1
|
Negroni YL, Doro I, Tamborrino A, Luzzi I, Fortunato S, Hensel G, Khosravi S, Maretto L, Stevanato P, Lo Schiavo F, de Pinto MC, Krupinska K, Zottini M. The Arabidopsis Mitochondrial Nucleoid-Associated Protein WHIRLY2 Is Required for a Proper Response to Salt Stress. PLANT & CELL PHYSIOLOGY 2024; 65:576-589. [PMID: 38591870 PMCID: PMC11094760 DOI: 10.1093/pcp/pcae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9-mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.
Collapse
Affiliation(s)
- Yuri L Negroni
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Irene Doro
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Alberto Tamborrino
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Irene Luzzi
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari, Campus Universitario, Via Orabona, 4, Bari 70125, Italy
| | - Götz Hensel
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Corrensstraße 3, Seeland, Gatersleben D-06466, Germany
| | - Solmaz Khosravi
- Plant Reproductive Biology, Department of Physiology and Cell Biology, IPK, Corrensstraße 3, Seeland, Gatersleben D-06466, Germany
| | - Laura Maretto
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Viale Università 16, Legnaro, Padova 35020, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, Viale Università 16, Legnaro, Padova 35020, Italy
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari, Campus Universitario, Via Orabona, 4, Bari 70125, Italy
| | - Karin Krupinska
- Botanisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel D-24098, Germany
| | - Michela Zottini
- Department of Biology, University of Padova, Via U. Bassi 58/b, Padova 35131, Italy
| |
Collapse
|
2
|
Domingo G, Marsoni M, Davide E, Fortunato S, de Pinto MC, Bracale M, Molla G, Gehring C, Vannini C. The cAMP-dependent phosphorylation footprint in response to heat stress. PLANT CELL REPORTS 2024; 43:137. [PMID: 38713285 PMCID: PMC11076351 DOI: 10.1007/s00299-024-03213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
KEY MESSAGE cAMP modulates the phosphorylation status of highly conserved phosphosites in RNA-binding proteins crucial for mRNA metabolism and reprogramming in response to heat stress. In plants, 3',5'-cyclic adenosine monophosphate (3',5'-cAMP) is a second messenger that modulates multiple cellular targets, thereby participating in plant developmental and adaptive processes. Although its role in ameliorating heat-related damage has been demonstrated, mechanisms that govern cAMP-dependent responses to heat have remained elusive. Here we analyze the role cAMP-dependent phosphorylation during prolonged heat stress (HS) with a view to gain insight into processes that govern plant responses to HS. To do so, we performed quantitative phosphoproteomic analyses in Nicotiana tabacum Bright Yellow-2 cells grown at 27 °C or 35 °C for 3 days overexpressing a molecular "sponge" that reduces free intracellular cAMP levels. Our phosphorylation data and analyses reveal that the presence of cAMP is an essential factor that governs specific protein phosphorylation events that occur during prolonged HS in BY-2 cells. Notably, cAMP modulates HS-dependent phosphorylation of proteins that functions in mRNA processing, transcriptional control, vesicular trafficking, and cell cycle regulation and this is indicative for a systemic role of the messenger. In particular, changes of cAMP levels affect the phosphorylation status of highly conserved phosphosites in 19 RNA-binding proteins that are crucial during the reprogramming of the mRNA metabolism in response to HS. Furthermore, phosphorylation site motifs and molecular docking suggest that some proteins, including kinases and phosphatases, are conceivably able to directly interact with cAMP thus further supporting a regulatory role of cAMP in plant HS responses.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy.
| | - Milena Marsoni
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Eleonora Davide
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Stefania Fortunato
- Department of Biology, University of Bari "Aldo Moro", Piazza Umberto I, 70121, Bari, Italy
| | | | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Gianluca Molla
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, Via Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
3
|
Xu T, Zhou H, Feng J, Guo M, Huang H, Yang P, Zhou J. Involvement of HSP70 in BAG9-mediated thermotolerance in Solanum lycopersicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108353. [PMID: 38219426 DOI: 10.1016/j.plaphy.2024.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Because of a high sensitivity to high temperature, both the yield and quality of tomato (Solanum lycopersicum L.) are severely restricted by heat stress. The Bcl-2-associated athanogene (BAG) proteins, a family of multi-functional co-chaperones, are involved in plant growth, development, and stress tolerance. We have previously demonstrated that BAG9 positively regulates thermotolerance in tomato. However, the BAG9-mediated mechanism of thermotolerance in tomato has remained elusive. In the present study, we report that BAG9 interacts with heat shock protein 70 (HSP70) in vitro and in vivo. Silencing HSP70 decreased thermotolerance of tomato plants, as reflected by the phenotype, relative electrolyte leakage and malondialdehyde. Furthermore, the photosystem activities, activities of antioxidant enzymes and expression of key genes encoding antioxidant enzymes were reduced in HSP70-silenced plants under heat stress. Additionally, silencing HSP70 decreased thermotolerance of overexpressing BAG9 plants, which was related to decreased photosynthetic rate, increased damage to photosystem I and photosystem II, decreased activity of antioxidant enzymes, and decreased expression of key genes encoding antioxidant enzymes. Taken together, the present study identified that HSP70 is involved in BAG9-mediated thermotolerance by protecting the photosystem stability and improving the efficiency of the antioxidant system in tomato. This knowledge can be helpful to breed improved crop cultivars that are better equipped with thermotolerance.
Collapse
Affiliation(s)
- Tong Xu
- Hainan Institute, Zhejiang University, Sanya, China; Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Hui Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Jing Feng
- Hainan Institute, Zhejiang University, Sanya, China; Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Mingyue Guo
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Huamin Huang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou, 310058, China
| | - Jie Zhou
- Hainan Institute, Zhejiang University, Sanya, China; Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Wong A, Chi W, Yu J, Bi C, Tian X, Yang Y, Gehring C. Plant adenylate cyclases have come full circle. NATURE PLANTS 2023; 9:1389-1397. [PMID: 37709954 DOI: 10.1038/s41477-023-01486-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/07/2023] [Indexed: 09/16/2023]
Abstract
In bacteria, fungi and animals, 3'-5'-cyclic adenosine monophosphate (cAMP) and adenylate cyclases (ACs), enzymes that catalyse the formation of 3',5'-cAMP from ATP, are recognized as key signalling components. In contrast, the presence of cAMP and its biological roles in higher plants have long been a matter of controversy due to the generally lower amounts in plant tissues compared with that in animal and bacterial cells, and a lack of clarity on the molecular nature of the generating and degrading enzymes, as well as downstream effectors. While treatment with 3',5'-cAMP elicited many plant responses, ACs were, however, somewhat elusive. This changed when systematic searches with amino acid motifs deduced from the conserved catalytic centres of annotated ACs from animals and bacteria identified candidate proteins in higher plants that were subsequently shown to have AC activities in vitro and in vivo. The identification of active ACs moonlighting within complex multifunctional proteins is consistent with their roles as molecular tuners and regulators of cellular and physiological functions. Furthermore, the increasing number of ACs identified as part of proteins with different domain architectures suggests that there are many more hidden ACs in plant proteomes and they may affect a multitude of mechanisms and processes at the molecular and systems levels.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China.
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.
| | - Wei Chi
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Jia Yu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Chuyun Bi
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Xuechen Tian
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Yixin Yang
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| |
Collapse
|
5
|
Monti MM, Mancini I, Gualtieri L, Domingo G, Beccaccioli M, Bossa R, Bracale M, Loreto F, Ruocco M. Volatilome and proteome responses to Colletotrichum lindemuthianum infection in a moderately resistant and a susceptible bean genotype. PHYSIOLOGIA PLANTARUM 2023; 175:e14044. [PMID: 37882283 DOI: 10.1111/ppl.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
We analyzed the changes in the volatilome, proteome, stomatal conductance, salicylic and jasmonic acid contents of a susceptible and a moderately resistant genotype of common bean, Phaseoulus vulgaris L., challenged with Colletotrichum lindemuthianum, the causal agent of fungal anthracnose. Our results indicate differences at both proteome and volatilome levels between the two genotypes, before and after the infection, and different defense strategies. The moderately resistant genotype hindered pathogen infection, invasion, and replication mainly by maintaining epidermal and cell wall structure. The susceptible genotype was not able to limit the early stages of pathogen infection. Rather, stomatal conductance increased in the infected susceptible genotype, and enhanced synthesis of Green Leaf Volatiles and salicylic acid was observed, together with a strong hypersensitive response. Proteomic investigation provided a general framework for physiological changes, whereas observed variations in the volatilome suggested that volatile organic compounds may principally represent stress markers rather than defensive compounds per se.
Collapse
Affiliation(s)
- Maurilia M Monti
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
| | - Ilaria Mancini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Liberata Gualtieri
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
| | - Guido Domingo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Marzia Beccaccioli
- Dipartimento di Biologia Ambientale, Università Sapienza Roma, Roma, Italy
| | - Rosanna Bossa
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Marcella Bracale
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Francesco Loreto
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Michelina Ruocco
- Istituto per la Protezione Sostenibile delle Piante, CNR, Portici, Napoli, Italy
| |
Collapse
|
6
|
Domingo G, Marsoni M, Chiodaroli L, Fortunato S, Bracale M, De Pinto MC, Gehring C, Vannini C. Quantitative phosphoproteomics reveals novel roles of cAMP in plants. Proteomics 2023; 23:e2300165. [PMID: 37264754 DOI: 10.1002/pmic.202300165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is finally recognized as an essential signaling molecule in plants where cAMP-dependent processes include responses to hormones and environmental stimuli. To better understand the role of 3',5'-cAMP at the systems level, we have undertaken a phosphoproteomic analysis to elucidate the cAMP-dependent response of tobacco BY-2 cells. These cells overexpress a molecular "sponge" that buffers free intracellular cAMP level. The results show that, firstly, in vivo cAMP dampening profoundly affects the plant kinome and notably mitogen-activated protein kinases, receptor-like kinases, and calcium-dependent protein kinases, thereby modulating the cellular responses at the systems level. Secondly, buffering cAMP levels also affects mRNA processing through the modulation of the phosphorylation status of several RNA-binding proteins with roles in splicing, including many serine and arginine-rich proteins. Thirdly, cAMP-dependent phosphorylation targets appear to be conserved among plant species. Taken together, these findings are consistent with an ancient role of cAMP in mRNA processing and cellular programming and suggest that unperturbed cellular cAMP levels are essential for cellular homeostasis and signaling in plant cells.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Milena Marsoni
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | | | | | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | | | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| |
Collapse
|
7
|
Tadini L, Jeran N, Domingo G, Zambelli F, Masiero S, Calabritto A, Costantini E, Forlani S, Marsoni M, Briani F, Vannini C, Pesaresi P. Perturbation of protein homeostasis brings plastids at the crossroad between repair and dismantling. PLoS Genet 2023; 19:e1010344. [PMID: 37418499 PMCID: PMC10355426 DOI: 10.1371/journal.pgen.1010344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/09/2023] [Indexed: 07/09/2023] Open
Abstract
The chloroplast proteome is a dynamic mosaic of plastid- and nuclear-encoded proteins. Plastid protein homeostasis is maintained through the balance between de novo synthesis and proteolysis. Intracellular communication pathways, including the plastid-to-nucleus signalling and the protein homeostasis machinery, made of stromal chaperones and proteases, shape chloroplast proteome based on developmental and physiological needs. However, the maintenance of fully functional chloroplasts is costly and under specific stress conditions the degradation of damaged chloroplasts is essential to the maintenance of a healthy population of photosynthesising organelles while promoting nutrient redistribution to sink tissues. In this work, we have addressed this complex regulatory chloroplast-quality-control pathway by modulating the expression of two nuclear genes encoding plastid ribosomal proteins PRPS1 and PRPL4. By transcriptomics, proteomics and transmission electron microscopy analyses, we show that the increased expression of PRPS1 gene leads to chloroplast degradation and early flowering, as an escape strategy from stress. On the contrary, the overaccumulation of PRPL4 protein is kept under control by increasing the amount of plastid chaperones and components of the unfolded protein response (cpUPR) regulatory mechanism. This study advances our understanding of molecular mechanisms underlying chloroplast retrograde communication and provides new insight into cellular responses to impaired plastid protein homeostasis.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Guido Domingo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Federico Zambelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Anna Calabritto
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Elena Costantini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Sara Forlani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Milena Marsoni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Candida Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
8
|
Proteomic characterization of Shiitake (Lentinula edodes) post-harvest fruit bodies grown on hardwood logs and isolation of an antibacterial serine protease inhibitor. Fungal Biol 2023; 127:881-890. [PMID: 36746560 DOI: 10.1016/j.funbio.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Lentinula edodes (Shiitake) is one of the most heavily cultivated mushrooms in the world with proven antioxidant and antibacterial properties, among others. Evidence indicates that the choice of mushroom cultivation technique strongly influences the production of bioactive compounds, but to date the nature of many of these compounds has not been fully established. This work focuses on the proteomic characterization of L. edodes to highlight the main active processes two days after harvest and elucidates the proteins involved in the known antioxidant and antibacterial proprieties of Shiitake fruit bodies cultivated on oak logs. A label-free approach allowed us to identify a total of 2702 proteins which were mainly involved in carbohydrate and protein metabolism, cell growth and replication, indicating that several developmental processes remain active in fruit bodies post-harvest. Proteins with antioxidant activities were identified, indicating the contribution of proteins to the antioxidant properties of L. edodes extracts. Antibacterial assays also reveal the activity of a serine protease inhibitor that strongly accumulates in the post-harvest fruit body grown on oak logs. Overall, this study contributes to the understanding of the impact of the log cultivation method on the production of Shiitake mushrooms richest in high-value bioactive compounds.
Collapse
|
9
|
Lasorella C, Fortunato S, Dipierro N, Jeran N, Tadini L, Vita F, Pesaresi P, de Pinto MC. Chloroplast-localized GUN1 contributes to the acquisition of basal thermotolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:1058831. [PMID: 36618674 PMCID: PMC9813751 DOI: 10.3389/fpls.2022.1058831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Heat stress (HS) severely affects different cellular compartments operating in metabolic processes and represents a critical threat to plant growth and yield. Chloroplasts are crucial for heat stress response (HSR), signaling to the nucleus the environmental challenge and adjusting metabolic and biosynthetic functions accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein, has been recognized as one of the main players of chloroplast retrograde signaling. Here, we investigate HSR in Arabidopsis wild-type and gun1 plantlets subjected to 2 hours of HS at 45°C. In wild-type plants, Reactive Oxygen Species (ROS) accumulate promptly after HS, contributing to transiently oxidize the cellular environment and acting as signaling molecules. After 3 hours of physiological recovery at growth temperature (22°C), the induction of enzymatic and non-enzymatic antioxidants prevents oxidative damage. On the other hand, gun1 mutants fail to induce the oxidative burst immediately after HS and accumulate ROS and oxidative damage after 3 hours of recovery at 22°C, thus resulting in enhanced sensitivity to HS. These data suggest that GUN1 is required to oxidize the cellular environment, participating in the acquisition of basal thermotolerance through the redox-dependent plastid-to-nucleus communication.
Collapse
Affiliation(s)
- Cecilia Lasorella
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Stefania Fortunato
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nunzio Dipierro
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Nicolaj Jeran
- Department of Biosciences, University of Milano, Milano, Italy
| | - Luca Tadini
- Department of Biosciences, University of Milano, Milano, Italy
| | - Federico Vita
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, Milano, Italy
| | - Maria Concetta de Pinto
- Department of Bioscience, Biotechnology and Environment University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
10
|
Kroscher KA, Fausnacht DW, McMillan RP, El-Kadi SW, Wall EH, Bravo DM, Rhoads RP. Supplementation with artificial sweetener and capsaicin alters metabolic flexibility and performance in heat-stressed and feed-restricted pigs. J Anim Sci 2022; 100:6652329. [PMID: 35908791 PMCID: PMC9339275 DOI: 10.1093/jas/skac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
Substantial economic losses in animal agriculture result from animals experiencing heat stress (HS). Pigs are especially susceptible to HS, resulting in reductions in growth, altered body composition, and compromised substrate metabolism. In this study, an artificial high-intensity sweetener and capsaicin (CAPS-SUC; Pancosma, Switzerland) were supplemented in combination to mitigate the adverse effects of HS on pig performance. Forty cross-bred barrows (16.2 ± 6 kg) were assigned to one of five treatments: thermal neutral controls (TN) (22 ± 1.2 °C; 38%-73% relative humidity) with ad libitum feed, HS conditions with ad libitum feed with (HS+) or without (HS-) supplementation, and pair-fed to HS with (PF+) or without supplementation (PF-). Pigs in heat-stressed treatments were exposed to a cyclical environmental temperature of 12 h at 35 ± 1.2 °C with 27%-45% relative humidity and 12 h at 30 ± 1.1 °C with 24%-35% relative humidity for 21 d. Supplementation (0.1 g/kg feed) began 7 d before and persisted through the duration of environmental or dietary treatments (HS/PF), which lasted for 21 d. Rectal temperatures and respiration rates (RR; breaths/minute) were recorded thrice daily, and feed intake (FI) was recorded daily. Before the start and at the termination of environmental treatments (HS/PF), a muscle biopsy of the longissimus dorsi was taken for metabolic analyses. Blood samples were collected weekly, and animals were weighed every 3 d during treatment. Core temperature (TN 39.2 ± 0.02 °C, HS- 39.6 ± 0.02 °C, and HS+ 39.6 ± 0.02 °C, P < 0.001) and RR (P < 0.001) were increased in both HS- and HS+ groups, but no difference was detected between HS- and HS+. PF- pigs exhibited reduced core temperature (39.1 ± 0.02 °C, P < 0.001), which was restored in PF+ pigs (39.3 ± 0.02 °C) to match TN. Weight gain and feed efficiency were reduced in PF- pigs (P < 0.05) but not in the PF+ or the HS- or HS+ groups. Metabolic flexibility was decreased in the HS- group (-48.4%, P < 0.05) but maintained in the HS+ group. CAPS-SUC did not influence core temperature or weight gain in HS pigs but did restore core temperature, weight gain, and feed efficiency in supplemented PF pigs. In addition, supplementation restored metabolic flexibility during HS and improved weight gain and feed efficiency during PF, highlighting CAPS-SUC's therapeutic metabolic effects.
Collapse
Affiliation(s)
- Kellie A Kroscher
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dane W Fausnacht
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ryan P McMillan
- The Metabolism Core, Virginia Tech, Blacksburg, VA 24061, USA
| | - Samer W El-Kadi
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Fortunato S, Lasorella C, Tadini L, Jeran N, Vita F, Pesaresi P, de Pinto MC. GUN1 involvement in the redox changes occurring during biogenic retrograde signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111265. [PMID: 35643615 DOI: 10.1016/j.plantsci.2022.111265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast biogenesis requires a tight communication between nucleus and plastids. By retrograde signals, plastids transmit information about their functional and developmental state to adjust nuclear gene expression, accordingly. GENOMES UNCOUPLED 1 (GUN1), a chloroplast-localized protein integrating several developmental and stress-related signals, is one of the main players of retrograde signaling. Here, we focused on the interplay between GUN1 and redox regulation during biogenic retrograde signaling, by investigating redox parameters in Arabidopsis wild type and gun1 seedlings. Our data highlight that during biogenic retrograde signaling superoxide anion (O2-) and hydrogen peroxide (H2O2) play a different role in response to GUN1. Under physiological conditions, even in the absence of a visible phenotype, gun1 mutants show low activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX), with an increase in O2- accumulation and lipid peroxidation, suggesting that GUN1 indirectly protects chloroplasts from oxidative damage. In wild type seedlings, perturbation of chloroplast development with lincomycin causes H2O2 accumulation, in parallel with the decrease of ROS-removal metabolites and enzymes. These redox changes do not take place in gun1 mutants which, in contrast, enhance SOD, APX and catalase activities. Our results indicate that in response to lincomycin, GUN1 is necessary for the H2O2-dependent oxidation of cellular environment, which might contribute to the redox-dependent plastid-to nucleus communication.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, Bari 70125, Italy
| | - Cecilia Lasorella
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, Bari 70125, Italy
| | - Luca Tadini
- Department of Biosciences, University of Milano, Milano 20133, Italy
| | - Nicolaj Jeran
- Department of Biosciences, University of Milano, Milano 20133, Italy
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, Via Orabona 4, Bari 70125, Italy
| | - Paolo Pesaresi
- Department of Biosciences, University of Milano, Milano 20133, Italy
| | | |
Collapse
|
12
|
cAMP Is a Promising Regulatory Molecule for Plant Adaptation to Heat Stress. Life (Basel) 2022; 12:life12060885. [PMID: 35743916 PMCID: PMC9225146 DOI: 10.3390/life12060885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
With gradual warming or increased frequency and magnitude of high temperature, heat stress adversely affects plant growth and eventually reduces plant productivity and quality. Plants have evolved complex mechanisms to sense and respond to heat stress which are crucial to avoiding cell damage and maintaining cellular homeostasis. Recently, 33″,55″-cyclic adenosine monophosphate (cAMP) has been proved to be an important signaling molecule participating in plant adaptation to heat stress by affecting multi-level regulatory networks. Significant progress has been made on many fronts of cAMP research, particularly in understanding the downstream signaling events that culminate in the activation of stress-responsive genes, mRNA translation initiation, vesicle trafficking, the ubiquitin-proteasome system, autophagy, HSPs-assisted protein processing, and cellular ion homeostasis to prevent heat-related damage and to preserve cellular and metabolic functions. In this present review, we summarize recent works on the genetic and molecular mechanisms of cAMP in plant response to heat stress which could be useful in finding thermotolerant key genes to develop heat stress-resistant varieties and that have the potential for utilizing cAMP as a chemical regulator to improve plant thermotolerance. New directions for future studies on cAMP are discussed.
Collapse
|
13
|
Mass Cytometry Exploration of Immunomodulatory Responses of Human Immune Cells Exposed to Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14030630. [PMID: 35336005 PMCID: PMC8954471 DOI: 10.3390/pharmaceutics14030630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing production and application of silver nanoparticles (Ag NPs) have raised concerns on their possible adverse effects on human health. However, a comprehensive understanding of their effects on biological systems, especially immunomodulatory responses involving various immune cell types and biomolecules (e.g., cytokines and chemokines), is still incomplete. In this study, a single-cell-based, high-dimensional mass cytometry approach is used to investigate the immunomodulatory responses of Ag NPs using human peripheral blood mononuclear cells (hPBMCs) exposed to poly-vinyl-pyrrolidone (PVP)-coated Ag NPs of different core sizes (i.e., 10-, 20-, and 40-nm). Although there were no severe cytotoxic effects observed, PVPAg10 and PVPAg20 were excessively found in monocytes and dendritic cells, while PVPAg40 displayed more affinity with B cells and natural killer cells, thereby triggering the release of proinflammatory cytokines such as IL-2, IL-17A, IL-17F, MIP1β, TNFα, and IFNγ. Our findings indicate that under the exposure conditions tested in this study, Ag NPs only triggered the inflammatory responses in a size-dependent manner rather than induce cytotoxicity in hPBMCs. Our study provides an appropriate ex vivo model to better understand the human immune responses against Ag NP at a single-cell level, which can contribute to the development of targeted drug delivery, vaccine developments, and cancer radiotherapy treatments.
Collapse
|
14
|
Miras-Moreno B, Zhang L, Senizza B, Lucini L. A metabolomics insight into the Cyclic Nucleotide Monophosphate signaling cascade in tomato under non-stress and salinity conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110955. [PMID: 34134851 DOI: 10.1016/j.plantsci.2021.110955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Cyclic Nucleotides Monophosphate (cNMP) are key signalling compounds whose role in plant cell signal transduction is still poorly understood. In this work we used sildenafil, a phosphodiesterase (PDE) inhibitor used in human, to amplify the signal cascade triggered by cNMP using tomato as model plant. Metabolomics was then used, together with plant growth and root architecture parameters, to unravel the changes elicited by PDE inhibition either under non-stress and 100 mM NaCl salinity conditions. The PDE inhibitor elicited a significant increase in biomass (+62 %) and root length (+56 %) under no stress conditions, and affected root architecture in terms of distribution over diameter classes. Together with cGMP, others cNMP were modulated by the treatment. Moreover, PDE inhibition triggered a broad metabolic reprogramming involving photosynthesis and secondary metabolism. A complex crosstalk network of phytohormones and other signalling compounds could be observed in treated plants. Nonetheless, metabolites related to redox imbalance processes and NO signalling could be highlighted in tomato following PDE application. Despite salinity damped down the growth-promoting effects of sildenafil, interesting implications in plant mitigation to stress-related detrimental effects could be observed.
Collapse
Affiliation(s)
- Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| |
Collapse
|
15
|
Zhao Y, Liu Y, Ji X, Sun J, Lv S, Yang H, Zhao X, Hu X. Physiological and proteomic analyses reveal cAMP‐regulated key factors in maize root tolerance to heat stress. Food Energy Secur 2021. [DOI: 10.1002/fes3.309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yulong Zhao
- State Key Laboratory of Wheat & Maize Crop Science College of Agronomy Henan Agricultural University Zhengzhou China
| | - Yanpei Liu
- State Key Laboratory of Wheat & Maize Crop Science College of Life Science Henan Agricultural University Zhengzhou China
| | - Xiaoming Ji
- College of Tobacco Henan Agricultural University Zhengzhou China
| | - Jinfeng Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement Key Laboratory of Plant Stress Biology School of Life Sciences Henan University Kaifeng China
| | - Shanshan Lv
- State Key Laboratory of Wheat & Maize Crop Science College of Life Science Henan Agricultural University Zhengzhou China
| | - Hao Yang
- State Key Laboratory of Wheat & Maize Crop Science College of Life Science Henan Agricultural University Zhengzhou China
| | - Xia Zhao
- Cereal institute Henan Academy of Agricultural Sciences Zhengzhou China
| | - Xiuli Hu
- State Key Laboratory of Wheat & Maize Crop Science College of Life Science Henan Agricultural University Zhengzhou China
| |
Collapse
|
16
|
Napso T, Zhao X, Lligoña MI, Sandovici I, Kay RG, George AL, Gribble FM, Reimann F, Meek CL, Hamilton RS, Sferruzzi-Perri AN. Placental secretome characterization identifies candidates for pregnancy complications. Commun Biol 2021; 4:701. [PMID: 34103657 PMCID: PMC8187406 DOI: 10.1038/s42003-021-02214-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
Alterations in maternal physiological adaptation during pregnancy lead to complications, including abnormal birthweight and gestational diabetes. Maternal adaptations are driven by placental hormones, although the full identity of these is lacking. This study unbiasedly characterized the secretory output of mouse placental endocrine cells and examined whether these data could identify placental hormones important for determining pregnancy outcome in humans. Secretome and cell peptidome analyses were performed on cultured primary trophoblast and fluorescence-activated sorted endocrine trophoblasts from mice and a placental secretome map was generated. Proteins secreted from the placenta were detectable in the circulation of mice and showed a higher relative abundance in pregnancy. Bioinformatic analyses showed that placental secretome proteins are involved in metabolic, immune and growth modulation, are largely expressed by human placenta and several are dysregulated in pregnancy complications. Moreover, proof-of-concept studies found that secreted placental proteins (sFLT1/MIF and ANGPT2/MIF ratios) were increased in women prior to diagnosis of gestational diabetes. Thus, placental secretome analysis could lead to the identification of new placental biomarkers of pregnancy complications.
Collapse
Affiliation(s)
- Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Xiaohui Zhao
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Marta Ibañez Lligoña
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ionel Sandovici
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, The Rosie Hospital, Cambridge, UK
| | - Richard G Kay
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Amy L George
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Fiona M Gribble
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Claire L Meek
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Russell S Hamilton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Physiological and Biochemical Dissection Reveals a Trade-off Between Antioxidant Capacity and Heat Tolerance in Bread Wheat ( Triticum aestivum L.). Antioxidants (Basel) 2021; 10:antiox10030351. [PMID: 33652954 PMCID: PMC7996931 DOI: 10.3390/antiox10030351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Heat stress alters photosynthetic components and the antioxidant scavenging system, negatively affecting plant growth and development. Plants overcome heat stress damage through an integrated network involving enzymatic and non-enzymatic antioxidants. This study aimed to assess physiological and biochemical responses in contrasting thermo-tolerant wheat varieties exposed to 25 °C (control) and 35 °C (heat stress), during the seedling stage. Our results revealed a substantial decrease in the photosynthetic pigments, carotenoids, anthocyanin content, and increased membrane injury index, malondialdehyde, methylglyoxal (MG), H2O2 contents and lipoxygenase activity compared to non-stress wheat seedlings. The heat-tolerant variety BARI Gom 26 ("BG26") maintained higher cellular homeostasis compared to the heat susceptible variety Pavon 76 ("Pavon"), perpetuated by higher accumulation of proline, glycine betaine, ascorbate-glutathione cycle associated enzymes, reduced glutathione and ascorbate concentration in plant cells. Significantly lower levels of MG detoxification and antioxidant activities and ascorbate-glutathione cycle-related enzymatic activities lead to increased susceptibility in variety "Pavon". Hierarchical clustering and principal component analysis revealed that variety "BG26" possess a combination of biochemical responses tailoring antioxidant activities that induced a higher level of tolerance. Taken together, our results provide a pipeline for establishing a trade-off between antioxidant capacity and heat tolerance to facilitate functional genomics and translational research to unravel underlying mechanisms to better adapt wheat to heat stress.
Collapse
|