of global climate change because the major staple food crops are not adapted to hostile climatic and soil conditions. Significant efforts have been performed to maintain the actual yield of crops, using traditional breeding and innovative molecular techniques to assist them. However, additional strategies are necessary to achieve the future food demand. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology, as well as its variants, have emerged as alternatives to transgenic plant breeding. This novelty has helped to accelerate the necessary modifications in major crops to confront the impact of abiotic stress on agriculture systems. This review summarizes the current advances in CRISPR/Cas applications in crops to deal with the main hostile soil conditions, such as drought, flooding and waterlogging, salinity, heavy metals, and nutrient deficiencies. In addition, the potential of extremophytes as a reservoir of new molecular mechanisms for abiotic stress tolerance, as well as their orthologue identification and edition in crops, is shown. Moreover, the future challenges and prospects related to CRISPR/Cas technology issues, legal regulations, and customer acceptance will be discussed.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| | - Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Pedro Boscariol Ferreira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| |
Collapse
|
25
|
Yang Z, Wu HT, Yang H, Chen WD, Liu JL, Yang F, Tai L, Li BB, Yuan B, Liu WT, Zhang YF, Luo YR, Chen KM. Overexpression of Sedum SpHMA2, SpHMA3 and SpNramp6 in Brassica napus increases multiple heavy metals accumulation for phytoextraction. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130970. [PMID: 36801723 DOI: 10.1016/j.jhazmat.2023.130970] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Phytoextraction is an environmentally friendly phytoremediation technology that can reduce the total amount of heavy metals (HMs) in the soil. Hyperaccumulators or hyperaccumulating transgenic plants with biomass are important biomaterials for phytoextraction. In this study, we show that three different HM transporters from the hyperaccumulator Sedum pumbizincicola, SpHMA2, SpHMA3, and SpNramp6, possess Cd transport. These three transporters are located at the plasma membrane, tonoplast, and plasma membrane, respectively. Their transcripts could be strongly stimulated by multiple HMs treatments. To create potential biomaterials for phytoextraction, we overexpressed the three single genes and two combining genes, SpHMA2&SpHMA3 and SpHMA2&SpNramp6, in rapes having high biomass and environmental adaptability, and found that the aerial parts of the SpHMA2-OE3 and SpHMA2&SpNramp6-OE4 lines accumulated more Cd from single Cd-contaminated soil because SpNramp6 transports Cd from root cells to the xylem and SpHMA2 from the stems to the leaves. However, the accumulation of each HM in the aerial parts of all selected transgenic rapes was strengthened in multiple HMs-contaminated soils, probably due to the synergistic transport. The HMs residuals in the soil after the transgenic plant phytoremediation were also greatly reduced. These results provide effective solutions for phytoextraction in both Cd and multiple HMs-contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wan-Di Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bo Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China.
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
26
|
Niu L, Li C, Wang W, Zhang J, Scali M, Li W, Liu H, Tai F, Hu X, Wu X. Cadmium tolerance and hyperaccumulation in plants - A proteomic perspective of phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114882. [PMID: 37037105 DOI: 10.1016/j.ecoenv.2023.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is a major environmental pollutant and poses a risk of transfer into the food chain through contaminated plants. Mechanisms underlying Cd tolerance and hyperaccumulation in plants are not fully understood. Proteomics-based approaches facilitate an in-depth understanding of plant responses to Cd stress at the systemic level by identifying Cd-inducible differentially abundant proteins (DAPs). In this review, we summarize studies related to proteomic changes associated with Cd-tolerance mechanisms in Cd-tolerant crops and Cd-hyperaccumulating plants, especially the similarities and differences across plant species. The enhanced DAPs identified through proteomic studies can be potential targets for developing Cd-hyperaccumulators to remediate Cd-contaminated environments and Cd-tolerant crops with low Cd content in the edible organs. This is of great significance for ensuring the food security of an exponentially growing global population. Finally, we discuss the methodological drawbacks in current proteomic studies and propose that better protocols and advanced techniques should be utilized to further strengthen the reliability and applicability of future Cd-stress-related studies in plants. This review provides insights into the improvement of phytoremediation efficiency and an in-depth study of the molecular mechanisms of Cd enrichment in plants.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chunyang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Weiqiang Li
- Jilin Da'an Agro-ecosystem National Observation Research Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
27
|
Yang L, Wu X, Liu S, Zhang L, Li T, Cao Y, Duan Q. Comprehensive Analysis of BrHMPs Reveals Potential Roles in Abiotic Stress Tolerance and Pollen–Stigma Interaction in Brassica rapa. Cells 2023; 12:cells12071096. [PMID: 37048168 PMCID: PMC10093364 DOI: 10.3390/cells12071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Heavy metal-associated proteins (HMPs) participate in heavy metal detoxification. Although HMPs have been identified in several plants, no studies to date have identified the HMPs in Brassica rapa (B. rapa). Here, we identified 85 potential HMPs in B. rapa by bioinformatic methods. The promoters of the identified genes contain many elements associated with stress responses, including response to abscisic acid, low-temperature, and methyl jasmonate. The expression levels of BrHMP14, BrHMP16, BrHMP32, BrHMP41, and BrHMP42 were upregulated under Cu2+, Cd2+, Zn2+, and Pb2+ stresses. BrHMP06, BrHMP30, and BrHMP41 were also significantly upregulated after drought treatment. The transcripts of BrHMP06 and BrHMP11 increased mostly under cold stress. After applying salt stress, the expression of BrHMP02, BrHMP16, and BrHMP78 was induced. We observed increased BrHMP36 expression during the self-incompatibility (SI) response and decreased expression in the compatible pollination (CP) response during pollen–stigma interactions. These changes in expression suggest functions for these genes in HMPs include participating in heavy metal transport, detoxification, and response to abiotic stresses, with the potential for functions in sexual reproduction. We found potential co-functional partners of these key players by protein–protein interaction (PPI) analysis and found that some of the predicted protein partners are known to be involved in corresponding stress responses. Finally, phosphorylation investigation revealed many phosphorylation sites in BrHMPs, suggesting post-translational modification may occur during the BrHMP-mediated stress response. This comprehensive analysis provides important clues for the study of the molecular mechanisms of BrHMP genes in B. rapa, especially for abiotic stress and pollen–stigma interactions.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaoyu Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Shangjia Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Lina Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Ting Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yunyun Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
28
|
Zang H, He J, Zhang Q, Li X, Wang T, Bi X, Zhang Y. Ectopic Expression of PvHMA2.1 Enhances Cadmium Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24043544. [PMID: 36834955 PMCID: PMC9966247 DOI: 10.3390/ijms24043544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Cadmium (Cd) in soil inhibits plant growth and development and even harms human health through food chain transmission. Switchgrass (Panicum virgatum L.), a perennial C4 biofuel crop, is considered an ideal plant for phytoremediation due to its high efficiency in removing Cd and other heavy metals from contaminated soil. The key to understanding the mechanisms of switchgrass Cd tolerance is to identify the genes involved in Cd transport. Heavy-metal ATPases (HMAs) play pivotal roles in heavy metal transport, including Cd, in Arabidopsis thaliana and Oryza sativa, but little is known about the functions of their orthologs in switchgrass. Therefore, we identified 22 HMAs in switchgrass, which were distributed on 12 chromosomes and divided into 4 groups using a phylogenetic analysis. Then, we focused on PvHMA2.1, which is one of the orthologs of the rice Cd transporter OsHMA2. We found that PvHMA2.1 was widely expressed in roots, internodes, leaves, spikelets, and inflorescences, and was significantly induced in the shoots of switchgrass under Cd treatment. Moreover, PvHMA2.1 was found to have seven transmembrane domains and localized at the cell plasma membrane, indicating that it is a potential transporter. The ectopic expression of PvHMA2.1 alleviated the reduction in primary root length and the loss of fresh weight of Arabidopsis seedlings under Cd treatment, suggesting that PvHMA2.1 enhanced Cd tolerance in Arabidopsis. The higher levels of relative water content and chlorophyll content of the transgenic lines under Cd treatment reflected that PvHMA2.1 maintained water retention capacity and alleviated photosynthesis inhibition under Cd stress in Arabidopsis. The roots of the PvHMA2.1 ectopically expressed lines accumulated less Cd compared to the WT, while no significant differences were found in the Cd contents of the shoots between the transgenic lines and the WT under Cd treatment, suggesting that PvHMA2.1 reduced Cd absorption from the environment through the roots in Arabidopsis. Taken together, our results showed that PvHMA2.1 enhanced Cd tolerance in Arabidopsis, providing a promising target that could be engineered in switchgrass to repair Cd-contaminated soil.
Collapse
|
29
|
Xu L, Tian S, Hu Y, Zhao J, Ge J, Lu L. Cadmium contributes to heat tolerance of a hyperaccumulator plant species Sedum alfredii. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129840. [PMID: 36088879 DOI: 10.1016/j.jhazmat.2022.129840] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Hyperaccumulators are plant species that tolerate and accumulate very high concentrations of toxic metals, including Cd. Hyperaccumulation of heavy metals is reported to benefit plant biotic resistance; however, no prior study has examined the possible role of toxic metals on abiotic stress resistance in hyperaccumulators. A preliminary experiment found that Cd significantly improved plant growth of a hyperaccumulator, Sedum alfredii Hance, under heat stress. This study investigated the possible role of Cd in S. alfredii's heat resistance, using infrared thermography, transmission electron microscopy (TEM), real-time quantitative polymerase chain reaction (RTqPCR), and high-throughput sequencing. The results showed that high temperatures irreversibly damaged stomatal function, chloroplast structure, photosynthesis in S. alfredii, and lowered survival rates to 25%. However, Cd application significantly decreased the leaf temperature of S. alfredii and increased the survival rate to 75%. Cd penetrated the guard cells, restored stomatal function, and mitigated excessive water loss from S. alfredii under heat stress. Moreover, it activated antioxidant enzymes, promoted phytohormone biosynthesis, and upregulated a series of unigenes, thereby augmenting heat resistance in S. alfredii. These results indicate that Cd effectively improved thermotolerance in S. alfredii by regulating stomatal movement and antioxidant systems via upregulation of phytohormones and heat shock proteins.
Collapse
Affiliation(s)
- Lingling Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Hu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Cultivated Land Quality Monitoring and Protection Center, Ministry of Agriculture and Rural Affairs, Beijing 100125, PR China
| | - Jianqi Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Ge
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Han TL, Tang TW, Zhang PH, Liu M, Zhao J, Peng JS, Meng S. Cloning and Functional Characterization of SpZIP2. Genes (Basel) 2022; 13:2395. [PMID: 36553665 PMCID: PMC9778510 DOI: 10.3390/genes13122395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Zinc (Zn)-regulated and iron (Fe)-regulated transporter-like proteins (ZIP) are key players involved in the accumulation of cadmium (Cd) and Zn in plants. Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu (S. plumbizincicola) is a Crassulaceae Cd/Zn hyperaccumulator found in China, but the role of ZIPs in S. plumbizincicola remains largely unexplored. Here, we identified 12 members of ZIP family genes by transcriptome analysis in S. plumbizincicola and cloned the SpZIP2 gene with functional analysis. The expression of SpZIP2 in roots was higher than that in the shoots, and Cd stress significantly decreased its expression in the roots but increased its expression in leaves. Protein sequence characteristics and structural analysis showed that the content of alanine and leucine residues in the SpZIP2 sequence was higher than other residues, and several serine, threonine and tyrosine sites can be phosphorylated. Transmembrane domain analysis showed that SpZIP2 has the classic eight transmembrane regions. The evolutionary analysis found that SpZIP2 is closely related to OsZIP2, followed by AtZIP11, OsZIP1 and AtZIP2. Sequence alignment showed that most of the conserved sequences among these members were located in the transmembrane regions. A further metal sensitivity assay using yeast mutant Δyap1 showed that the expression of SpZIP2 increased the sensitivity of the transformants to Cd but failed to change the resistance to Zn. The subsequent ion content determination showed that the expression of SpZIP2 increased the accumulation of Cd in yeast. Subcellular localization showed that SpZIP2 was localized to membrane systems, including the plasma membrane and endoplasmic reticulum. The above results indicate that ZIP member SpZIP2 participates in the uptake and accumulation of Cd into cells and might contribute to Cd hyperaccumulation in S. plumbizincicola.
Collapse
Affiliation(s)
- Tian-Long Han
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ting-Wei Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Pei-Hong Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Min Liu
- Xiaoxiang College, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jing Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jia-Shi Peng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuan Meng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Changsha 410128, China
| |
Collapse
|
31
|
Liu L, Zhang L, Zhao L, Chen Q, Zhang Q, Cao D, Liu Z. Differential Gene Expression and Metabolic Pathway Analysis of Cladophora rupestris under Pb Stress Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13910. [PMID: 36360789 PMCID: PMC9656615 DOI: 10.3390/ijerph192113910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to analyze the transcriptome of C. rupestris under Pb2+ stress by using high-throughput sequencing technology, observe the changes of gene expression and metabolic pathway after three and five days under 1.0 and 5.0 mg/L of Pb2+ treatment, and analyze the differentially expressed genes (DEGs) and related functional genes after Pb2+ treatment. Metabolic pathways were revealed through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results show that DEGs increased significantly with the increase of Pb2+ concentration and stress time. A total of 32 genes were closely related to Pb2+ stress response. GO analysis identified two major transporter proteins, namely, ATP-binding transport protein-related (ABC transporters) and zinc finger CCHC domain containing protein (Zfp) in C. rupestris. Pthr19248, pthr19211, Zfp pthr23002, Zfp p48znf pthr12681, Zfp 294 pthr12389, and Zfp pthr23067 played important roles against Pb2+ toxicity and its absorption in C. rupestris. KEGG pathway analysis suggested that ABCA1, ATM, and ABCD3 were closely related to Pb2+ absorption. Pb2+ stress was mainly involved in metallothionein (MT), plant hormone signal transduction, ABC transporters, and glutathione (GSH) metabolism.
Collapse
Affiliation(s)
- Lei Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lusheng Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lingyun Zhao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Qiuyu Chen
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Qian Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Deju Cao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zhaowen Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China
| |
Collapse
|
32
|
Advances in Genes-Encoding Transporters for Cadmium Uptake, Translocation, and Accumulation in Plants. TOXICS 2022; 10:toxics10080411. [PMID: 35893843 PMCID: PMC9332107 DOI: 10.3390/toxics10080411] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic for plants, animals, and human beings. A better understanding of the mechanisms involved in Cd accumulation in plants is beneficial for developing strategies for either the remediation of Cd-polluted soils using hyperaccumulator plants or preventing excess Cd accumulation in the edible parts of crops and vegetables. As a ubiquitous heavy metal, the transport of Cd in plant cells is suggested to be mediated by transporters for essential elements such as Ca, Zn, K, and Mn. Identification of the genes encoding Cd transporters is important for understanding the mechanisms underlying Cd uptake, translocation, and accumulation in either crop or hyperaccumulator plants. Recent studies have shown that the transporters that mediate the uptake, transport, and accumulation of Cd in plants mainly include members of the natural resistance-associated macrophage protein (Nramp), heavy metal-transporting ATPase (HMA), zinc and iron regulated transporter protein (ZIP), ATP-binding cassette (ABC), and yellow stripe-like (YSL) families. Here, we review the latest advances in the research of these Cd transporters and lay the foundation for a systematic understanding underlying the molecular mechanisms of Cd uptake, transport, and accumulation in plants.
Collapse
|
33
|
Genetically Engineered Organisms: Possibilities and Challenges of Heavy Metal Removal and Nanoparticle Synthesis. CLEAN TECHNOLOGIES 2022. [DOI: 10.3390/cleantechnol4020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heavy metal removal using genetically engineered organisms (GEOs) offer more cost and energy-efficient, safer, greener, and environmentally-friendly opportunities as opposed to conventional strategies requiring hazardous or toxic chemicals, complex processes, and high pressure/temperature. Additionally, GEOs exhibited superior potentials for biosynthesis of nanoparticles with significant capabilities in bioreduction of heavy metal ions that get accumulated as nanocrystals of various shapes/dimensions. In this context, GEO-aided nanoparticle assembly and the related reaction conditions should be optimized. Such strategies encompassing biosynthesized nanoparticle conforming to the green chemistry precepts help minimize the deployment of toxic precursors and capitalize on the safety and sustainability of the ensuing nanoparticle. Different GEOs with improved uptake and appropriation of heavy metal ions potentials have been examined for bioreduction and biorecovery appliances, but effective implementation to industrial-scale practices is nearly absent. In this perspective, the recent developments in heavy metal removal and nanoparticle biosynthesis using GEOs are deliberated, focusing on important challenges and future directions.
Collapse
|
34
|
Xu D, Yang C, Fan H, Qiu W, Huang B, Zhuo R, He Z, Li H, Han X. Genome-Wide Characterization, Evolutionary Analysis of ARF Gene Family, and the Role of SaARF4 in Cd Accumulation of Sedum alfredii Hance. PLANTS (BASEL, SWITZERLAND) 2022; 11:1273. [PMID: 35567274 PMCID: PMC9103128 DOI: 10.3390/plants11091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Auxin response factors (ARFs) play important roles in plant development and environmental adaption. However, the function of ARFs in cadmium (Cd) accumulation are still unknown. Here, 23 SaARFs were detected in the genome of hyperaccumulating ecotype of Sedum alfredii Hance (HE), and they were not evenly distributed on the chromosomes. Their protein domains remained highly conservative. SaARFs in the phylogenetic tree can be divided into three groups. Genes in the group Ⅰ contained three introns at most. However, over ten introns were found in other two groups. Collinearity relationships were exhibited among ten SaARFs. The reasons for generating SaARFs may be segmental duplication and rearrangements. Collinearity analysis among different species revealed that more collinear genes of SaARFs can be found in the species with close relationships of HE. A total of eight elements in SaARFs promoters were related with abiotic stress. The qRT-PCR results indicated that four SaARFs can respond to Cd stress. Moreover, that there may be functional redundancy among six SaARFs. The adaptive selection and functional divergence analysis indicated that SaARF4 may undergo positive selection pressure and an adaptive-evolution process. Overexpressing SaARF4 effectively declined Cd accumulation. Eleven single nucleotide polymorphism (SNP) sites relevant to Cd accumulation can be detected in SaARF4. Among them, only one SNP site can alter the sequence of the SaARF4 protein, but the SaARF4 mutant of this site did not cause a significant difference in cadmium content, compared with wild-type plants. SaARFs may be involved in Cd-stress responses, and SaARF4 may be applied for decreasing Cd accumulation of plants.
Collapse
Affiliation(s)
- Dong Xu
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, China; (D.X.); (C.Y.)
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (H.F.); (W.Q.); (B.H.); (R.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Chunyu Yang
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, China; (D.X.); (C.Y.)
| | - Huijin Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (H.F.); (W.Q.); (B.H.); (R.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (H.F.); (W.Q.); (B.H.); (R.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Biyun Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (H.F.); (W.Q.); (B.H.); (R.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (H.F.); (W.Q.); (B.H.); (R.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, China; (D.X.); (C.Y.)
| | - Haiying Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (H.F.); (W.Q.); (B.H.); (R.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
35
|
Yang Z, Yang F, Liu JL, Wu HT, Yang H, Shi Y, Liu J, Zhang YF, Luo YR, Chen KM. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151099. [PMID: 34688763 DOI: 10.1016/j.scitotenv.2021.151099] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution in soil is a global problem with serious impacts on human health and ecological security. Phytoextraction in phytoremediation, in which plants uptake and transport heavy metals (HMs) to the tissues of aerial parts, is the most environmentally friendly method to reduce the total amount of HMs in soil and has wide application prospects. However, the molecular mechanism of phytoextraction is still under investigation. The uptake, translocation, and retention of HMs in plants are mainly mediated by a variety of transporter proteins. A better understanding of the accumulation strategy of HMs via transporters in plants is a prerequisite for the improvement of phytoextraction. In this review, the biochemical structure and functions of HM transporter families in plants are systematically summarized, with emphasis on their roles in phytoremediation. The accumulation mechanism and regulatory pathways related to hormones, regulators, and reactive oxygen species (ROS) of HMs concerning these transporters are described in detail. Scientific efforts and practices for phytoremediation carried out in recent years suggest that creation of hyperaccumulators by transgenic or gene editing techniques targeted to these transporters and their regulators is the ultimate powerful path for the phytoremediation of HM contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Shi
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Jie Liu
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
36
|
Zhu Y, Qiu W, He X, Wu L, Bi D, Deng Z, He Z, Wu C, Zhuo R. Integrative analysis of transcriptome and proteome provides insights into adaptation to cadmium stress in Sedum plumbizincicola. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113149. [PMID: 34974361 DOI: 10.1016/j.ecoenv.2021.113149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Sedum plumbizincicola, a cadmium (Cd) hyperaccumulating herbaceous plant, can accumulate large amounts of Cd in the above-ground tissues without being poisoned. However, the molecular mechanisms regulating the processes are not fully understood. In this study, Transcriptional and proteomic analyses were integrated to investigate the response of S. plumbizincicola plants to Cd stress and to identify key pathways that are potentially responsible for Cd tolerance and accumulation. A total of 630 DAPs (differentially abundant proteins, using fold change >1.5 and adjusted p-value <0.05) were identified from Tandem Mass Tag (TMT)- based quantitative proteomic profiling, which were enriched in processes including phenylpropanoid biosynthesis, protein processing in endoplasmic reticulum, and biosynthesis of secondary metabolites. Combined with the previous transcriptomic study, 209 genes and their corresponding proteins showed the identical expression pattern. The identified genes/proteins revealed the potential roles of several metabolism pathways, including phenylpropanoid biosynthesis, oxidative phosphorylation, phagosome, and glutathione metabolism, in mediating Cd tolerance and accumulation. Lignin staining and Cd accumulation assay of the transgenic lines over-expressing a selected Cd up-regulated gene SpFAOMT (Flavonoid 3',5'-methyltransferase) showed its functions in adapting to Cd stress, and provided insight into its role in lignin biosynthesis and Cd accumulation in S. plumbizincicola during Cd stress.
Collapse
Affiliation(s)
- Yue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China
| | - Xiaoyang He
- Agricultural Technology Extension Centre of Dongtai, Jiangsu 224200, PR China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - De Bi
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, PR China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei, PR China.
| | - Chao Wu
- Institute of Horticulture, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang 310021, PR China.
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China.
| |
Collapse
|
37
|
Huang Q, Qiu W, Yu M, Li S, Lu Z, Zhu Y, Kan X, Zhuo R. Genome-Wide Characterization of Sedum plumbizincicola HMA Gene Family Provides Functional Implications in Cadmium Response. PLANTS 2022; 11:plants11020215. [PMID: 35050103 PMCID: PMC8779779 DOI: 10.3390/plants11020215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
Heavy-metal ATPase (HMA), an ancient family of transition metal pumps, plays important roles in the transmembrane transport of transition metals such as Cu, Zn, Cd, and Co. Although characterization of HMAs has been conducted in several plants, scarcely knowledge was revealed in Sedum plumbizincicola, a type of cadmium (Cd) hyperaccumulator found in Zhejiang, China. In this study, we first carried out research on genome-wide analysis of the HMA gene family in S. plumbizincicola and finally identified 8 SpHMA genes and divided them into two subfamilies according to sequence alignment and phylogenetic analysis. In addition, a structural analysis showed that SpHMAs were relatively conserved during evolution. All of the SpHMAs contained the HMA domain and the highly conserved motifs, such as DKTGT, GDGxNDxP, PxxK S/TGE, HP, and CPx/SPC. A promoter analysis showed that the majority of the SpHMA genes had cis-acting elements related to the abiotic stress response. The expression profiles showed that most SpHMAs exhibited tissue expression specificity and their expression can be regulated by different heavy metal stress. The members of Zn/Co/Cd/Pb subgroup (SpHMA1-3) were verified to be upregulated in various tissues when exposed to CdCl2. Here we also found that the expression of SpHMA7, which belonged to the Cu/Ag subgroup, had an upregulated trend in Cd stress. Overexpression of SpHMA7 in transgenic yeast indicated an improved sensitivity to Cd. These results provide insights into the evolutionary processes and potential functions of the HMA gene family in S. plumbizincicola, laying a theoretical basis for further studies on figuring out their roles in regulating plant responses to biotic/abiotic stresses.
Collapse
Affiliation(s)
- Qingyu Huang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
| | - Shaocui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
| | - Yue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
- Correspondence: (X.K.); (R.Z.); Tel.: +86-139-5537-2268 (X.K.); +86-0571-63311860 (R.Z.)
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (X.K.); (R.Z.); Tel.: +86-139-5537-2268 (X.K.); +86-0571-63311860 (R.Z.)
| |
Collapse
|
38
|
Zhu Y, Qiu W, Li Y, Tan J, Han X, Wu L, Jiang Y, Deng Z, Wu C, Zhuo R. Quantitative proteome analysis reveals changes of membrane transport proteins in Sedum plumbizincicola under cadmium stress. CHEMOSPHERE 2022; 287:132302. [PMID: 34563781 DOI: 10.1016/j.chemosphere.2021.132302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Sedum plumbizincicola is an herbaceous species tolerant of excessive cadmium accumulation in above-ground tissues. The implications of membrane proteins, especially integrative membrane proteins, in Cd detoxification of plants have received attention in recent years, but a comprehensive profiling of Cd-responsive membrane proteins from Cd hyperaccumulator plants is lacking. In this study, the membrane proteins of root, stem, and leaf tissues of S. plumbizincicola seedlings treated with Cd solution for 0, 1 or 4 days were analyzed by Tandem Mass Tag (TMT) labeling-based proteome quantification (Data are available via ProteomeXchange with identifier PXD025302). Total 3353 proteins with predicted transmembrane helices were identified and quantified in at least one tissue group. 1667 proteins were defined as DAPs (differentially abundant proteins) using fold change >1.5 with p-values <0.05. The number of DAPs involved in metabolism, transport protein, and signal transduction was significantly increased after exposure to Cd, suggesting that the synthesis and decomposition of organic compounds and the transport of ions were actively involved in the Cd tolerance process. The number of up-regulated transport proteins increased significantly from 1-day exposure to 4-day exposure, from 5 to 112, 16 to 42, 18 to 44, in root, stem, and leaf, respectively. Total 352 Cd-regulated transport proteins were identified, including ABC transporters, ion transport proteins, aquaporins, proton pumps, and organic transport proteins. Heterologous expression of SpABCB28, SpMTP5, SpNRAMP5, and SpHMA2 in yeast and subcellular localization showed the Cd-specific transport activity. The results will enhance our understanding of the molecular mechanism of Cd hypertolerance and hyperaccumulation in S. plumbizincicola and will be benefit for future genetic engineering in phytoremediation.
Collapse
Affiliation(s)
- Yue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Forestry Faculty, Nanjing Forestry University, Nanjing, 210037, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China
| | - Yuhong Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China
| | - Jinjuan Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, PR China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yugen Jiang
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, Zhejiang, 311400, PR China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, PR China.
| | - Chao Wu
- Institute of Horticulture, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, 310021, PR China.
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, PR China; Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, 311400, PR China.
| |
Collapse
|
39
|
Gieroń Ż, Sitko K, Małkowski E. The Different Faces of Arabidopsis arenosa-A Plant Species for a Special Purpose. PLANTS (BASEL, SWITZERLAND) 2021; 10:1342. [PMID: 34209450 PMCID: PMC8309363 DOI: 10.3390/plants10071342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022]
Abstract
The following review article collects information on the plant species Arabidopsis arenosa. Thus far, A. arenosa has been known as a model species for autotetraploidy studies because, apart from diploid individuals, there are also tetraploid populations, which is a unique feature of this Arabidopsis species. In addition, A arenosa has often been reported in heavy metal-contaminated sites, where it occurs together with a closely related species A. halleri, a model plant hyperaccumulator of Cd and Zn. Recent studies have shown that several populations of A. arenosa also exhibit Cd and Zn hyperaccumulation. However, it is assumed that the mechanism of hyperaccumulation differs between these two Arabidopsis species. Nevertheless, this phenomenon is still not fully understood, and thorough research is needed. In this paper, we summarize the current state of knowledge regarding research on A. arenosa.
Collapse
Affiliation(s)
| | - Krzysztof Sitko
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| |
Collapse
|
40
|
Yang GL, Zheng MM, Tan AJ, Liu YT, Feng D, Lv SM. Research on the Mechanisms of Plant Enrichment and Detoxification of Cadmium. BIOLOGY 2021; 10:biology10060544. [PMID: 34204395 PMCID: PMC8234526 DOI: 10.3390/biology10060544] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
The heavy metal cadmium (Cd), as one of the major environmentally toxic pollutants, has serious impacts on the growth, development, and physiological functions of plants and animals, leading to deterioration of environmental quality and threats to human health. Research on how plants absorb and transport Cd, as well as its enrichment and detoxification mechanisms, is of great significance to the development of phytoremediation technologies for ecological and environmental management. This article summarises the research progress on the enrichment of heavy metal cadmium in plants in recent years, including the uptake, transport, and accumulation of Cd in plants. The role of plant roots, compartmentalisation, chelation, antioxidation, stress, and osmotic adjustment in the process of plant Cd enrichment are discussed. Finally, problems are proposed to provide a more comprehensive theoretical basis for the further application of phytoremediation technology in the field of heavy metal pollution.
Collapse
Affiliation(s)
- Gui-Li Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Meng-Meng Zheng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Ai-Juan Tan
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Yu-Ting Liu
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Dan Feng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-1376-513-6919
| |
Collapse
|
41
|
Li X, Chen D, Li B, Yang Y, Yang Y. Combined transcriptomic, proteomic and biochemical approaches to identify the cadmium hyper-tolerance mechanism of turnip seedling leaves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22458-22473. [PMID: 33420687 DOI: 10.1007/s11356-020-11454-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) pollution is a prominent environment problem, and great interests have been developed towards the molecular mechanism of Cd accumulation in plants. In this study, we conducted combined transcriptomic, proteomic and biochemical approaches to explore the detoxification of a Cd-hyperaccumulating turnip landrace exposed to 5 μM (T5) and 25 μM (T25) Cd treatments. A total of 1090 and 2111 differentially expressed genes (DEGs) and 161 and 303 differentially expressed proteins (DEPs) were identified in turnips under T5 and T25, respectively. However, poor correlations were observed in expression changes between mRNA and protein levels. The enriched KEGG pathways of DEGs with a high proportion (> 80%) of upregulated genes were focused on the flavonoid biosynthesis, sulphur metabolism and glucosinolate biosynthesis pathways, whereas those of DEPs were enriched on the glutathione metabolism pathway. This result suggests that these pathways contribute to Cd detoxification in turnips. Furthermore, induced antioxidant enzymes, heat stock proteins and stimulated protein acetylation modification seemed to play important roles in Cd tolerance in turnips. In addition, several metal transporters were found responsible for the Cd accumulation capacity of turnips. This study may serve as a basis for breeding low-Cd-accumulating vegetables for foodstuff or high-Cd-abstracting plants for phytoremediation.
Collapse
Affiliation(s)
- Xiong Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Di Chen
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Boqun Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ya Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
42
|
Peng JS, Guan YH, Lin XJ, Xu XJ, Xiao L, Wang HH, Meng S. Comparative understanding of metal hyperaccumulation in plants: a mini-review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1599-1607. [PMID: 32060864 DOI: 10.1007/s10653-020-00533-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 01/29/2020] [Indexed: 05/14/2023]
Abstract
Hyperaccumulator plants are ideal models for investigating the regulatory mechanisms of plant metal homeostasis and environmental adaptation due to their notable traits of metal accumulation and tolerance. These traits may benefit either the biofortification of essential mineral nutrients or the phytoremediation of nonessential toxic metals. A common mechanism by which elevated expression of key genes involved in metal transport or chelation contributes to hyperaccumulation and hypertolerance was proposed mainly from studies examining two Brassicaceae hyperaccumulators, namely Arabidopsis halleri and Noccaea caerulescens (formerly Thlaspi caerulescens). Meanwhile, recent findings regarding systems outside the Brassicaceae hyperaccumulators indicated that functional enhancement of key genes might represent a strategy evolved by hyperaccumulator plants. This review provides a brief outline of metal hyperaccumulation in plants and highlights commonalities and differences among various hyperaccumulators.
Collapse
Affiliation(s)
- Jia-Shi Peng
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Yu-Hao Guan
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xian-Jing Lin
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xiao-Jing Xu
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Lu Xiao
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Hai-Hua Wang
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Shuan Meng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
43
|
Zhang D, Du Y, He D, Zhou D, Wu J, Peng J, Liu L, Liu Z, Yan M. Use of Comparative Transcriptomics Combined With Physiological Analyses to Identify Key Factors Underlying Cadmium Accumulation in Brassica juncea L. Front Genet 2021; 12:655885. [PMID: 33854528 PMCID: PMC8039530 DOI: 10.3389/fgene.2021.655885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
The contamination of soils with cadmium (Cd) has become a serious environmental issue that needs to be addressed. Elucidating the mechanisms underlying Cd accumulation may facilitate the development of plants that accumulate both high and low amounts of Cd. In this study, a combination of phenotypic, physiological, and comparative transcriptomic analyses was performed to investigate the effects of different Cd concentrations (0, 5, 10, 30, 50 mg/kg) on Brassica juncea L. Our results suggest that B. juncea L. seedlings had a degree of tolerance to the 5 mg/kg Cd treatment, whereas higher Cd stress (10-50 mg/kg) could suppress the growth of B. juncea L. seedlings. The contents of soluble protein, as well as MDA (malondialdehyde), were increased, but the activities of CAT (catalase) enzymes and the contents of soluble sugar and chlorophyll were decreased, when B. juncea L. was under 30 and 50 mg/kg Cd treatment. Comparative transcriptomic analysis indicated that XTH18 (xyloglucan endotransglucosylase/hydrolase enzymes), XTH22, and XTH23 were down-regulated, but PME17 (pectin methylesterases) and PME14 were up-regulated, which might contribute to cell wall integrity maintenance. Moreover, the down-regulation of HMA3 (heavy metal ATPase 3) and up-regulation of Nramp3 (natural resistance associated macrophage proteins 3), HMA2 (heavy metal ATPase 2), and Nramp1 (natural resistance associated macrophage proteins 1) might also play roles in reducing Cd toxicity in roots. Taken together, the results of our study may help to elucidate the mechanisms underlying the response of B. juncea L. to various concentrations of Cd.
Collapse
Affiliation(s)
- Dawei Zhang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| | - Yunyan Du
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| | - Dan He
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| | - Dinggang Zhou
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| | - Jinfeng Wu
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| | - Jiashi Peng
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| | - Lili Liu
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| | - Zhongsong Liu
- Oilseed Research Institute, Hunan Agricultural University, Changsha, China
| | - Mingli Yan
- School of Life Science, Hunan University of Science and Technology, Xiangtan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, China
| |
Collapse
|
44
|
Zhu D, Luo F, Zou R, Liu J, Yan Y. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. J Proteomics 2021; 234:104097. [PMID: 33401000 DOI: 10.1016/j.jprot.2020.104097] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 01/20/2023]
Abstract
In this study, we performed an integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses by label-free based quantitative proteomic approach. Both salt and osmotic stresses significantly increased the levels of abscisic acid and methyl jasmonate and led to damages of chloroplast ultrastructure. Main parameters of chlorophyll fluorescence and gas exchange showed a significant decline under both stresses. Quantitative proteomic analysis identified 194 and 169 chloroplast-localized differentially accumulated proteins (DAPs) responsive to salt and osmotic stresses, respectively. The abundance of main DAPs involved in light-dependent reaction were increased under salt stress, but decreased in response to osmotic stress. On the contrary, salt stress induced a significant upregulation of the DAPs associated with Calvin cycle, transcription and translation, amino acid metabolism, carbon and nitrogen metabolism, and some of them exhibited a downregulation under osmotic stress. In particular, both treatments significantly upregulated the DAPs involved in plastoglobule development, protein folding and proteolysis, hormone and vitamin synthesis. Finally, we proposed a putative synergistic responsive network of wheat chloroplast proteome under salt and osmotic stresses, aiming to provide new insights into the underlying response and defense mechanisms of wheat chloroplast proteome in response to abiotic stresses. SIGNIFICANCE: Salt and osmotic stresses are the two most common abiotic stresses that severely affect crop growth and productivity. As the main site of photosynthesis of plant cells, the chloroplast also plays important role in plant tolerance to abiotic stress. However, the response of chloroplast proteome to salt and osmotic is still poorly understood by using the traditional two-dimensional electrophoresis (2-DE) method due to a poor resolution of chloroplast protein separation and low throughput identification of differentially accumulated proteins (DAPs). In this study, we employed label-free based quantitative proteomic approach to perform an integrated physiological and large-scale chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses, which laid a solid foundation for future studies into the response and defense mechanisms of wheat chloroplast in response to abiotic stresses.
Collapse
Affiliation(s)
- Dong Zhu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Fei Luo
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Rong Zou
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Junxian Liu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
45
|
Wu Y, Ma L, Liu Q, Topalović O, Wang Q, Yang X, Feng Y. Pseudomonas fluorescens accelerates a reverse and long-distance transport of cadmium and sucrose in the hyperaccumulator plant Sedum alfredii. CHEMOSPHERE 2020; 256:127156. [PMID: 32559889 DOI: 10.1016/j.chemosphere.2020.127156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Plant growth-promoting bacteria (PGPB) can promote root uptake and shoot accumulation of cadmium (Cd) in hyperaccumulator plants, but the mechanisms by which PGPB accelerate root-to-shoot transport of Cd is still unknown. A better understanding of these mechanisms is necessary to develop the strategies that can promote the practical phytoextraction of Cd-polluted soils. In this study, we found that Pseudomonas fluorescens accelerates a reversed and a long-distance transport of Cd and sucrose in Sedum alfredii, by examining the xylem and phloem sap and by quantifying the concentrations of Cd and sucrose in shoot and root. The transcriptome sequencing has revealed the up-regulated expressions of starch metabolism and sucrose biosynthesis related genes in the shoots of Cd hyperaccumulator plant S. alfredii that was inoculated with PGPB P. fluorescens. In addition, the genes of sugar, cation and anion transporters were also up-regulated by bacterial treatment, showing a complicated co-expression network with sucrose biosynthesis related genes. The expression levels of Cd transporter genes, such as ZIP1, ZIP2, HMA2, HMA3 and CAX2, were elevated after PGPB inoculation. As a result, the PGPB successfully colonized the root, and promoted the sucrose shoot-to-root transport and Cd root-to-shoot transport in S. alfredii. Since non-photosynthetic root-associated bacteria usually obtain sugars from photosynthetic plants, our results highlight the importance of PGPB-induced changes in hyperaccumlator plants for both the host and the PGPB.
Collapse
Affiliation(s)
- Yingjie Wu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Luyao Ma
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qizhen Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Olivera Topalović
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Qiong Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoe Yang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
46
|
Environmetallomics: Systematically investigating metals in environmentally relevant media. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
47
|
Kong X, Zhao Y, Tian K, He X, Jia Y, He Z, Wang W, Xiang C, Tian X. Insight into nitrogen and phosphorus enrichment on cadmium phytoextraction of hydroponically grown Salix matsudana Koidz cuttings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8406-8417. [PMID: 31900781 DOI: 10.1007/s11356-019-07499-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) has already caused worldwide concern because of its high biotoxicity to human and plants. This study investigated how nitrogen (N) and phosphorus (P) enrichment alter the toxic morpho-physiological impacts of and accumulation of Cd in hydroponically grown Salix matsudana Koidz cuttings. Our results showed that Cd significantly depressed growth and induced a physiological response on S. matsudana cuttings, exhibiting by reduced biomass, decreased photosynthetic pigment concentrations, and increased soluble protein and peroxidase activity of shoots and roots. N and P enrichment alleviated the Cd toxic effects by increasing production of proline which prevented cuttings from damage by Cd-induced ROS, displaying with decreased malondialdehyde concentration, and stimulated overall Cd accumulation. Enrichment of N and P significantly decreased the upward Cd transfer, combing with enhanced root uptake (stimulated root activity) and retranslocation from stem, resulted in extensive Cd sequestration in S. matsudana roots. In both root and xylem, concentration of Cd is positively correlated with N and P. The improved phytoextraction potential by N and P enrichment was mainly via elevating Cd concentration in roots, probably by increased production of phytochelatins (e.g., proline) which form Cd chelates and help preventing damage from Cd-induced ROS. This study provides support for the application of S. matsudana in Cd phytoextraction even in eutrophic aquatic environments.
Collapse
Affiliation(s)
- Xiangshi Kong
- Key Laboratory for Ecotourism of Hunan Province, School of Tourism and Management Engineering, Jishou University, Zhangjiajie, 427000, People's Republic of China
- School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yunxia Zhao
- School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Kai Tian
- School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Xingbing He
- Key Laboratory for Ecotourism of Hunan Province, School of Tourism and Management Engineering, Jishou University, Zhangjiajie, 427000, People's Republic of China
| | - Yanyan Jia
- Huaiyin Institute of Agricultural Sciences, Huaian, 223001, People's Republic of China
| | - Zaihua He
- School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Wenwen Wang
- School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Changguo Xiang
- Key Laboratory for Ecotourism of Hunan Province, School of Tourism and Management Engineering, Jishou University, Zhangjiajie, 427000, People's Republic of China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
48
|
Tao Q, Zhao J, Li J, Liu Y, Luo J, Yuan S, Li B, Li Q, Xu Q, Yu X, Huang H, Li T, Wang C. Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in Cd-hyperaccumulator Sedum alfredii. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121177. [PMID: 31648122 DOI: 10.1016/j.jhazmat.2019.121177] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Low molecular weight organic acids (LMWOA) involved in heavy metal tolerance, translocation, and accumulation in plants. However, underlying mechanism of LMWOA secretion in metal mobilization and uptake in hyperaccumulator still need to be identified. In this study, a 13C labeling rhizobox was designed to investigate the composition and distribution of LMWOA in the rhizosphere of S. alfredii. The result showed that about 2.30%, 2.25% and 2.35% of the assimilated 13C was incorporated into oxalic acid, malic acid, and tartaric acid in rhizosphere of S. alfredii after 13CO2 assimilation, respectively. Oxalic acid, malic acid, and tartaric acid were the predominant LMWOA in rhizosphere soil solution of hyperaccumulating ecotype (HE) S. alfredii, however, almost no tartaric acid was detected for non-hyperaccumulating ecotype (NHE). Tartaric acid was identified as the unique root exudate from HE S. alfredii which was mainly distributed within the range of rhizosphere 0-6 mm. Tartaric acid significantly increased the solubility of four Cd minerals. HE S. alfredii treated with tartrate + CdCO3 had higher Cd contents and larger biomass than CdCO3 treatment. Cadmium accumulation in HE S. alfredii was promoted by the exudation of tartaric acid, which was highly efficient in Cd solubilization due to the formation of soluble Cd-tartrate complexes.
Collapse
Affiliation(s)
- Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Junwen Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China.
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
49
|
van der Pas L, Ingle RA. Towards an Understanding of the Molecular Basis of Nickel Hyperaccumulation in Plants. PLANTS (BASEL, SWITZERLAND) 2019; 8:E11. [PMID: 30621231 PMCID: PMC6359332 DOI: 10.3390/plants8010011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/19/2022]
Abstract
Metal hyperaccumulation is a rare and fascinating phenomenon, whereby plants actively accumulate high concentrations of metal ions in their above-ground tissues. Enhanced uptake and root-to-shoot translocation of specific metal ions coupled with an increased capacity for detoxification and sequestration of these ions are thought to constitute the physiological basis of the hyperaccumulation phenotype. Nickel hyperaccumulators were the first to be discovered and are the most numerous, accounting for some seventy-five percent of all known hyperaccumulators. However, our understanding of the molecular basis of the physiological processes underpinning Ni hyperaccumulation has lagged behind that of Zn and Cd hyperaccumulation, in large part due to a lack of genomic resources for Ni hyperaccumulators. The advent of RNA-Seq technology, which allows both transcriptome assembly and profiling of global gene expression without the need for a reference genome, has offered a new route for the analysis of Ni hyperaccumulators, and several such studies have recently been reported. Here we review the current state of our understanding of the molecular basis of Ni hyperaccumulation in plants, with an emphasis on insights gained from recent RNA-Seq experiments, highlight commonalities and differences between Ni hyperaccumulators, and suggest potential future avenues of research in this field.
Collapse
Affiliation(s)
- Llewelyn van der Pas
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| | - Robert A Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|