1
|
Mori G, Rahimian S, Ozawa R, Murata K, Hachisu M, Arimura GI. Development of Menthyl Esters of Valine for Pest Control in Tomato and Lettuce Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:1015. [PMID: 38611544 PMCID: PMC11013592 DOI: 10.3390/plants13071015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Menthyl ester of valine (MV) has been developed as a plant defense potentiator to induce pest resistance in crops. In this study, we attempted to establish MV hydrochloride (MV-HCl) in lettuce and tomato crops. When MV-HCl solutions were used to treat soil or leaves of potted tomato and lettuce plants, 1 µM MV-HCl solution applied to potted plant soil was most effective in increasing the transcript level of defense genes such as pathogenesis-related 1 (PR1). As a result, leaf damage caused by Spodoptera litura and oviposition by Tetranychus urticae were significantly reduced. In addition, MV-HCl-treated plants showed an increased ability to attract Phytoseiulus persimilis, a predatory mite of T. urticae, when they were attacked by T. urticae. Overall, our findings showed that MV-HCl is likely to be effective in promoting not only direct defense by activating defense genes, but also indirect defense mediated by herbivore-induced plant volatiles. Moreover, based on the results of the sustainability of PR1 expression in tomato plants treated with MV-HCl every 3 days, field trials were conducted and showed a 70% reduction in natural leaf damage. Our results suggest a practical approach to promoting organic tomato and lettuce production using this new plant defense potentiator.
Collapse
Affiliation(s)
- Genki Mori
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan; (G.M.); (S.R.); (M.H.)
| | - Sarira Rahimian
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan; (G.M.); (S.R.); (M.H.)
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan;
| | - Kenya Murata
- Manufacturing & Technical Support Group, Japan Carlit Co., Ltd., Shibukawa 377-0004, Japan;
| | - Masakazu Hachisu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan; (G.M.); (S.R.); (M.H.)
| | - Gen-ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan; (G.M.); (S.R.); (M.H.)
| |
Collapse
|
2
|
Kaneko E, Matsui K, Nakahara R, Arimura GI. Novel Potential of Rose Essential Oil as a Powerful Plant Defense Potentiator. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6526-6532. [PMID: 38498005 DOI: 10.1021/acs.jafc.3c08905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Terpenoids, natural compounds released by plants, function to enhance plant defense. The aim of this study was to investigate the effects of terpenoid-enriched essential oils (EOs) on tomato plants. From the application of a highly diluted solution of 11 different EOs to potted tomato soil, our study showed that rose essential oil (REO), rich in β-citronellol, played a crucial role in activating defense genes in tomato leaves. As a result, leaf damage caused by herbivores, such as Spodoptera litura and Tetranychus urticae, was significantly reduced. In addition, our results were validated in field trials, providing evidence that REO is an effective biostimulant for enhancing plant defense against pests. Notably, the REO solution also had the added benefit of attracting herbivore predators, such as Phytoseiulus persimilis. Our findings suggest a practical approach to promote organic tomato production that encourages environmentally friendly and sustainable practices.
Collapse
Affiliation(s)
- Eiki Kaneko
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation (Agriculture), Department of Biological Chemistry, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Ruka Nakahara
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| |
Collapse
|
3
|
Frühbrodt T, Du B, Delb H, Burzlaff T, Kreuzwieser J, Biedermann PHW. Know When You Are Too Many: Density-Dependent Release of Pheromones During Host Colonisation by the European Spruce Bark Beetle, Ips typographus (L.). J Chem Ecol 2023; 49:652-665. [PMID: 37789096 PMCID: PMC10781875 DOI: 10.1007/s10886-023-01453-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
Individuals across various animal species communicate their presence to conspecifics. Especially phytophagous and parasitoid insects with their brood developing on limited resources rely on chemical cues, such as host-marking pheromones, to reduce intraspecific competition. Bark beetles are phytophagous insects with some species being economically and ecologically relevant forest pests. Several of them use the volatile compound verbenone to inhibit attraction and reduce intraspecific competition. However, in the Eurasian spruce bark beetle, Ips typographus (L.), temporal emission patterns did so far not quite support the putative function of verbenone as an indicator of densely colonised host trees. More importantly, it is currently unclear how well verbenone emission is actually related to colonisation density and thus intraspecific competition. Here, we inoculated Norway spruce logs with I. typographus at two defined colonisation densities in the greenhouse and measured the emission of verbenone and its precursors α-pinene and verbenol over time. Verbenone emission was 3-7 times greater from colonised logs compared to decaying logs without beetles during the major part of larval development. Furthermore, our data supports the quantitative hypothesis, that the termination of attack on a tree is mediated by a cessation of the release of verbenol and continuous emission of verbenone. The latter is most likely a passively produced host-marking cue reflecting the actual density of conspecifics since per-beetle emission was unaffected by colonisation density. These findings shed new light on the regulation of bark beetle mass aggregations, which are currently causing previously unseen economic damages in temperate forests.
Collapse
Affiliation(s)
- Tobias Frühbrodt
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Wonnhaldestrasse 4, 79100, Freiburg, Germany
| | - Baoguo Du
- Chair of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53, 79110, Freiburg, Germany.
| | - Horst Delb
- Department of Forest Protection, Forest Research Institute Baden-Württemberg, Wonnhaldestrasse 4, 79100, Freiburg, Germany
| | - Tim Burzlaff
- Chair of Forest Entomology and Protection, University of Freiburg, Fohrenbühl 27, 79252, Stegen-Wittental, Germany
| | - Jürgen Kreuzwieser
- Chair of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53, 79110, Freiburg, Germany
| | - Peter H W Biedermann
- Chair of Forest Entomology and Protection, University of Freiburg, Fohrenbühl 27, 79252, Stegen-Wittental, Germany
| |
Collapse
|
4
|
Goswami A, Mitra A. Light spectra manipulation stimulates growth, specialized metabolites and nutritional quality in Anethum graveolens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 249:112812. [PMID: 37972447 DOI: 10.1016/j.jphotobiol.2023.112812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Light-Emitting Diodes (LED) play a major role in manipulating light spectra that helps in regulating the growth and specialized metabolite synthesis relevant to the plant defence system. In this study, we assessed photosynthetic performance, phytonutrients, and anatomical variations of an aromatic herb Anethum graveolens (also known as dill), grown under various combinations of LED lights viz. red (100R:0B), red:blue (50R:50B); blue (0R:100B) and warm white (WW, served as control). Exposure to 0R:100B LED lights led to the tallest stem height, whereas, the number of leaves were highest under 50R:50B LED lights. The photosynthetic performance was observed to be highest under 50R:50B LED lights. HPLC analysis revealed chlorogenic acid and rosmarinic acid as the major phenolic compounds accumulated under different spectral irradiations. The highest chlorogenic acid content was observed in 50R:50B LED treated dill plants, while 100R:0B light showed the highest accumulation of rosmarinic acid. Dill plants grown under 50R:50B light displayed a relatively higher content of volatile compounds including, myristicin (phenylpropene), psi-limonene, and α-phellandrene (monoterpenoids). Expression analyses of candidate genes of phenylpropanoid and monoterpenoid biosynthetic pathways showed good correlations with the enhanced phenolic compounds and monoterpenes detected under appropriate light treatments. Further, the stem anatomy revealed higher vascularization under the influence of 0R:100B LED lights, whereas, intense histochemical localization of specialized metabolites could be correlated with enhanced accumulation of phenolic compounds and terpenoids observed in this study. Taken together, these studies suggest that proper combinations of blue and red spectra of light could play important role to augment the growth and phytochemical characteristics of dill, thus improving its value addition in the food industry.
Collapse
Affiliation(s)
- Ambika Goswami
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Adinpunya Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| |
Collapse
|
5
|
Lan Y, Zhang K, Wang L, Liang X, Liu H, Zhang X, Jiang N, Wu M, Yan H, Xiang Y. The R2R3-MYB transcription factor OfMYB21 positively regulates linalool biosynthesis in Osmanthus fragrans flowers. Int J Biol Macromol 2023; 249:126099. [PMID: 37543267 DOI: 10.1016/j.ijbiomac.2023.126099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
Osmanthus fragrans is a well-known landscape ornamental tree species for its pleasing floral fragrance and abundance of flowers. Linalool, the core floral volatiles of O. fragrans, has tremendous economic value in the pharmaceuticals, cleaning products and cosmetics industries. However, the transcriptional regulatory network for the biosynthesis of linalool in O. fragrans remains unclear. Here, OfMYB21, a potential transcription factor regulating the linalool synthetase OfTPS2, was identified using RNA-seq data and qRT-PCR analysis. Yeast one-hybrid, dual-luciferase and EMSA showed that OfMYB21 directly binds to the promoter of OfTPS2 and activates its expression. Overexpression of OfMYB21 in the petals of O. fragrans led to up-regulation of OfTPS2 and increased accumulation of linalool, while silencing of OfMYB21 led to down-regulation of OfTPS2 and decreased biosynthesis of linalool. Subsequently, yeast two-hybrid, pull-down and BiFC experiments showed that OfMYB21 interacts with JA signaling factors OfJAZ2/3 and OfMYC2. Interestingly, the interaction between OfMYC2 and OfMYB21 further enhanced the transcription of OfTPS2, whereas OfJAZ3 attenuated this effect. Overall, our studies provided novel finding on the regulatory mechanisms responsible for the biosynthesis of the volatile monoterpenoid linalool in O. fragrans.
Collapse
Affiliation(s)
- Yangang Lan
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Kaimei Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Linna Wang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Liang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Honxia Liu
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyue Zhang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Nianqin Jiang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Min Wu
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Hanwei Yan
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Laboratory of Tree Genetics and Molecular Breeding, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Sousa M, Birgersson G, Karlsson Green K, Pollet M, Becher PG. Odors Attracting the Long-Legged Predator Medetera signaticornis Loew to Ips typographus L. Infested Norway Spruce Trees. J Chem Ecol 2023; 49:451-464. [PMID: 36717509 PMCID: PMC10611644 DOI: 10.1007/s10886-023-01405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Predatory long-legged flies of the genus Medetera are important, but currently understudied, natural enemies of Scolytinae bark beetles such as Ips typographus. Medetera flies lay eggs on beetle-infested trees, where the developing larvae find their prey, but the chemical cues used by Medetera to locate infested trees are currently unknown. To identify odors attracting Medetera signaticornis, a species in Europe, headspace samples were collected at several time-points through different stages of I. typographus attacks on logs of Norway spruce (Picea abies). The headspace samples were analyzed using combined gas chromatography and mass spectrometry (GC-MS), and gas chromatography coupled with electroantennographic detection (GC-EAD) to determine compounds that stimulate M. signaticornis antennae. Antennae of M. signaticornis males and females were found to detect (-)-cis-verbenol, ( +)-trans-verbenol and myrtenol, which are known to be produced by bark beetles. Antennal responses were also observed for verbenene, isoterpinolene, α-pinene oxide, camphor, pinocamphone, terpinene-4-ol, myrtenal, borneol, α-terpineol, geranyl acetone, and verbenone, which are primarily produced by microorganisms, and α-pinene, α-fenchene, β-pinene, camphene, 3-carene, limonene, γ-terpinene, and terpinolene, known spruce tree compounds. In field experiments testing two synthetic blends containing 18 antennal active and two additional compounds 2-methyl-3-buten-2-ol and ipsdienol we observed significant attraction of M. signaticornis within 24 h. These attractive blends can form the basis for development of Medetera monitoring lures for use in future forest and pest management.
Collapse
Affiliation(s)
- Maria Sousa
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, SE 234 22, Lomma, Sweden.
| | - Göran Birgersson
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, SE 234 22, Lomma, Sweden
| | - Kristina Karlsson Green
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, SE 234 22, Lomma, Sweden
| | - Marc Pollet
- Research Institute for Nature and Forest (INBO), Herman Teirlinckgebouw, Havenlaan 88, bus 73, B-1000, Brussels, Belgium
| | - Paul G Becher
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 190, SE 234 22, Lomma, Sweden
| |
Collapse
|
7
|
Acclimation Strategy of Masson Pine (Pinus massoniana) by Limiting Flavonoid and Terpenoid Production under Low Light and Drought. Int J Mol Sci 2022; 23:ijms23158441. [PMID: 35955577 PMCID: PMC9368996 DOI: 10.3390/ijms23158441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Low light and drought often limit the growth and performance of Masson pines (Pinus massoniana) in the subtropical forest ecosystem of China. We speculated that stress-induced defensive secondary metabolites, such as flavonoids and terpenoids, might influence the growth of Masson pines, considering the existence of tradeoffs between growth and defense. However, the mechanisms of Masson pines responsive to low light and drought at the levels of these two metabolites remain unclear. In the present work, the compositions of flavonoids and terpenoids, as well as their biosynthetic pathways, were revealed through metabolome and transcriptome analyses, respectively, coupled with a study on carbon allocation using a 13CO2-pulse-labeling experiment in two-year-old seedlings under low light (LL), drought (DR), and their combined stress (DL) compared to a control (CK). A total of 35 flavonoids and derivatives (LL vs. CK: 18; DR vs. CK: 20; and DL vs. CK: 18), as well as 29 terpenoids and derivatives (LL vs. CK: 23; DR vs. CK: 13; and DL vs. CK: 7), were differentially identified in the leaves. Surprisingly, most of them were decreased under all three stress regimes. At the transcriptomic level, most or all of the detected DEGs (differentially expressed genes) involved in the biosynthetic pathways of flavonoids and terpenoids were downregulated in phloem and xylem under stress treatments. This indicated that stress treatments limited the production of flavonoids and terpenoids. The reduction in the 13C allocation to stems might suggest that it is necessary for maintaining the growth of Masson pine seedlings at the whole-plant level by attenuating energetic resources to the biosynthetic pathways of flavonoids and terpenoids when facing the occurrence of adverse environments. Our results provide new insight into understanding the acclimation strategy of Masson pines or other conifers in adverse environments.
Collapse
|
8
|
Saito T, Kusumoto N, Hiura T. Relation of leaf terpene contents to terpene emission profiles in Japanese cedar (
Cryptomeria japonica
). Ecol Res 2022. [DOI: 10.1111/1440-1703.12323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takuya Saito
- Earth System Division National Institute for Environmental Studies Tsukuba Japan
| | - Norihisa Kusumoto
- Department of Forest Resource Chemistry Forestry and Forest Products Research Institute Tsukuba Japan
| | - Tsutom Hiura
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| |
Collapse
|
9
|
Zhan X, Tong Y. Comparative transcriptomic profiling reveals the regulation of terpenoid biosynthesis in Sinocalycanthus chinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:477-484. [PMID: 34166974 DOI: 10.1016/j.plaphy.2021.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Sinocalycanthus chinensis, a diploid (2n = 22) deciduous shrub, belongs to the Calycanthaceae family of magnoliids and is rich secondary metabolites, such as terpenoids. However, the regulation of terpenoid biosynthesis in S. chinensis is largely unknown. In this study, comparative transcriptome analyses were performed in the bark, branches, leaves, and flowers. KEGG enrichment analysis revealed that the terpenoid biosynthesis and cytochrome P450 pathways were significantly enriched in the four tissues. Twelve terpenoid backbone biosynthesis-related genes were identified, and eight terpene synthases (TPSs) were reassembled based on independent transcriptomes from the four tissues. Phylogenetic analysis of the TPSs showed high sequence similarity between S. chinensis and Arabidopsis, and these TPSs were classified into three subfamilies. Moreover, 39 phytohormone response-related genes, including 5 abscisic acid (ABA) receptors, 25 auxin response factors, 3 gibberellin (GA) response genes, 5 ethylene response genes, and 1 jasmonic acid (JA) response gene were analyzed. Most phytohormone pathway-related genes were upregulated in the flowers and downregulated in the leaves. The endogenous indole acetic acid (IAA) content was higher in the flowers than in the other comparisons. Our results provide an opportunity to reveal the regulation of terpenoid biosynthesis in S. chinensis.
Collapse
Affiliation(s)
- Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, 318000, China.
| | - Yingpeng Tong
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
10
|
Intra-Individual and Intraspecific Terpenoid Diversity in Erodium cicutarium. PLANTS 2021; 10:plants10081574. [PMID: 34451618 PMCID: PMC8398229 DOI: 10.3390/plants10081574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
The chemodiversity between and within individuals of several plant species is remarkable and shaped by the local habitat environment and the genetic background. The forb Erodium cicutarium (Geraniaceae) is globally distributed and partly invasive. This paper hypothesizes a high intra-specific and inter-individual chemical diversity in this species and investigates this by comparing the concentration and diversity of terpenoid compounds in different plant parts, i.e., leaves, blossoms and fruits. Plants were grown from seeds, originating from native range Bavaria (BY), Germany, and invaded range California (CA), USA, populations. In total, 20 different terpenoids were found, which occurred in distinct combinations and the patterns clustered into groups of distinct chemotypes for all plant parts. Several of the chemotypes were specific to plants of one region. The terpenoid compositions of different plant parts within individuals were highly correlated. Chemodiversity was higher in reproductive plant parts compared to the leaves, and higher in plants from BY compared to CA. This study highlights the intra-specific and inter-individual chemodiversity in E. cicutarium, linked to its geographical origin, which may facilitate its invasion success but also calls for further investigation of the role of chemodiversity in invasive plants on interactions with the environment.
Collapse
|
11
|
Protein expression plasticity contributes to heat and drought tolerance of date palm. Oecologia 2021; 197:903-919. [PMID: 33880635 PMCID: PMC8591023 DOI: 10.1007/s00442-021-04907-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/23/2021] [Indexed: 11/04/2022]
Abstract
Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently representing a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and can tolerate large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in leaves, volatile organic compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were grown under controlled environmental conditions of simulated Saudi Arabian summer and winter climates challenged with drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock proteins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response to summer climate and drought. This study reports, for the first time, the identification and functional characterization of the gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, the current study shows that reprogramming of the leaf protein profiles confers the date palm heat- and drought tolerance. We conclude that the protein plasticity of date palm is an important mechanism of molecular adaptation to environmental fluctuations.
Collapse
|
12
|
Mullin M, Klutsch JG, Cale JA, Hussain A, Zhao S, Whitehouse C, Erbilgin N. Primary and Secondary Metabolite Profiles of Lodgepole Pine Trees Change with Elevation, but Not with Latitude. J Chem Ecol 2021; 47:280-293. [PMID: 33651224 DOI: 10.1007/s10886-021-01249-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 12/01/2022]
Abstract
Climate change has a large influence on plant functional and phenotypic traits including plant primary and secondary metabolites. One well-established approach to investigating the variation in plant metabolites involves studying plant populations along elevation and latitude gradients. We considered how two space-for-time climate change gradients (elevation and latitude) influence carbohydrate reserves (soluble sugars, starches) and secondary metabolites (monoterpenes, diterpene resin acids) of lodgepole pine trees in western Canada. We were particularly interested in the relationship of terpenes and carbohydrates with a wide range of tree, site, and climatic factors. We found that only elevation had a strong influence on the expression of both terpenes and carbohydrates of trees. Specifically, as elevation increased, concentrations of monoterpenes and diterpenes generally increased and soluble sugars (glucose, sucrose, total sugars) decreased. In contrast, latitude had no impact on either of terpenes or carbohydrates. Furthermore, we found a positive relationship between concentrations of starch and total terpenes and diterpenes in the elevation study; whereas neither starches nor sugars were correlated to terpenes in the latitude study. Similarly, both terpenes and carbohydrates had a much greater number of significant correlations to site characteristics such as slope, basal area index, and sand basal area, in the elevational than in the latitude study. Overall, these results support the conclusion that both biotic and abiotic factors likely drive the patterns of primary and secondary metabolite profiles of lodgepole pine along geographical gradients. Also, presence of a positive relationship between terpenes and starches suggests an interaction between primary ad secondary metabolites of lodgepole pine trees.
Collapse
Affiliation(s)
- Melanie Mullin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - J G Klutsch
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - J A Cale
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - A Hussain
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - S Zhao
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada
| | - C Whitehouse
- Alberta Agriculture and Forestry, 9920 108 Street, Edmonton, Alberta, T5K 2M4, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada.
| |
Collapse
|
13
|
Dehimeche N, Buatois B, Bertin N, Staudt M. Insights into the Intraspecific Variability of the above and Belowground Emissions of Volatile Organic Compounds in Tomato. Molecules 2021; 26:molecules26010237. [PMID: 33466378 PMCID: PMC7796079 DOI: 10.3390/molecules26010237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
The in-vivo monitoring of volatile organic compound (VOC) emissions is a potential non-invasive tool in plant protection, especially in greenhouse cultivation. We studied VOC production from above and belowground organs of the eight parents of the Multi-Parent Advanced Generation Intercross population (MAGIC) tomato population, which exhibits a high genetic variability, in order to obtain more insight into the variability of constitutive VOC emissions from tomato plants under stress-free conditions. Foliage emissions were composed of terpenes, the majority of which were also stored in the leaves. Foliage emissions were very low, partly light-dependent, and differed significantly among genotypes, both in quantity and quality. Soil with roots emitted VOCs at similar, though more variable, rates than foliage. Soil emissions were characterized by terpenes, oxygenated alkanes, and alkenes and phenolic compounds, only a few of which were found in root extracts at low concentrations. Correlation analyses revealed that several VOCs emitted from foliage or soil are jointly regulated and that above and belowground sources are partially interconnected. With respect to VOC monitoring in tomato crops, our results underline that genetic variability, light-dependent de-novo synthesis, and belowground sources are factors to be considered for successful use in crop monitoring.
Collapse
Affiliation(s)
- Nafissa Dehimeche
- Centre d’Ecologie Fonctionnelle et Evolutive, CNRS-Université Montpellier-Université Paul-Valéry Montpellier–EPHE, Campus CNRS, CEDEX 5, F-34293 Montpellier, France; (N.D.); (B.B.)
| | - Bruno Buatois
- Centre d’Ecologie Fonctionnelle et Evolutive, CNRS-Université Montpellier-Université Paul-Valéry Montpellier–EPHE, Campus CNRS, CEDEX 5, F-34293 Montpellier, France; (N.D.); (B.B.)
| | - Nadia Bertin
- INRAE, UR115 Plantes et Systèmes de Culture Horticoles, Site Agroparc, 84914 Avignon, France;
| | - Michael Staudt
- Centre d’Ecologie Fonctionnelle et Evolutive, CNRS-Université Montpellier-Université Paul-Valéry Montpellier–EPHE, Campus CNRS, CEDEX 5, F-34293 Montpellier, France; (N.D.); (B.B.)
- Correspondence: ; Tel.: +33-467613272
| |
Collapse
|