1
|
Tu CY, Zheng L, Yan J, Shen RF, Zhu XF. ACS2 and ACS6, especially ACS2 is involved in MPK6 evoked production of ethylene under Cd stress, which exacerbated Cd toxicity in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 352:112354. [PMID: 39672386 DOI: 10.1016/j.plantsci.2024.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
As one of the heavy metal pollutants with strong biological toxicity, cadmium (Cd) is easily absorbed by plant roots, which seriously restricts the growth of plants, causes the quality of agricultural products to decline and threatens human health. Many complex signal transduction pathways are involved in the process of plant response to Cd stress. Among them, plant hormone ethylene is an important signal molecule for plant response to various environmental stresses, and its regulatory mechanism and signal transduction pathway in Cd stress response need to be further clarified. Here, we discovered that Cd stress induced a significant increment in ethylene production in Arabidopsis roots, and the amount of ethylene produced was positively correlated with the inhibition of Arabidopsis root growth and Cd accumulation. Simultaneously, Cd stress stimulated the detoxification mechanism within cells and promoted the expression of METAL TOLERANCE PROTEIN 3 (MTP3), IRON-REGULATED TRANSPORTER2 (IRT2), IRON REGULATED GENE 2 (IREG2) genes implicated in Cd vacuolar compartmentation. However, whether this is associated with ethylene signal transduction remains to be further explored. Further studies have revealed that the Cd induced ethylene burst is attributed to the up-regulation of the expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE (ACS) genes that mediated by MITONGEN-ACTIVATED PROTEIN KINASE 6 (MAPK6) in Arabidopsis roots, and among them, ACS2 and ACS6, especially ACS2, are involved in MAPK6-induced ethylene production under Cd stress. The results of this study provide new ideas for understanding the signal transduction pathway of plant response to Cd stress.
Collapse
Affiliation(s)
- Chun Yan Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
2
|
Morales-Vargas AT, López-Ramírez V, Álvarez-Mejía C, Vázquez-Martínez J. Endophytic Fungi for Crops Adaptation to Abiotic Stresses. Microorganisms 2024; 12:1357. [PMID: 39065124 PMCID: PMC11279104 DOI: 10.3390/microorganisms12071357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Endophytic fungi (EFs) have emerged as promising modulators of plant growth and stress tolerance in agricultural ecosystems. This review synthesizes the current knowledge on the role of EFs in enhancing the adaptation of crops to abiotic stress. Abiotic stresses, such as drought, salinity, and extreme temperatures, pose significant challenges to crop productivity worldwide. EFs have shown remarkable potential in alleviating the adverse effects of these stresses. Through various mechanisms, including the synthesis of osmolytes, the production of stress-related enzymes, and the induction of plant defense mechanisms, EFs enhance plant resilience to abiotic stressors. Moreover, EFs promote nutrient uptake and modulate the hormonal balance in plants, further enhancing the stress tolerance of the plants. Recent advancements in molecular techniques have facilitated the identification and characterization of stress-tolerant EF strains, paving the way for their utilization in agricultural practices. Furthermore, the symbiotic relationship between EFs and plants offers ecological benefits, such as improved soil health and a reduced dependence on chemical inputs. However, challenges remain in understanding the complex interactions between EFs and host plants, as well as in scaling up their application in diverse agricultural systems. Future research should focus on elucidating the mechanisms underlying endophytic-fungal-mediated stress tolerance and developing sustainable strategies for harnessing their potential in crop production.
Collapse
Affiliation(s)
- Adan Topiltzin Morales-Vargas
- Programa de Ingeniería en Biotecnología, Campus Celaya-Salvatierra, Universidad de Guanajuato, Mutualismo #303, Col. La Suiza, Celaya 36060, Mexico
| | - Varinia López-Ramírez
- Departamento de Ingeniería Bioquímica, TecNM/ITS Irapuato, Silao-Irapuato km 12.5, El Copal, Irapuato 36821, Mexico
| | - Cesar Álvarez-Mejía
- Coordinación de Ingeniería Ambiental, TecNM/ITS Abasolo, Cuitzeo de los Naranjos #401, Col. Cuitzeo de los Naranjos, Abasolo 36976, Mexico
| | - Juan Vázquez-Martínez
- Departamento de Ingeniería Química, TecNM/ITS Irapuato, Silao-Irapuato km 12.5, El Copal, Irapuato 36821, Mexico
| |
Collapse
|
3
|
Ważny R, Jędrzejczyk RJ, Domka A, Pliszko A, Kosowicz W, Githae D, Rozpądek P. How does metal soil pollution change the plant mycobiome? Environ Microbiol 2023; 25:2913-2930. [PMID: 37127295 DOI: 10.1111/1462-2920.16392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms play a key role in plant adaptation to the environment. The aim of this study was to evaluate the effect of toxic metals present in the soil on the biodiversity of plant-related, endophytic mycobiota. The mycobiome of plants and soil from a Zn-Pb heap and a metal-free ruderal area were compared via Illumina sequencing of the ITS1 rDNA. The biodiversity of plants and fungi inhabiting mine dump substrate was lower than that of the metal free site. In the endosphere of Arabidopsis arenosa from the mine dump the number of endophytic fungal taxa was comparable to that in the reference population, but the community structure significantly differed. Agaricomycetes was the most notably limited class of fungi. The results of plant mycobiota evaluation from the field study were verified in terms of the role of toxic metals in plant endophytic fungi community assembly in a reconstruction experiment. The results presented in this study indicate that metal toxicity affects the structure of the plant mycobiota not by changing the pool of microorganisms available in the soil from which the fungal symbionts are recruited but most likely by altering plant and fungi behaviour and the organisms' preferences towards associating in symbiotic relationships.
Collapse
Affiliation(s)
- Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Roman J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Agnieszka Domka
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- W. Szafer Institute of Botany Polish Academy of Sciences, Kraków, Poland
| | - Artur Pliszko
- Institute of Botany, Jagiellonian University in Kraków, Kraków, Poland
| | - Weronika Kosowicz
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Kraków, Poland
| | - Dedan Githae
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Kraków, Poland
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| |
Collapse
|
4
|
Jędrzejczyk RJ, Gustab M, Ważny R, Domka A, Jodłowski PJ, Sitarz M, Bezkosty P, Kowalski M, Pawcenis D, Jarosz K, Sebastian V, Łabaj PP, Rozpądek P. Iron inactivation by Sporobolomyces ruberrimus and its potential role in plant metal stress protection. An in vitro study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161887. [PMID: 36731550 DOI: 10.1016/j.scitotenv.2023.161887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The endophytic Basidiomycete Sporobolomyces ruberrimus protects its host Arabidopsis arenosa against metal toxicity. Plants inoculated with the fungus yielded more biomass and exhibited significantly fewer stress symptoms in medium mimicking mine dump conditions (medium supplemented with excess of Fe, Zn and Cd). Aside from fine-tuning plant metal homeostasis, the fungus was capable of precipitating Fe in the medium, most likely limiting host exposure to metal toxicity. The precipitated residue was identified by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-Ray Diffraction (XRD) and electron microscopy (SEM/TEM) with energy dispersive X-Ray analysis (EDX/SAED) techniques. The performed analyses revealed that the fungus transforms iron into amorphous (oxy)hydroxides and phosphates and immobilizes them in the form of a precipitate changing Fe behaviour in the MSR medium. Moreover, the complexation of free Fe ions by fungi could be obtained by biomolecules such as lipids, proteins, or biosynthesized redox-active molecules.
Collapse
Affiliation(s)
- Roman J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Maciej Gustab
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Agnieszka Domka
- W. Szafer Institute of Botany Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland.
| | - Przemysław J Jodłowski
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland.
| | - Maciej Sitarz
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland.
| | - Patryk Bezkosty
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland.
| | - Michał Kowalski
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Dominika Pawcenis
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Kinga Jarosz
- Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland.
| | - Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain; Department of Chemical and Environmental Engineering, Universidad de Zaragoza, Campus Rio Ebro, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Paweł P Łabaj
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| |
Collapse
|
5
|
Doyle E, Blanchon D, Wells S, de Lange P, Lockhart P, Waipara N, Manefield M, Wallis S, Berry TA. Internal Transcribed Spacer and 16S Amplicon Sequencing Identifies Microbial Species Associated with Asbestos in New Zealand. Genes (Basel) 2023; 14:genes14030729. [PMID: 36981000 PMCID: PMC10048439 DOI: 10.3390/genes14030729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Inhalation of asbestos fibres can cause lung inflammation and the later development of asbestosis, lung cancer, and mesothelioma, and the use of asbestos is banned in many countries. In most countries, large amounts of asbestos exists within building stock, buried in landfills, and in contaminated soil. Mechanical, thermal, and chemical treatment options do exist, but these are expensive, and they are not effective for contaminated soil, where only small numbers of asbestos fibres may be present in a large volume of soil. Research has been underway for the last 20 years into the potential use of microbial action to remove iron and other metal cations from the surface of asbestos fibres to reduce their toxicity. To access sufficient iron for metabolism, many bacteria and fungi produce organic acids, or iron-chelating siderophores, and in a growing number of experiments these have been found to degrade asbestos fibres in vitro. This paper uses the internal transcribed spacer (ITS) and 16S amplicon sequencing to investigate the fungal and bacterial diversity found on naturally-occurring asbestos minerals, asbestos-containing building materials, and asbestos-contaminated soils with a view to later selectively culturing promising species, screening them for siderophore production, and testing them with asbestos fibres in vitro. After filtering, 895 ITS and 1265 16S amplicon sequencing variants (ASVs) were detected across the 38 samples, corresponding to a range of fungal, bacteria, cyanobacterial, and lichenized fungal species. Samples from Auckland (North Island, New Zealand) asbestos cement, Auckland asbestos-contaminated soils, and raw asbestos rocks from Kahurangi National Park (South Island, New Zealand) were comprised of very different microbial communities. Five of the fungal species detected in this study are known to produce siderophores.
Collapse
Affiliation(s)
- Erin Doyle
- Applied Molecular Solutions Research Centre, Te Pūkenga–New Zealand Institute of Skills and Technology, Private Bag 92025, Auckland 1142, New Zealand; (E.D.); (S.W.); (P.d.L.)
| | - Dan Blanchon
- Applied Molecular Solutions Research Centre, Te Pūkenga–New Zealand Institute of Skills and Technology, Private Bag 92025, Auckland 1142, New Zealand; (E.D.); (S.W.); (P.d.L.)
- School of Environmental and Animal Sciences, Te Pūkenga–New Zealand Institute of Skills and Technology, Private Bag 92025, Auckland 1142, New Zealand
- Correspondence:
| | - Sarah Wells
- Applied Molecular Solutions Research Centre, Te Pūkenga–New Zealand Institute of Skills and Technology, Private Bag 92025, Auckland 1142, New Zealand; (E.D.); (S.W.); (P.d.L.)
- School of Environmental and Animal Sciences, Te Pūkenga–New Zealand Institute of Skills and Technology, Private Bag 92025, Auckland 1142, New Zealand
| | - Peter de Lange
- Applied Molecular Solutions Research Centre, Te Pūkenga–New Zealand Institute of Skills and Technology, Private Bag 92025, Auckland 1142, New Zealand; (E.D.); (S.W.); (P.d.L.)
- School of Environmental and Animal Sciences, Te Pūkenga–New Zealand Institute of Skills and Technology, Private Bag 92025, Auckland 1142, New Zealand
| | - Pete Lockhart
- Institute of Fundamental Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand;
| | - Nick Waipara
- The New Zealand Institute for Plant & Food Research Limited, Mt Albert, Auckland 1142, New Zealand;
| | - Michael Manefield
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Shannon Wallis
- Environmental Solutions Research Centre, Te Pūkenga–New Zealand Institute of Skills and Technology, Private Bag 92025, Auckland 1142, New Zealand; (S.W.); (T.-A.B.)
| | - Terri-Ann Berry
- Environmental Solutions Research Centre, Te Pūkenga–New Zealand Institute of Skills and Technology, Private Bag 92025, Auckland 1142, New Zealand; (S.W.); (T.-A.B.)
| |
Collapse
|
6
|
Ramos-Garza J, Aguirre-Noyola JL, Bustamante-Brito R, Zelaya-Molina LX, Maldonado-Hernández J, Morales-Estrada AI, Resendiz-Venado Z, Palacios-Olvera J, Angeles-Gallegos T, Terreros-Moysen P, Cortés-Carvajal M, Martínez-Romero E. Mycobiota of Mexican Maize Landraces with Auxin-Producing Yeasts That Improve Plant Growth and Root Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:1328. [PMID: 36987016 PMCID: PMC10058334 DOI: 10.3390/plants12061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Compared to agrochemicals, bioinoculants based on plant microbiomes are a sustainable option for increasing crop yields and soil fertility. From the Mexican maize landrace "Raza cónico" (red and blue varieties), we identified yeasts and evaluated in vitro their ability to promote plant growth. Auxin production was detected from yeast isolates and confirmed using Arabidopsis thaliana plants. Inoculation tests were performed on maize, and morphological parameters were measured. Eighty-seven yeast strains were obtained (50 from blue corn and 37 from red corn). These were associated with three families of Ascomycota (Dothideaceae, Debaryomycetaceae, and Metschnikowiaceae) and five families of Basidiomycota (Sporidiobolaceae, Filobasidiaceae, Piskurozymaceae, Tremellaceae, and Rhynchogastremataceae), and, in turn, distributed in 10 genera (Clavispora, Rhodotorula, Papiliotrema, Candida, Suhomyces, Soliccocozyma, Saitozyma Holtermaniella, Naganishia, and Aeurobasidium). We identified strains that solubilized phosphate and produced siderophores, proteases, pectinases, and cellulases but did not produce amylases. Solicoccozyma sp. RY31, C. lusitaniae Y11, R. glutinis Y23, and Naganishia sp. Y52 produced auxins from L-Trp (11.9-52 µg/mL) and root exudates (1.3-22.5 µg/mL). Furthermore, they stimulated the root development of A. thaliana. Inoculation of auxin-producing yeasts caused a 1.5-fold increase in maize plant height, fresh weight, and root length compared to uninoculated controls. Overall, maize landraces harbor plant growth-promoting yeasts and have the potential for use as agricultural biofertilizers.
Collapse
Affiliation(s)
- Juan Ramos-Garza
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3016/3058, Coapa, Ex Hacienda Coapa, Coyoacán 04910, Ciudad de México, Mexico
| | - José Luis Aguirre-Noyola
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Rafael Bustamante-Brito
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Lily X. Zelaya-Molina
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos-INIFAP, Boulevard de la Biodiversidad No. 400, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Jessica Maldonado-Hernández
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3016/3058, Coapa, Ex Hacienda Coapa, Coyoacán 04910, Ciudad de México, Mexico
| | - Aurea Itzel Morales-Estrada
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3016/3058, Coapa, Ex Hacienda Coapa, Coyoacán 04910, Ciudad de México, Mexico
| | - Zoe Resendiz-Venado
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos-INIFAP, Boulevard de la Biodiversidad No. 400, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Jacqueline Palacios-Olvera
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3016/3058, Coapa, Ex Hacienda Coapa, Coyoacán 04910, Ciudad de México, Mexico
| | - Thania Angeles-Gallegos
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3016/3058, Coapa, Ex Hacienda Coapa, Coyoacán 04910, Ciudad de México, Mexico
| | - Paola Terreros-Moysen
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3016/3058, Coapa, Ex Hacienda Coapa, Coyoacán 04910, Ciudad de México, Mexico
| | - Manuel Cortés-Carvajal
- Escuela de Ciencias de la Salud, Campus Coyoacán, Universidad del Valle de México, Calzada de Tlalpan 3016/3058, Coapa, Ex Hacienda Coapa, Coyoacán 04910, Ciudad de México, Mexico
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| |
Collapse
|
7
|
Gupta K, Garg R. Unravelling Differential DNA Methylation Patterns in Genotype Dependent Manner under Salinity Stress Response in Chickpea. Int J Mol Sci 2023; 24:ijms24031863. [PMID: 36768187 PMCID: PMC9915442 DOI: 10.3390/ijms24031863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
DNA methylation is one of the epigenetic mechanisms that govern gene regulation in response to abiotic stress in plants. Here, we analyzed the role of epigenetic variations by exploring global DNA methylation and integrating it with differential gene expression in response to salinity stress in tolerant and sensitive chickpea genotypes. Genome-wide DNA methylation profiles showed higher CG methylation in the gene body regions and higher CHH methylation in the TE body regions. The analysis of differentially methylated regions (DMRs) suggested more hyper-methylation in response to stress in the tolerant genotype compared to the sensitive genotype. We observed higher enrichment of CG DMRs in genes and CHH DMRs in transposable elements (TEs). A positive correlation of gene expression with CG gene body methylation was observed. The enrichment analysis of DMR-associated differentially expressed genes revealed they are involved in biological processes, such as lateral root development, transmembrane transporter activity, GTPase activity, and regulation of gene expression. Further, a high correlation of CG methylation with CHG and CHH methylation under salinity stress was revealed, suggesting crosstalk among the methylation contexts. Further, we observed small RNA-mediated CHH hypermethylation in TEs. Overall, the interplay between DNA methylation, small RNAs, and gene expression provides new insights into the regulatory mechanism underlying salinity stress response in chickpeas.
Collapse
|